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Abstract—In this paper, we propose two energy-aware schedul-
ing algorithms—(1) Reinforcement learning-based multiproces-
sor scheduling (RL) algorithm and (2) Mathematical morpholo-
gy multiprocessor scheduling (MMS) algorithm—for scheduling
time-constrained Directed Acyclic Graph (DAG) tasks in an
embedded multiprocessor system with Dynamic Voltage And
Frequency Scaling (DVFS) and Dynamic Power Management
(DPM) technology. Unlike other heuristic scheduling algorithms,
the proposed reinforcement learning (RL) is a machine learning
algorithm, rarely considered for energy-aware scheduling in DAG
tasks. The MMS, inspired by Mathematical morphology that is
often used in image processing, continuously adjusts the coded
scheduling through a probe matrix to optimize energy consump-
tion. In this paper the genetic algorithm (GA) is compared
with these two proposed algorithms by rigorous simulation.
The results demonstrate that our algorithms are more energy
efficient. Compared with the GA algorithm, the RL and the
MMS algorithm significantly improve the energy consumption
reduction rate by an average of 13.37% and 72.92% respectively.
In addition, MMS algorithm shows better performance in high-
density and high-complexity DAG tasks.

Index Terms—Energy optimization; Task scheduling; Multi-
core; Embedded

I. INTRODUCTION

With the rapid development of electronic technology, therere
increasing demands for better performance of embedded sys-
tems in recent years. Applications such as image processing,
high-definition television, and video games are being imple-
mented in embedded system [1], [2]. Due to performance
limitations of single-core processors nowadays, the embedded
systems generally run on heterogeneous multi-core hardware
platforms that include different processing units such as CPU,
DSP, FPGA and so on [3]. This structure greatly improves
the performance of the embedded system while brings a lot
of energy consumption [4], [5], [6], [7]. As high energy con-
sumption is heavily restricting the development of embedded
systems, how to reduce the energy consumption of embedded
systems has become a non-negligible problem[5]. In order
to do this, the DVFS and DPM low-power technologies are
widely used in heterogeneous multi-core processors, and have
achieved excellent results [6], [9], [10].

In an embedded real-time system, ensuring the real-time
characteristics of the task directly determines the baseline
for system performance [3]. Therefore, both the time perfor-
mance and energy cost should be considered in the energy

optimization algorithm. Genetic Algorithm (GA), a classic
heuristic algorithm, is widely applied to energy optimization
in the embedded system. However, this algorithm has obvious
disadvantages. For one thing , it never exploits the feedback
information to adjust the search direction in the calculation.
For another, it behaves poorly in local search. Therefore, the
GA tends to be easily trapped in the local optimum, which
inevitably limits its performance. In this paper, in hopes of
overcoming these defects, we try a new machine learning
approach—RL ,which is likely to show better performance, in-
stead of improving the GA. The essence of the RL algorithm is
to use continuous trial and error, with the aim of bringing good
global search results, to find the optimal solution. Moreover ,
RL can adjust its search direction according to feedback from
network search, which in turn makes it present a good local
search performance. So the RL algorithm takes into account
both global search and local search capabilities compared
to the genetic algorithm. It will provide new inspiration for
those scholars who try to find the optimal solution by using
machine learning algorithms. In addition, in this paper, we
propose a new optimization algorithm called MMS, inspired
by mathematical morphology. Mathematical morphology has
a wide range of applications in the images processing. It
uses a structural element ”probe” to collect information from
an image, and continuously moves the probe to examine the
relationship among parts of the image [11], [12]. Using this
idea, we encode the task scheduling scheme into a binary
matrix and adjust the local encoding through a moving matrix
probe, so that the entire encoding reaches a better state.

II. RELATED WORK

The research on reducing the energy consumption of het-
erogeneous multi-cores in embedded systems has made con-
siderable progress. The application of DVFS and DPM low-
power technology further reduces the energy consumption of
heterogeneous multi-core embedded systems [6], [13]. The
DVFS technology provides several discrete voltage levels, and
the processor can independently and dynamically adjust its
own voltage supply to save energy [14], [15], [16]. DPM
technology allows the idling processors to enter sleep mod-
e to reduce power consumption [17]. The task scheduling
of heterogeneous multi-cores in embedded systems can be
divided into online scheduling and offline scheduling [8].



Online scheduling means that the processor does not know the
scheduling scheme of the task in advance, and the processor
performs real-time scheduling when the task arrives. Off-line
scheduling means that the processor knows the scheduling
scheme of the task beforehand and directly schedules the task
when it arrives. This paper focuses on the study of offline
scheduling where the DAG is used to describe precedence
among tasks.

In heterogeneous multi-core embedded systems, there are
many methods to minimize the energy consumption of time-
constrained DAG tasks. The application of heuristic algo-
rithms is very common. However, few people pay attention
to the application of machine learning algorithms in this
field. The literature [18], [19], [20], [21] uses the existing
heuristic algorithm for energy optimization. The literature
[18] improved the genetic algorithm and combined it with
the retiming technology to reduce the energy consumption
of Real-Time Streaming Applications. In the literature [19],
Adaptive Genetic-Simulated Annealing algorithm that inte-
grates the genetic algorithm and the annealing algorithm, was
used to minimize the energy consumption and time of WMSN
equipment. The literature [20] studied the influence of genetic
algorithm parameters on energy consumption optimization of
multi-core processors and improved the fitness function of
genetic algorithms. The literature [21] compared the genetic
algorithm and the shuffled frog leaping algorithm, and thought
that the particle swarm optimization algorithm has a better
optimization effect. In addition, the literature [22], [23], [24]
proposes new ideas about minimizing energy consumption in
multi-core. The literature [22]comprehensively considers the
problem of task ordering and voltage scaling, and propos-
es a multiprocessor scheduling algorithm based on energy
gradient. In the literature [23], a fine-grained integer linear
programming (ILP) model was established for inter-processor
communication-intensive scenarios, and a unified priority-
based scheduling (UPS) algorithm was brought forward. The
literature [24] takes into account the memory allocation prob-
lem of data, and proposes an energy optimization algorithm
that considers data allocation.

III. TASK SCHEDULING MODEL

A. Task Model

In a heterogeneous multi-core embedded system, a task
consists of multiple jobs. Directed Acyclic Graph (DAG)
is used to describe the precedence among jobs. And we
apply the DVFS and DPM low-energy technologies to reduce
energy consumption in model. Without loss of generality,
this article describes the task model as a quadruple S =
{P, V, T,E}.The heterogeneous multi-core processor contains
m cores. P = {p0, p1, ..., pm−1} is used to represent the
set of m cores,where pi(0 ≤ i < m represents the i-th
core. V = {v0, v1, ..., vk−1} represents a set of k voltage
levels, where vi(0 ≤ i < k represents the i-th voltage level.
T = {T0, T1, ..., Tn−1} represents a task set of n jobs,where
Ti(0 ≤ i < n representing the i-th task. E represents an n∗n
matrix, and eij(0 ≤ i, j < n) represents the element of the

Algorithm 1 Generate scheduling scheme linked list
Input: S = {P, V, T,E}
Output: J , Tordered
1: Assign a deep copy of E to E copy
2: for Ti in T do
3: if the job Ti has a zero in degree then
4: if the job Ti is in list Tordered then
5: continue
6: Add Ti to Tordered
7: for Tj in T do
8: E copy[i][j]←− −1
9: i←− 0

10: for Ti in Tordered do
11: Randomly assign core p and voltage v to the job Ti
12: Ji ←− (p, v)
13: Add Ji to J
14: return J , Tordered

i-th row and the j-th column in E. If eij is non-negative, it
indicates the traffic from job Ti to job Tj . Besides, the E also
suggests whether there is precedence between jobs, where eij
is positive or zero indicates that there is a precedence between
jobs, and eij being -1 indicates that the precedence does not
exist.

B. Scheduling Model

The scheduling scheme for the job Ti is described by a bi-
nary tuple Ji = (p, v), which means that the job Ti is assigned
to the core p and voltage v is supplied. Firstly, a task need to
be preprocessed.Sort the jobs in the task by precedence shown
in DAG to get an ordered list Tordered = {T0, T1, ..., Tn−1}.
Then, schedule each job in the task to generate an ordered list
of scheduled tasks, denoted by J = {J0, J1, ..., Jn−1}.

Fig. 1. Generate scheduling model.

Figure (1) shows an example where (a) is a DAG task, (b)
is a corresponding task scheduling scheme list J , and (d) is
the corresponding specific scheduling scheme. The following
ALGORITHM 1 is the algorithm description.

C. Time Model

The direct preceding jobs of the job Ti in the DAG is
PreDAG(Ti) = {Tj |ei,j 6= −1}. The direct preceding job
of the job Ti in the core is denoted PreCore(Ti). Start(Ti)
and End(Ti) indicate the start and end time of the job



Algorithm 2 Calculate task set execution time
Input: J
Output: ttotal , Finished
1: Finished ←− {(starti = 0, execi = 0, endi = 0)|Ti ∈
Tordered}

2: for Ji in J do
3: t commi ←− max{Finished[i].endi +

ei,j
B |Tj ∈

PreDAG(Ti)}
4: t corei ←− End(PreCore(Ti))
5: starti ←− max(t commi, t corei)

6: execi ←− V ol(Ti)
S(Ji.p,Ji.v)

7: endi ←− starti + execi
8: Finished[i]←− (starti, execiendi)

9: ttotal ←− max{Finished[i].endi|Ti ∈ Tordered}
10: return ttotal , Finished

respectively. The time when all the communication data of
job Ti’s preceding jobs arrive is t commi:

t commi = max{End(Tj) +
ei,j
B
|Tj ∈ PreDAG(Ti)} (1)

The end time of the direct preceding job of the job Ti in
core is t corei:

t corei = End(PreCore(Ti)) (2)

The start time of the job Ti is the larger value between
t commi and t corei:

Start(Ti) = max(t commi, t corei) (3)

The execution time of the job Ti is Exec(Ti). V ol(Ti)
denotes the job size. And the speed v at which the job Ti
runs on the core p is S(p, v):

Exec(Ti) =
V ol(Ti)

S(p, v)
(4)

The end time of the job Ti is the sum of the start time and
the execution time of the job Ti:

End(Ti) = Start(Ti) + Exec(Ti) (5)

Therefore, the time at which the task T set starts to execute
is 0, and the total time consumed for its execution is:

ttotal = max{End(Ti)|Ti ∈ T} (6)

The following ALGORITHM 2 is the algorithm descrip-
tion.Finished is a linked list that contains the start execution
time starti, execution time execi, and end time endi of each
job.

D. Energy consumption model

In this paper, the processor cores in the MPSoC can
support Dynamic Voltage and Frequency Scaling (DVFS) and
Dynamic Power Management (DMP) technologies. when the
voltage value v provided by core to a job, corresponding
working frequency of the core is f . In addition, each core
can independently perform voltage switching without affecting

other cores. When the core is in sleep mode, it can maintain
energy consumption at a lower level. When a scheduling
scheme is determined, its total energy consumption Etotal can
be expressed as:

Etotal = Edynamic+Estatic+Ecomm+Esleep+EtranV+EtranS
(7)

Edynamic indicates total dynamic energy consumption.
Estatic indicates static energy consumption. Ecomm indicates
total communication energy consumption. Esleep indicates
the power consumption of the core in sleep mode. EtranV
indicates energy consumption in switching between different
running voltages. EtranS indicates energy consumption in
switching between modes of sleep and wake up in the cores.

Dynamic energy consumption is the energy consumed by a
task when it is executed. The power model for a core running
at voltage v is [25]:

Pdymanic(p, v) = Csw(p) ∗ f ∗ v2 (8)

The characteristics of each core p are different. The capaci-
tance value of the core p is Csw(p) , and the frequency value
corresponding to the voltage v is f . Then in the dynamic
energy consumption model, the energy consumption of the
core p at the voltage v during the running time t can be
expressed as:

Edymanic = Pdymanic(p, v) ∗ t (9)

Static voltages are generated by different leakage power
sources, where the subthreshold leakage current and the
reverse bias junction current contribute to most of energy
consumption. Therefore, the static energy consumption can be
described as [26]:

Pstatic(v) = Isubn ∗ v + |Vbs| ∗ Ij (10)

Estatic = Pstatic(v) ∗ t (11)

Where the Isubn represents the subthreshold current, the Vbs
represents the body bias voltage, the Ij represents the reverse
bias junction current, the v represents the voltage assigned to
the job, and the t represents the time.

Communication energy consumption is energy consumption
generated by data transmission between jobs of different cores.
The communication energy consumption of job Ti from job
Tj can be expressed as:

Ecomm(Ti, Tj) = Pcomm ∗
com(Ti, Tj)

B
(12)

The Pcomm represents communication power, the com(Ti, Tj)
represents the amount of communication data from the job Ti
to the job Tj , the B represents the bandwidth between two
relative cores.

Sleep energy consumption is the energy consumed by the
core after it switchs to sleep mode. The Psleep represents the
power of the core in sleep mode and the t represents the du-
ration of sleep mode. Therefore, the sleep power consumption
can be expressed as:

Esleep(t) = Psleep ∗ t (13)



Algorithm 3 Calculate the energy consumption of the task set
Input: Finished , J
Output: Etotal
1: for Ji in J do
2: Etotal ←− Etotal +
Edynamic(Ji.p, Ji.v, F inished[i].execi)

3: Etotal ←− Etotal + sumEcomm(Tj ,Ti)|Tj∈PreDAG(Ti)

4: Tj ←− PreCore(Ti)
5: FreeT ime ←− Finished[i].starti −
Finished[j].endj

6: SleepEnergy = 2 ∗ EtranS + Esleep(FreeT ime)
7: TranEnergy = EtranV (Jj .p, Jj .v, FreeT ime) +
Edynamic(Jj .p, Jj .v, FreeT ime)

8: if SleepEnergy > TranEnergy then
9: Etotal ←− Etotal + TranEnergy

10: Etotal ←− Etotal + Estatic(Jj .v, FreeT ime)
11: else
12: Etotal ←− Etotal + SleepEnergy
13: vsleep ←− voltage in sleep mode
14: Etotal ←− Etotal + Estatic(vsleep, F reeT ime)

15: Etotal ←− Etotal + Estatic(Ji.v, F inished[i].execi)

16: return Etotal

The voltage switching energy consumption is the energy
consumed by the voltage switching of the core in the running
mode. The time cost when the core switches from voltage vi
to voltage vj is [27]:

ttranV (vi, vj) =
2 ∗ CDD
IMAX

∗ |vi − vj | (14)

where the CDD represents the capacitance of the voltage
converter , the TMAX represents the maximum output current
of the voltage converter. The energy consumption EtranV
in voltage switching consists of the energy consumption
EtranDC in the voltage converter and the energy consumption
EtranCPU in the core during conversion:

EtranV (vi, vj) = EtranDC(vi, vj) + EtranCPU (15)

The EtranDC(vi, vj) and the EtranCPU during voltage
switching from vi to vj can be expressed as:

EtranDC(vi, vj) = α ∗ CDD ∗ |v2i − v2j | (16)

EtranCPU = Ptran ∗ ttran (17)

Here, the α represents the efficiency factor of the voltage
converter, the Ptran represents the power consumption of the
core in the voltage conversion process.

This paper studies the energy consumption with regard to six
aspects mentioned above and establishes a more comprehen-
sive energy consumption model. The following ALGORITHM
3 is the algorithm description.

For the sake of convenience, the calculation of the time
Time and energy consumption En of the scheduling scheme

J is described below using the CET (J) function,following
the style of the python language:

En, T ime = CET (J) (18)

IV. ENERGY OPTIMIZATION

In this chapter, we put forward an improved genetic al-
gorithm to achieve energy optimization based on the model
constructed in the previous chapter. Then, for the first time, we
use reinforcement learning to optimize the energy consumption
of the DAG task. At the same time, we formulate a new
optimization algorithm based on the concept of mathematical
morphology to achieve the optimization of energy consump-
tion.

A. GA Algorithm

The GA simulates the evolution process of a biological
population through iterations, and reserves better individuals
during each iteration in relative strong probability. After a
finite number of iterations, a better solution can be obtained.
The GA is described in several parts including chromosome
coding, crossover, mutation, selection, and fitness functions.
We use the GA to find the optimal solution based on the
tasks scheduling scheme J = {J0, J1, ..., Jn−1} proposed in
Section 3.1.

(1) Chromosome encoding and decoding. Firstly, we use
the scheduling scheme to construct chromosomes. Take the
scheduling scheme described in Section 3.2 as an example.
As shown in the Table 1, a scheduling scheme of the task
for multi-core processors with two cores and two voltage
levels is J . The scheduling of any job Ti requires two bits
and the chromosome encoding of the scheduling scheme J
can be expressed as 000111100100. One scheduling scheme
corresponds to a unique chromosome encoding and vice versa.

TABLE I
TASK SCHEDULING

Task T0 T1 T2 T3 T4 T5

Ji p0, v0 p0, v1 p1, v1 p0, v0 p1, v1 p0, v0
Coding 00 01 11 00 11 00

(2)Chromosome crossings and mutations. Figure(2) shows
crossover and mutations in any two sets of chromosome codes.

Fig. 2. Crossover.

(3)The fitness function is used to measure the quality of
chromosome encoding. Suppose that the energy consump-
tion and time of a chromosome ξi corresponding scheduling



scheme are respectively Eni and Timei . The fitness function
fitness can be expressed as:

fitness(ξi) =

{
1
Eni

Timei ≤ Deadline
0.00001 Timei > Deadline

(19)

If the schedule for a chromosome misses the deadline, the
fitness value of that chromosome will not be discarded directly,
which guarantee chromosome diversity. Those chromosomes
whose schedules are finished before, where the lower the
energy consumption of the chromosome, the greater the pos-
sibility therell be the chromosome might be passed down to
the offspring.

B. RL Algorithm

1) Q-Learning algorithm principle: RL is a kind of ma-
chine learning algorithm, it can iterate the learning process
through interaction with the environment, and finally real-
ize its calculation goal. RL contains five basic components
< agent, state, action, policy, reward > . These five com-
ponents form a complete Markov model [28]. The Q-Learning
algorithm is a very common method in RL. The Q-Learning
system includes a state set S and an action set A. The order
of round of interaction between the agent and the environment
is t. When the agent selects an action at in the current state
st ∈ S through the policy, it will cause that the current state
of the agent to move to st+1 ∈ S and obtain a reward rt .
The state-action mapping can be established and represented
by the Q-value function Qπ(st, at) which means cumulative
rewards for all limited rounds of the action at taken under
state st . Therefore, the agent can establish the mapping
relation between the action and the state according to the Q-
value function, thereby maximizing the reward. According to
the state-action mapping, the Q-table can be established and
updated in each round by the following formula:

Q(st, at)←− Q(st, at)+α(rt+γmax(Q(st+1, at+1))−Q(st, at))
(20)

2) Implementation of Q-Learning Algorithm: The Q-
Learning algorithm is used in this paper to solve the problem
of energy consumption optimisation under time constraints.
The energy optimization problem of DAG task scheduling in
heterogeneous multi-core processors is an NP-hard problem
[30]. The DVFS and DMP technologies are considered in
the task scheduling model, which makes the problem more
complicated. In this paper, we do not pay attention to the con-
vergence of the algorithm, instead the computational process.

(1)The establishment of state and action models. The A is an
action set, according to the task model established in Section
3.1:

A = {(p, v)|p ∈ P, v ∈ V } (21)

The contains all the combination of the elements in the set
P and the elements in the set V , so the elements of the set
are known. The S is the state set, according to the scheduling
model established in Section 3.1:

S = {(J, i)|Ji ∈ J} (22)

Algorithm 4 Calculate task set execution time
Input: J
Output: bestEn , time
1: procedure INITIALIZATION()
2: Initialize Q-table Q[S,A] by 0
3: Initialize bestEn, time using (18)
4: Initialize a state element s←− (J, i)
5: Initialize a action element a←− (p, v)
6: return s,a
7: procedure TRANSFER STATE(s, a, bestEn)
8: s ←−Calculate using (23)
9: r ←−Calculate using (24)

10: If r equal to 1 ,update bestEn,time using (18)
11: return s ,r
12: procedure RL Brain()
13: s, a←− INITIALIZATION()
14: episodes←−Set cycle times
15: for t between 0 to episodes do
16: s , r ←− TRANSFER STATE(s, a, bestEn)
17: a ←− ai,where ai ∈ A with maximum Q[s, a]

value
18: Update Q-table Q[S,A] using (20)
19: s←− s ,a←− a
20: return bestEn , time

Each element in the set S consists of a complete schedule
J and a pointer i, with the pointer pointing to a job in the
task. Due to the uncertainty of J , the content of the set S
is unknown but limited, and the set S is automatically filled
during program execution. The interactive process between the
agent and the environment at the t-th time can be described as:
After the agent selects an action at = (p, v) , the agent will
switch from the current state st = (J, i) to the new state st+1.
The rule here is to replace the contents of the i-th element Ji
in the set J with (p, v) to generate a new set J ′ . And the
st+1 expressed as:

st+1 = (J ′, (i+ 1)modn) (23)

(2)Reward mechanism. The energy and time cost corre-
sponding to the current state st are respectively Ent and
Timet respectively. The corresponding time and energy con-
sumption of st+1 are Ent+1 and Timet :Ent, T imet =
CET (J), Ent+1, T imet+1 = CET (J ′). And rt = 1 only
when Ent+1 > Ent and Timet+1 < Deadline , or rt = 0.1.

rt =

{
1 Ent+1 > Ent andT imet+1 < Deadline

0.1 others
(24)

The Q-learning algorithm is described as follows ALGO-
RITHM 4.

C. MMS Algorithm

1) The principle of MMS algorithm: The idea of the MMS
algorithm comes from mathematics morphology in image
processing. According to the encoding of the task scheduling



scheme J in Section 4.1, the encoding of the d bits is
structured. Then the encoding is folded e times, divided into
a number of units of c bits each, where c and e meet formula
c ∗ e = d. Therefore, the encoding matrix EM as shown in
the left Figure3 can be structured after the coding process, and
each encoding matrix matches a unique scheduling scheme J .
We then select a g ∗ h matrix probe PM , where g ∈ (0, c),
h ∈ (0, e) is the height and width of the probe, respectively.

Fig. 3. Example of MMS algorithm.

The probe starts from the upper left corner of the coding
matrix, and moves from left to right. After moving to the
rightmost side, the probe moves down one step. It repeats the
left-to-right process until the probe moves to the bottom right
corner of the matrix, completing one round of traversal. As
shown in the right Figure3(b) is a 6*4 coding matrix, the probe
is a 2*2 matrix, 0 and 1 can be arranged in the 2*2 matrix to
get 16 groups of arrangements, as Figure3(a) shows. In each
round of traversal, the probe uses the CET function to calculate
the energy consumption En0 and timeTime0 of the current
encoding matrix before each movement. Then we successively
replace the area pointed by the probe with the 16 groups in
the right figure, and calculate the energy consumption and time
corresponding to the replacement, as is shown in Figure3(a).
Remove the replacement from the groups whose running time
exceeds the deadline, and select the replacement group with
the lowest energy consumption and less than En0 from the
remained groups to replace the original code, then move
the probe backward. Repeating the above operation above
can make the energy consumption decrease continuously and
eventually stabilize near certain level. In order to prevent the
MMS algorithm from falling into a local optimum trap, when
the energy consumption is stable near a certain value, the code
at different positions in the coding matrix is randomly selected
to be inverted to make the algorithm stable near another energy
consumption value. The minimum among these values is the
optimized result.

2) Implementation of the MMS Algorithm: A scheduling
scheme J is initialized at random, corresponding to only one
encoding matrix EM of c ∗ e. The mutual transformation of
the two can be expressed as:

EM = Reshape(J, c, e) (25)

J = Restore(EM) (26)

RM = RM0, RM1, ..., RMurepresents a set of u(u = Ag∗hg∗h)
elements. The elements in the set are permutations of 0 and

1 in the probe matrix PM , where RMi denotes the i-th
permutation. The coordinate of the lower right corner of the
region pointed by the probe PM in the encoding matrix EM
is denoted by (x, y), and the coordinate at the upper left of the
region pointed by the probe is (x− g + 1, y − h+ 1). Before
the probe moves, a new coding matrix EMi is obtained by
replacing the area pointed by the probe with RMi , expressed
as:

EMi = EM (x,y) ⊕RMi (27)

The ⊕ symbol indicates a local replacement operation.
Calculate the time and energy consumption of the orig-
inal EM matrix and the newly generated coding matrix
EMi: En, T ime = CET (Restore(EM)),Eni, T imei =
CET (Restore(EMi)). Find a code matrix EMi whose time
and energy consumption meets the following requirements
from the newly generated coding matrix EMi: Timei < Deadline

Eni < En
Eni = max(Enj |j ∈ [0, u))

(28)

Then replace the original encoding matrix with this encoding
matrix EMi:

EM = EMi (29)

Then the probe continues to move. Suppose the probe moves
s row steps to the right and s col steps down. Here is a
description of the MMS algorithm in ALGORITHM 5.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We compared the GA, RL and MMS algorithm simula-
tion experiments results. The three algorithms are written in
python. The simulation environment is in Ubuntu 16.04.3LTS,
Intel E7-4820 v3/1.9GHz. The experiment simulates the volt-
age and frequency level at which the processor operates [22]
, shown in Table 2:

TABLE II
VOLTAGE AND FREQUENCY

Voltage(v) Frequency(MHz)
0.75 150
1.0 400
1.3 600
1.6 800
1.8 1000

In section 4.2.2, the capacitance of the dynamic capacitor is
Csw = 12nF [31]. In the static energy consumption calculation
formula, the subthreshold current is Isubn=250uA [32], the
body bias voltage is Vbs=0.4V [31], and the reverse bias
junction current is Ij=4.8*10-10A [26]. In the communication
energy consumption calculation, the bandwidth is B=10 Mb/s
and the communication power is Pcomm=0.147w [31]. In
the sleep energy consumption calculation, the sleep state
power is Psleep=2.4w [27]. In the dynamic voltage switching
energy consumption calculation, the efficiency factor of the
voltage converter is α=0.9 [32], the capacitance of the voltage
converter is CDD=12pF [31], and the power consumption



Algorithm 5 MMS algorithm
Input: J
Output: bestEn , time
1: EM = Reshape(J, c, e)
2: En, T ime←− CET (J)
3: Record En with Localoptimum EN
4: episodes←−Set cycle times
5: for t between 0 to episodes do
6: if Localoptimum EN ≤ En then
7: if bestEn > En then bestEn ←− En,time ←−
Time

8: Randomly Inverting c∗e
2 -bit EM coding

9: En, T ime←− CET (Restore(EM))
10: Localoptimum EN ←− En
11: x←− g − 1,y ←− h− 1
12: while x < e do
13: while y < c do
14: for RMi in RM do
15: EMi ←− EM (x,y) ⊕RMi

16: if Time > Deadline then
17: if Timei < Time then
18: EM ←− EMi

19: En←− Eni,Time←− Timei
20: elseIfEni < En
21: EM ←− EMi

22: En←− Eni,Time←− Timei
23: J ′ ←− Restore(EMi)

24: y ←− y + s row

25: x←− x+ s col

26: return bestEn , time

during the voltage conversion process is PTRAN=1w[24]. The
average power consumption in switching between sleep and
wake-up mode is EtranS = 3.5 ∗ 10− 6J .

The experiment randomly generates 40 tasks based on the
number of jobs and the number of the DAG edges. The
attributes of each task included the number of tasks, the
number of the DAG edges, the number of cores, and the
deadline. In each group of experiments, the number of tasks
denoted tn is a random number between 10 and 100. The
number of allowed edges denoted en in the DAG graph is
closely related to variate tn. According to the calculation,
the number of edges in the DAG graph is within the range
en ∈ [tn−1, tn∗(tn−1)/2] . In order to ensure the authenticity
of the real situation, the number of DAG edges is chosen
randomly in the range [tn, tn + 20] in the experiment [33].
According to the number of selected jobs and the number of
DAG edges, we will randomly generate DAGs. The number
of cores is 2, 4, and 8 in this experiment. The completion time
of a task is closely related to the number of jobs. Considering
the fact that the more processing cores there are, the less time
constraint is required for the completion of task execution, to
ensure that the task has sufficient time to complete, we allocate
an average of 2us, 1.5us, and 1us of running time to each job

TABLE III
RANDOM TASKS

Num Task/Ed-
ge/core

Dead-
line(us)

Save(%) Time(us)
GA RL MMS GA RL MMS

1 88/105/8 88.0 37.51 40.59 81.91 47.43 45.73 87.50
2 86/99/8 86.0 37.29 39.61 81.96 45.61 46.07 85.42
3 13/17/2 26.0 56.73 68.05 67.58 24.80 25.68 25.75
4 25/25/2 45.0 48.01 58.88 80.56 31.48 39.70 49.83
5 32/35/8 32.0 43.10 51.83 36.62 27.23 27.60 23.26
6 59/61/2 118.0 43.15 45.23 79.62 63.03 66.80 118.00
7 65/70/8 65.0 35.34 42.76 82.41 41.93 35.60 64.17
8 63/64/8 63.0 37.12 43.76 81.74 30.70 33.07 62.92
9 31/32/8 31.0 50.53 53.78 26.94 25.52 27.55 17.98

10 58/76/4 87.0 41.69 48.39 82.63 50.33 56.86 86.67
11 68/78/2 136.0 38.74 41.33 82.64 65.28 61.48 135.33
12 14/26/8 14.0 50.75 50.35 60.76 13.42 13.10 13.92
13 68/83/8 68.0 40.04 41.42 82.19 39.77 41.40 67.67
14 56/58/2 112.0 43.72 48.17 82.24 56.20 71.03 111.58
15 43/51/2 86.0 44.42 51.67 82.35 46.43 56.43 85.25
16 21/35/2 42.0 51.30 59.68 76.92 38.05 33.81 41.67
17 29/37/2 58.0 46.02 55.25 79.28 34.59 35.21 58.00
18 77/86/2 154.0 38.09 43.74 82.64 78.16 77.52 151.33
19 23/40/2 46.0 47.50 54.28 77.00 35.89 35.04 45.67
20 46/65/4 69.0 49.88 54.30 80.46 37.68 42.08 68.67
21 10/28/4 15.0 46.61 61.76 61.06 13.50 11.58 14.93
22 76/89/8 76.0 35.94 44.08 77.22 35.28 47.09 75.95
23 28/29/8 28.0 44.65 51.32 74.18 21.87 23.70 27.75
24 17/36/2 34.0 57.81 62.12 69.50 27.93 32.83 33.58
25 37/54/2 74.0 51.25 47.46 79.97 52.48 43.08 73.25
26 37/41/4 55.5 45.40 54.64 81.94 54.06 44.63 54.75
27 63/67/2 126.0 40.08 42.51 82.64 56.08 66.38 124.00
28 57/73/8 57.0 45.20 43.56 79.78 46.20 34.06 56.42
29 24/39/4 36.0 47.17 59.87 71.12 27.65 35.02 35.93
30 69/83/2 138.0 38.94 47.89 81.72 71.98 75.20 137.75
31 90/94/2 180.0 35.67 43.42 82.64 77.13 98.91 174.67
32 61/80/2 122.0 41.95 44.39 82.27 49.92 70.06 120.92
33 67/72/4 100.5 42.50 43.42 82.37 44.73 52.86 100.42
34 74/89/2 148.0 38.19 44.95 82.64 77.18 71.18 144.00
35 15/30/8 15.0 44.58 58.44 52.65 14.82 14.19 14.94
36 59/64/4 88.5 43.02 47.42 82.64 43.83 58.55 84.67
37 45/51/4 67.5 45.88 49.05 82.08 37.65 48.65 65.83
38 76/87/8 76.0 36.72 44.18 81.51 41.23 50.60 75.58
39 82/99/4 123.0 37.42 43.34 82.64 58.53 55.82 118.67
40 29/49/4 43.5 50.39 57.57 67.92 32.41 26.80 43.43

Average 99.5 43.76 49.61 75.67 42.95 45.82 74.45

in the case of 2, 4, and 8 cores respectively. And thus the task
sets the deadline for running time at tn*2us, tn*1.5us and
tn*1us respectively. We use energy drop rate to describe the
optimisation effect of the algorithm on energy consumption.
The drop rate of energy consumption (DREC) is the proportion
of the drop rate of current energy consumption of the task to
energy consumption of the task performed in a single core
at the highest frequency. As shown in the following table,
Save (%) represents the energy consumption drop rate, and
Time(measured in u.s.)indicates the time consumed by task
execution. The units are (us). GA, RL, and MMS represent
the three algorithms. The experimental results are shown in
the Table 3.

On line 12 and 28 in the table above, the DREC of the
RL algorithm is lower than that of the GA algorithm; on the
5th and 8th line, the DREC of the MMS algorithm is lower
than the GA algorithm. The most likely reason here is that the
RL algorithm and the MMS algorithm have fallen in the local
optimum trap. However, on other lines, the DREC of the RL



algorithm and the MMS algorithm is obviously greater than
that of the GA algorithm. The MMS algorithm has a much
lower DREC than the RL algorithm except on the 5th and
5th rows. From the perspective of time, the time consumption
of the tasks calculated by the RL and MMS algorithms on
most of the lines is larger than the GA algorithm under the
time constraint. Based on the average energy consumption
reduction rate listed in the table above, the performance of
the three algorithms in energy consumption optimization is
evident. Compared with the GA algorithm, the DREC of the
RL algorithm and the MMS algorithm improves by 13.37%
and 72.92%, respectively. However, it can be clearly seen that
the DREC of the MMS algorithm is far higher than that of
the RL algorithm. Under the time constraint, RL algorithm
and MMS algorithm can make fuller use of time than GA
algorithm. In particular, the time consumption calculated by
MMS algorithm is almost close to the constraint time.

In order to compare the performance of the algorithm
under different numbers of cores, we perform 10 groups of
experiments on the number of 2, 4, and 8 cores, and sorts
the experimental results according to the number of tasks. The
number of tasks, the number of DAG edges, and deadline time
are all generated according to the rules above-mentioned. The
experimental results are shown in the Table 4.

In the table above, we observe through comparison of
energy consumption and time consumption that the DREC
calculated by the three algorithms is always MMS>RL>GA
under the conditions of 2-core, 4-core and 8-core. When their
deadlines are is the same, the time consumption of the task
calculated by the three algorithms is always MMS<RL<GA.
In other words, the time utilization rate of the three algo-
rithms is ordered MMS>RL>GA. With regard to the relation
between the number of jobs and the DREC, the DREC of
GA and RL decreases with the number of tasks increasing
under the conditions of 2-core, 4-core, and 8-core; on the
contrary, the DREC of the MMS algorithm increases when the
number of jobs decreases. Therefore , MMS ,compared with
RL and GA, is more suitable for energy optimization under
complex task conditions and has excellent results. Comparing
the DREC of the three algorithms under different conditions
for the number of cores, the, we find that, except for a few
cases in the above table, when the same task is executed
under the conditions of 2-core, 4-core and 8-core, the DREC
calculated by three algorithms decreases with the number of
cores increasing. This shows that an increased number of cores
doesnt necessarily reduce energy consumption, it may increase
energy consumption instead. In order to observe the effects
of the deadline on the DREC and time consumption of the
three algorithms, in this chapter we select a task with 60
jobs and 69 DAG edges (represented as task (60,69). ), and
then randomly generate a DAG.And then we select several
deadline 20us to 130us with same intervals. In the case of 2
cores and 4 cores respectively, the three algorithms use these
deadlines as conditions to optimize the energy consumption
of the selected task. As shown in the figure below, Figure(4)
shows the relationship between the deadline and the DREC,

TABLE IV
IN CASE OF 2-CORE,4-CORE,8-CORE

Task/Edge
/Deadline

Save(%) Time(us)
GA RL MMS GA RL MMS

2 core
10/13/20.0 74.98 68.24 77.39 16.83 18.93 19.92
11/24/22.0 60.34 68.07 58.32 19.68 20.55 21.93
13/17/26.0 56.73 71.09 67.58 24.80 25.92 25.75
13/14/26.0 54.47 68.56 69.89 17.17 16.52 25.57
32/35/64.0 43.35 50.60 78.81 41.37 38.67 63.83
33/52/66.0 43.15 63.11 79.99 39.57 51.10 65.83

59/61/118.0 43.15 47.28 79.62 63.03 57.92 118.00
63/80/126.0 37.92 46.66 81.89 67.01 74.56 125.42
84/103/168.0 37.76 41.72 82.64 74.14 77.34 161.33
88/105/176.0 37.48 42.15 82.64 86.63 81.98 173.33

Average 48.93 56.75 75.87 45.02 46.35 80.09
4 core

10/13/15.0 63.46 71.01 76.60 10.75 12.83 14.83
11/24/16.5 56.62 59.12 60.53 14.70 14.70 16.43
13/17/19.5 52.34 68.68 53.78 18.84 17.58 19.40
13/14/19.5 55.20 67.46 66.40 19.37 17.98 19.08
32/35/48.0 48.39 53.94 75.06 38.20 44.97 47.75
33/52/49.5 54.30 48.48 77.88 44.05 37.17 49.42
59/61/88.5 37.38 44.35 82.26 43.87 46.12 85.58
63/80/94.5 39.54 44.79 82.64 60.43 57.73 89.33

84/103/126.0 38.51 44.79 82.64 65.03 70.38 108.67
88/105/132.0 38.98 43.32 82.64 62.23 59.75 120.00

Average 48.47 54.59 74.04 37.75 37.92 57.05
8 core

10/13/10.0 51.10 62.04 66.82 9.43 9.43 9.92
11/24/11.0 40.78 53.14 53.00 10.33 10.85 10.88
13/17/13.0 47.21 56.88 63.78 12.43 12.18 12.92
13/14/13.0 49.70 61.92 64.67 10.63 12.58 12.83
32/35/32.0 43.10 51.85 36.62 27.23 31.40 23.26
33/52/33.0 45.82 48.87 69.53 24.20 31.08 32.90
59/61/59.0 39.44 46.42 79.70 33.88 30.43 58.83
63/80/63.0 38.29 43.79 78.89 36.89 43.95 62.42

84/103/84.0 40.67 44.94 79.50 44.54 45.30 83.70
88/105/88.0 37.51 43.07 81.91 47.43 50.50 87.50

Average 43.36 51.29 67.44 25.70 27.77 39.52

where GA(2) represents the curve of the GA algorithm under
the condition of 2 cores, and the same to the others. Figure(5)
shows the relationship between the time consumption of the
task and the deadline. Save (%) represents the DREC, time (us)
represents time consumption, and deadline (us) is the given
deadline.

Fig. 4. Deadline and DREC.

The greater the number of cores is, the more in parallelism
the task will be performed, and the less time the task will cost,
and vice versa. It can be seen from Figure(4) that the three



Fig. 5. Deadline and time consumption of tasks.

energy curves GA(2), GA(4), and RL(2) only bend downwards
after the deadline value on the axis of abscissa is 30us, 26us,
28us on the axis of abscissa. However, curves MMS(2) and
MMS(4) does so in the whole picture. Especially, MMS(2)
in particular shows that the MMS algorithm can still calculate
optimal results for task (60, 69) under such extreme conditions
as 2-core and 20-us deadline, which indicates that is has
a very pretty good effect on high-density task calculation.
Therefore, in the optimization of energy consumption for
high-density tasks, the performance of the three algorithms
is MMS>RL>GA. In addition, it can be observed from the
Figure(5) that as the deadline time increases, the DREC of the
curve corresponding to the MMS algorithm will continuously
increase and eventually stabilize, and the DREC of the curve
corresponding to the RL algorithm has a small increase initial-
ly, then stabilizes in a certain area, and the DREC of the curve
corresponding to the GA algorithm becomes a smooth straight
line and no longer increase after an initial small increase. The
trend of the time consumption curve of the three algorithms
is roughly consistent with that shown in Figure(4). Therefore,
it can be drawn that the MMS algorithm can make full use of
time and try to find the optimal DREC before the deadline;
the RL algorithm will have different performance in DREC
for different deadline, but it cannot form a trend of stable and
healthy development; while the DREC of the GA algorithm
does not substantially change within the deadline. The deadline
duration utilisation of the three algorithms in the deadline is
MMS>RL>GA.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed two algorithms to minimize the
energy consumption in heterogeneous multi-core embedded
systems. Appropriate energy models and scheduling models
were established as a result. In the scheduling model, the
DVFS and DPM low-energy technologies were applied to
reduce energy consumption, where tasks can be assigned
to different cores and provide voltages according to ener-
gy demand. Meanwhile,the cores will switch into a sleep
mode to further reduce energy consumption when the core
is standing idle. In the energy model, the five main aspects
in energy consumptions including the dynamic energy con-
sumption, the sleep energy consumption, the communication
energy consumption, the dynamic voltage switching energy
consumption, and the sleep mode switching voltage were taken

into consideration, which altogether improved the simulation’s
authenticity. Unlike the application of heuristics in this field,
we proposed a RL algorithm. The RL algorithm is a kind of
machine learning algorithm. Compared with GA algorithm, the
RL algorithm can use feedback information to adjust its own
search direction, greatly improving the search efficiency. In
addition, we also proposed a new heuristic algorithm, a math-
ematical morphology optimization algorithm. This algorithm
can adjust the interrelationship between local codes through
probes, causing unexpectedly positive. In the experiment, we
implemented the GA, RL and MMS algorithm. And we
compared the performance of these algorithms in many ways.
The calculation result of machine learning algorithm is largely
dependent on the configuration of parameters and structure.
Therefore, in the next step, we will strive to adjust parameters
and structure of the RL algorithm so as to obtain good
experimental results.
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