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Abstract—Proof assistants offer a formal language to write
mathematical definitions, executable algorithms, and theorems
together with an environment for interactive development of
machine-checked proofs. Developers manually construct defini-
tions and lemmas on proof assistants to prove the theorems.
However, the time and labor costs of manually proving theorems
in proof assistants remain prohibitively high. Therefore, proving
the theorem automatically for the sizeable formal project becomes
significant. In this paper, we propose SmartCoq, a proof search
system that uses a dynamic strategy to solve the problem of
automating the interaction with proof assistants. The design
of our dynamic strategy is flexible and straightforward: it can
automatically optimize itself based on theorems without manual
intervention. SmartCoq uses dynamic strategies to learn from
the wrong paths in the past and find a correct path to complete
the proof. We demonstrate SmartCoq on the proof obligations
from a large practical proof project, the CompCert verified C
compiler, and the result shows that it can automatically solve
14.5% of proofs in our test dataset.

Index Terms—Proof assistants, Interactive theorem proving,
Machine learning

I. INTRODUCTION

Humans write theorems into automated theorem proving
(ATP), and the ATP output is the result of the proof. ATP
converts the premises and goals of the theorem into first-order
clauses in conjunctive normal form (CNF) and proves the
theorem by proof first-order clauses. While this provides a uni-
versal procedure, the CNF representation of simple formulas
can be long, complicated and inscrutable, making it difficult
to benefit from the higher-level abstraction and manipulation
that is common to human mathematical reasoning.

Due to the difficulty of the practical application of ATP,
interactive theorem proving (ITP) [6] was proposed, such
as Coq [2] [5] or Isabelle HOL [15] [3] [10]. ITP allows
people to prove a theorem by a formal language called tactics
manually. The tactics combine high-level proof techniques
such as the Calculus of Inductive Constructions, put the low-
level details of the proof to proof assistants. One can use tactics
to prove various theorems and executable algorithms on the
proof assistant, including the formalization of mathematics,
certification of properties of programming languages, database
systems, compilers.

However, certification on ITP in proof assistants takes too
much time and labour. For example, the CompCert compiler
certification project [13] took six person-years, which include

175 Coq files and 100,000 lines of Coq to write and verify, and
Iris Project [9] took five person-years, which include 143 Coq
files. For a project with limited resources, this consumption
is intolerable. Therefore, proving the theorem automatically is
essential and meaningful work.

Proving the theorem automatically, however, is a com-
plicated task, which suffers from two challenges. One is
generating some corresponding tactics and arguments for the
current context (including hypothesis and goals) at every step
of the certification. Generating the corresponding tactic from
221 tactics libraries, and the arguments can be related to
intermediate lemma searched from the global, expressions and
a sophisticated line of code with functions. Some previous
work was to use machine learning to train and evaluate datasets
to find the right tactics and arguments, such as ML4PG [7],
Gamepad [8], TacticToe [4]. The other is to find correct
command for corresponding tactics and arguments. After
generating some relevant tactics, we need to find the correct
command, which is composed of tactics and arguments.

In this paper, we propose SmartCoq, a proof search system
that proves the theorem automatically in Coq proof assistants.
SmartCoq uses an algorithm to search the relevant lemma
globally to generate tactics and arguments. Afterwards, with
tactics and parameters as nodes, a proof search tree is es-
tablished. Then finally, we use a dynamic strategy inside
SmartCoq, which can be used to smartly search proof paths.

Our dynamic strategy introduces Deep Q Network (DQN)
[14], a reinforcement learning agent, into the proving method.
Update the strategy according to incorrect historical paths in
DQN, and the successful paths will get a higher score. The
DQN supports the training of neural networks with stochastic
gradient descent in a stable manner. As a result, an optimized
strategy tends to select a node getting a higher score, which
leads to a higher probability of successful proving. Linking
these nodes together is the proof path we need.

The innovation of our work is to use DQN to find a correct
path in the search tree dynamically. Experimental results show
that SmartCoq can automatically prove the theorem and solve
14.5% of proofs in our test dataset, without any human
intervention.

We make the following contributions in this paper:
• We take a new approach for generating tactics and argu-

ments more comprehensively and searching the relevant



lemma globally.
• We used a dynamic strategy to optimize the search proof

paths, which leads to a higher probability of success in
proving.

• We demonstrate that SmartCoq can solve 14.5% of the
proofs in our test dataset of CompCert, which is over the
previous state of the art system that attempts to the same
task.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III introduces the structure
of SmartCoq and details of each part of SmartCoq. Section
IV introduces the details of dynamic strategies. Section V
introduces our experiment and section VI concludes this paper.

II. RELATED WORK

Some proof assistants allow a user to use existing Auto-
mated theorem proving systems directly. Automated theorem
proving Modern theorem provers [12] transform the theorem
into first-order logic, and it then proves the theorems using
external provers.

Machine learning provides a new way to prove the theorem
[16] [11], although it still has some flaws. When proving a the-
orem via Machine learning, it requires building a large number
of available options and searching for those options that are
needed. Machine learning has been used for various tasks such
as code and patch generation [1], program classification, and
learning loop invariants.

Some existing automatic theorem proving methods often
use machine learning to build tactics and arguments [17]
automatically.

ML4PG [7] introduces benchmark suites and frameworks
for exploring machine learning in Coq. ML4PG, while it fo-
cuses on the development of methods of interactive interfacing
between the ITP and machine learning interfaces and does not
attempt to generate proofs.

Gamepad [8] provides a structured Python representation
of Coq proofs, including all the proof states encountered in
a proof, the steps taken, and expression abstract syntax trees
(ASTs). However, Gamepad trains mainly on synthetic data
of simple proofs but does not combine their proof command
predictor with a high-level search.

TacticToe [4] learns from human proofs which mathematical
technique is suitable in each proof situation, which is then used
in a Monte Carlo tree search algorithm to explore promising
tactic-level proof paths.

CoqGym [17] provides a large-scale dataset and learning
environment for theorem proving via interacting with a proof
assistant. CoqGym learns to generate tactics as abstract syntax
trees and can be used to prove new theorems beyond the reach
of previous automatic provers.

Compared with ML4PG, Gamepad, and CoqGym, Smart-
Coq has some essential conceptual differences. First, when
using machine learning to build tactics and arguments auto-
matically, the training dataset may not be in the same project,
such as Hoare logic proof and mathematical proof. At the
same time, we cannot determine the strong correlation between

proof command. Therefore, SmartCoq takes another approach,
pattern matching, to build commands. Second, SmartCoq uses
Deep Q Network to find the correct path in the search
tree, instead of using depth-first or breadth-first, which is
determined by the method used by SmartCoq to generate
commands.

III. THE PROPOSED METHOD

In this section, we will present SmartCoq’s internal details.
We can see the top-level structure of SmartCoq in Fig. 1.
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Fig. 1. The overall architecture of SmartCoq

In the Coq Interface section, Coq proof assistants will
provide SmartCoq with the context (hypothesis and goals) of
the proof, when we give a theorem and give a command to
prove the theorem. The Generating tactics section will search
the global lemma based on the context of the proof to generate
some tactics and tactic arguments. Afterward, the Choosing
tactics section will choose a command from tactics and push it
to Coq Interface. After learning and optimizing from incorrect
historical paths in DQN, SmartCoq will choose a correct proof
path.

Given a theorem, the workflow of SmartCoq consists of
the following steps:

• Step 1: The Deep Q Network (DQN) is initialized with a
purely random strategy, which takes multiple candidates
(The Generating tactics and tactic arguments in section
A) as input, and randomly chooses a candidate with the
uniform probability as output.

• Step 2: SmartCoq conducts proof searching by using the
current proof command, which was generated by Step 1.
Simultaneously, Coq proof assistants generate the context
(hypothesis and goals) of the current command.

• Step 3: If the path generated in Step 2 is correct and
complete, SmartCoq will terminates and outputs the path
as the result.

• Step 4: Otherwise, if it is estimated that all the paths
generated in Step 2 are incorrect, SmartCoq will start a
new round, in which DQN will be trained according to
the incorrect proof path, and the strategy will be updated.
Here, we use the term episode to denote the time step
in which the DQN is optimized with a new reward.
Afterward, go to Step 2.



Lemma typealign_pos:
  forall (ty: typ), typealign ty > 0.

Intros ty. destruct ty.reflexivity. exact ty.auto.

compute.

auto.

reflexivity.

reflexivity.
*5

Qed.

compute. subst ty.

Qed.

Fig. 2. A graph of a SmartCoq search

A. Generating tactics and tactic arguments

To generate tactics and tactic arguments, we collect the Coq
standard library and some projects as a Coq dataset. The Coq
dataset contains 10755952 lines of Coq command and Coq
theorem. In the dataset, we found that manual proofs use very
few proof tactics in all Coq tactics. Some tactics are used
frequently, and others are rarely used or not used in manual
proofs, which gives us the possibility to model the Coq proof
command.

Through the analysis and observation of the coq dataset,
SmartCoq will build three kinds of Coq command models as
the nodes for the next step: tactics without arguments, tactics
with local arguments, and tactics with global arguments.

1) tactics without arguments: SmartCoq contains 33 tac-
tics without arguments, which are used as the nodes of the
next step. For instance, intros, reflexivity, and decide equality.
Based on the observation of the Coq dataset, we consider these
tactics to be effective and sufficient.

2) tactics with local arguments: SmartCoq collects 12
tactics with local arguments in the Coq dataset. For instance,
destruct, apply and unfold. Tactics with local arguments
contain two kinds of arguments, Goal-token arguments, and
Hypothesis-identifier arguments. For instance, if the goal
is: negb (negb b) = b, SmartCoq will take negb and b as
Goal-token arguments. In the case of tactics like destruct
and unfold, the argument is often a token in the goal. If the
hypothesis is:

n, m : nat
H : n = m
—————————————————-
SmartCoq will take H as Hypothesis-identifier arguments.

In this case, the argument is often a token in the hypothesis.
3) tactics with global arguments: Prior some works were

trained and evaluated on data set using machine learning.
However, Machine learning does not solve the problem of
searching for global arguments. On the one hand, the data
set is too small, and on the other hand, there is no effective
machine learning algorithm.

Our strategy builds upon the insight that there must be some
common tokens in context and lemma. For instance, we use
the command of rewrite plus comm and plus comm is n + m
= m + n when the goal is n + m + (p + q) = m + n + (p
+ q). SmartCoq searches n, m, +, p and q as the tokens in all
theorems. SmartCoq counts the number of common tokens in
context and lemma as a basis for using global arguments.

B. Building search

This module generates a validation tree as input to the Coq
proof assistants. The search tree uses the commands generated
in the first part as the nodes of the tree. The command is stored
in the node, and the children of a node are the commands after
the command in proof. The paths in the tree correspond to
possible proof paths in verification. SmartCoq uses the method
of building a dynamic Search Tree to establish proofs. A path
from the root node to the leaf node is the proof command
generated by SmartCoq.

In Fig. 2, this is an example of SmartCoq’s search tree. It is
a Lemma typealign pos in CompCert project. In green are the
tactics that formed part of the discovered solution, as well as
the lemma name and QED(terminator). In blue are nodes that
resulted in a context that is at least as hard as one previously
found. In Fig. 2, the proof of this theorem is Intors ty. compute.
auto. Qed.. It can be seen from the figure that there are two
solutions that can solve the proof.

C. Choosing tactics

After building a search tree, SmartCoq uses Deep Q Net-
work to find the proof path for searching. The advantage of our
algorithm is that it can automatically optimize the path chosen
by the algorithm. We will show the details of our algorithm in
section IV. The depth-first search is also an excellent way to
handle search paths. However, the use of a depth-first search
leads to problems such as multiple sub-goals. Here, we discuss
some issues with a depth-first search in experiments on Session
V.

IV. DYNAMIC STRATEGIES

We achieve our dynamic strategy by using the DQN and
designing the rewards based on the insight. In this part, we
introduce two algorithms, one is the framework of DQN, and
the other is the selection and optimization algorithm.

In Algorithm 1, we introduce the Implementation of Deep Q
Network, which is the framework of our dynamic strategy. The
N represents the total memory of the system. The DQN runs
iteratively with multiple-episodes. In each episode, SmartCoq
executes the path selection algorithm. If a path is estimated
correctly and complete, SmartCoq will terminate the program,
and the generated path is a proof of correctness (line 7). If
all the selected paths are estimated incorrectly, the policy is
optimized (line 9).

Algorithm 2 contains a path selection algorithm and policy
optimization algorithm. In path selection algorithm, the DQN
in SmartCoq maintains an action-selection policy which takes
a state st as input, and outputs an action number at. Here,



Algorithm 1 Implementation of Deep Q Network
1: Initialize a replay memory D to capacity N
2: Initialize an action-value function Q
3: success = False
4: for i to episode do
5: Execute path selection
6: if success = True then
7: Program ends
8: end if
9: Execute policy optimization

10: end for

st represents the proof state, which is a node in the Search
Tree, and at is the number of the selected child of the node.
The state st is a six-dimensional vector transformed from the
context information in the node. Note that because the network
is optimized through the historical selection of rewards, it is
important that the states of different nodes in the tree are
identical. It is possible to have the same state on different
paths. For instance, when we use induction tactic to prove, the
proof path (command) of the first sub-goal may be different,
but in the second sub-goal, the different paths have the same
context.

Algorithm 2 Selection and Optimization
1: function path selection:
2: initialize a proof state s1
3: for t = 1 to ROUND do
4: With probability ε select a random action at
5: otherwise select at=maxaQ(st, a, θe)
6: Generate next state st+1 according to at
7: Store a transition (st, at, ω, st+1) in D
8: Update state st
9: if the path is estimated incorrect then

10: break
11: end if
12: if the path is estimated correct and complete then
13: success=True
14: return
15: end if
16: end for
17:
18: function policy optimization:
19: Sample n random transitions (sj , aj , rj , sj+1)
20: Set yj = rj + γmaxa′Q(sj+1, a′; θe)
21: Perform a gradient descent step on (yj − Q(sj , aj , θe+1))2

SmartCoq uses two strategies in the policy to choose action.
Combining the two strategies, we use a ε-greedy strategy to
select actions. The first exploration strategy (line 4): 1) is
to choose random actions, which is to explore the values of
unchosen actions. Another exploration strategy (line 5): 2) is a
greedy strategy to choose a which may have the largest Q value
currently. Here, given the node st and its ath child, Q(st, a,
θe) outputs comparable value. The Q function also takes θe as

input, where θe is the set of the DQN’s parameters at episode
e, and θe is updated into θe+1 in policy optimization.

We set the reward to the same negative number for all the
edges on each estimated incorrect proof path. In line 7, a
transition, i.e., tuple (st, at, ω, st+1), is generated and added
to D which is a replay memory, where ω is the negative
reward for the action at at the state st. In line 8, st will be
updated according to st+1. Finally, the program end condition
is determined.

The parameters of the DQN is optimized by minimizing
a loss function. In the policy optimization algorithm, θe in Q
function is updated as mentioned. Here, n tuples are randomly
selected from D. For each selected tuple (sj , aj , rj , sj+1), we
compute yi according to θe (line 20). Then θe+1 is estimated
by using the loss function (yj − Q(sj , aj , θe+1))2 (line 21).
Minimizing a loss function optimizes parameters in the DQN,
through the optimization of these historical paths, we find our
correct path.

The advantage of applying DQN is that DQN can update our
dynamic strategy efficiently if the reward in DQN is designed
effectively. Finally, by learning the wrong path, DQN can find
a correct proof path.

V. EXPERIMENTS

This section shows the experiments of SmartCoq. On the
search tree, we first experimented with a depth-first search in
our dataset. However, in the process of proving search, we
found some flaws in the depth-first search.

First, multiple sub-goal: the use of depth-first search results
in an increase in sub-goals, which proves to be incomplete.
For instance, when we prove the theorem in the Coq standard
library, Each time an inversion x tactic is used to prove nega-
tion fn applied twice theorem, a sub-goal is added. Second,
ranking algorithm: the premise of using the depth-first search
is a good ranking algorithm. However, due to the complexity
of goals, hypothesis and tactics, there is currently no good
algorithm.

37

25

73

0

10

20

30

40

50

60

70

80

Hammer CoqGym SmartCoq

Fig. 3. A comparison of SmartCoq and CoqGym’s abilities to complete proofs

A. Proof production
TABLE I is the distribution of SmartCoq’s tactics. SmartCoq

counts different uses of a tactics as different tactics. In our
work, we collect 10755952 lines of Coq command and Coq
theorem to build a tactic set.



TABLE I
DISTRIBUTION OF TACTICS

Tactics Number
Without arguments 33

With local arguments 12
With global arguments 12

Running our experiments on CompCert verified C compiler,
we show SmartCoq’s ability to produce correct proofs. We
tested CoqGym end-to-end by training on the proofs from
162 files from CompCert, and testing on the proofs from 13
files. The test set contains 501 proof scripts, all of which
are manually proven by humans. We do this for two reasons:
First, some existing work uses machine learning to generate
tactics and arguments. We need to build a training dataset in
the project. Second, when different items are used as training
sets at the same time, it does not prove that the problems are
applicable at the same time.

B. Comparison to others

In Fig. 3., Hammer solves 37/501, as a single invocation;
CoqGym solves 25/501 and ours solves 73/501 of the proofs
in CompCert verified C compiler. From these data, we can
see that we have improved the efficiency of automated proofs.
Nevertheless, in our experiments, these 73 proofs are still
relatively short, and most of them do not exceed 20 in length.
These need us to improve in future work.

TABLE II
PERCENTAGE OF THEOREMS SUCCESSFULLY PROVED

Method Success rate (%)
trivial 2.4
auto 2.9

intuistion 4.4
easy 4.9

hammer (default time limit) 17.8
CoqGym 12.2

CoqGym + auto 12.8
ours + auto 14.5

In TABLE II, we compare experimentally to previous work.
It can be seen that the existing certification work automatically
is at a relatively low level of efficiency. Hammer proved to be
more efficient, reaching 17.8%, with no other work exceeding
15%. However, in the experiment, the Hammer did not reach
17.8%. We think this is why we are running SmartCoq in
actual projects. Compared to some Coq standard libraries, the
actual project is more complicated, with a longer length and
more complex structure.

VI. CONCLUSION

This paper solves the problem of automating the interaction
with proof assistants. We generate three tactics and arguments
in new ways to automate the proof. We have also optimized the
search proof paths and adopt a dynamic strategy to solve the
theorem automatic proof, which leads to more efficient proof.

In future work, we will continue to optimize the method of
generating tactics and arguments. The efficiency of searching
using a search tree is also a problem that needs to be improved.
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