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Abstract: This work explores two famous conjectures in number theory: Fermat’s Last Theorem
and Beal’s Conjecture. Fermat’s Last Theorem, posed by Pierre de Fermat in the 17th century, states
that there are no positive integer solutions for the equation an + bn = cn, where n is greater than
2. This theorem remained unproven for centuries until Andrew Wiles published a proof in 1994.
Beal’s Conjecture, formulated in 1997 by Andrew Beal, generalizes Fermat’s Last Theorem. It states
that for positive integers A, B, C, x, y, and z, if Ax + By = Cz (where x, y, and z are all greater
than 2), then A, B, and C must share a common prime factor. Beal’s Conjecture remains unproven,
and a significant prize is offered for a solution. This paper provides a concise introduction to both
conjectures, highlighting their connection and presenting a short proof of the Beal’s Conjecture.
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1. Introduction

Around 1637, Pierre de Fermat, a French mathematician, scribbled a now-famous
remark in the margin of a book he was reading. He claimed to have discovered a proof
for the equation an + bn = cn having no solutions in positive integers for n greater than
2 [1]. However, he didn’t provide the details of his proof [1]. Mathematicians like Leonhard
Euler and Sophie Germain made significant contributions years later [2] [3]. In the 20th
century, mathematicians like Ernst Kummer proved the theorem for a specific class of
numbers [4]. However, a complete solution remained out of reach. Finally, in 1994, Andrew
Wiles, a British mathematician, announced a proof for Fermat’s Last Theorem. The proof
was incredibly complex, drawing on advanced areas of mathematics like elliptic curves.
After some initial errors were addressed, Wiles’ work was accepted as the long-awaited
solution to the theorem [5].

In 1993, Andrew Beal, an amateur mathematician and banker, formulates the Beal’s
Conjecture while investigating generalizations of Fermat’s Last Theorem. The conjecture is
stated publicly for the first time where Beal offers a prize of $5,000 for a proven solution
or disproof of the conjecture [6]. This prize was later increased several times, reaching
its current value of $1 million held by the American Mathematical Society (AMS). The
Beal’s Conjecture says that if Ax + By = Cz, where A, B, C, x, y, and z are all positive
integers, and x, y, and z are greater than 2, then A, B, and C must share a common
prime factor [6]. In other words, there are no solutions where A, B, and C are completely
coprime numbers [6]. This conjecture has occasionally been referred to as a generalized
Fermat equation. Indeed, Fermat’s Last Theorem can be seen as a special case of the Beal’s
Conjecture restricted to x = y = z. New important advances for this problem have emerge
in the last years [7], [8], [9].

The proof of Fermat’s Last Theorem was described as a "stunning advance" in the
citation for Wiles’s Abel Prize award in 2016. It also proved much of the Taniyama-Shimura
conjecture, subsequently known as the modularity theorem, and opened up entire new
approaches to numerous other problems and mathematically powerful modularity lifting
techniques [10]. However, the Beal’s Conjecture remains unsolved. In this note, using only
simple arguments, we show that the Beal’s Conjecture is true. Wiles’ proof is very far for
being close to Fermat’s claimed theorem due to its long extension, complexity and tools
that were only available during the 20th century. A trustworthy and short proof for Beal’s
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Conjecture could considerably impact pure mathematics and spur new advances in number
theory. Besides, this work unveils the long known mystery about the possible existence of
Fermat’s claimed theorem. Certainly, this work could be closer to Fermat’s claimed proof.

2. Materials and methods

According to the binomial theorem, the expansion of any nonnegative integer power
n of the binomial x + y is a sum of the form

(x + y)n =

(
n
0

)
· xn · y0 +

(
n
1

)
· xn−1 · y1 + . . . +

(
n
n

)
· x0 · yn,

where each (n
k) is a positive integer known as a binomial coefficient, defined as(

n
k

)
=

n!
k! · (n − k)!

=
n · (n − 1) · (n − 2) · . . . · (n − k + 1)

k · (k − 1) · (k − 2) · . . . · 2 · 1
.

This formula is also referred to as the binomial formula or the binomial identity [11]. The
expression d | n means the integer d divides n. We denote by gcd(. . .), the greatest common
divisor.

Proposition 1. A natural number p is prime if and only if p | (p
k) for all integers 0 < k < p [12].

Proposition 2. Let a, b and c be natural numbers greater than 1. If a and b are coprime numbers
and a = b · c, then we necessarily obtain that a | c [13].

Putting all together yields the proof of the Beal’s Conjecture.

3. Results

This is a main insight.

Lemma 1. The integer solutions (x, y) for the equation

a · x + b · y = c · x + d · y

are in the form of

(x, y) =
(

k · (d − b)
gcd(d − b, a − c)

, k · (a − c)
gcd(d − b, a − c)

)
under the assumption that (d − b) and (a − c) are nonzero values and a, b, c and d are integers
which are not equal to 0.

Proof. If the equation
a · x + b · y = c · x + d · y

holds, then (x, y) = (k · X, k · Y) is also a solution for any choice of real k where (x, y) =
(X, Y) is some particular solution. We know that X = d − b, Y = a − c is a particular
solution. So, the real solutions are (x, y) = (k · (d − b), k · (a − c)) for any choice of real k.
Since we are studying solely the integer solutions, then x = k · (d − b), y = k · (a − c) that
is x

y = (d−b)
(a−c) which means that the rational x

y in its lowest form is(
(d−b)

g

)
(
(a−c)

g

)
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where g = gcd(d − b, a − c). That also means that x = k · (d−b)
g , y = k · (a−c)

g for any choice
of integer k. Therefore, the integer solutions are in the form of

(x, y) =
(

k · (d − b)
gcd(d − b, a − c)

, k · (a − c)
gcd(d − b, a − c)

)
for any integer k.

The following is a key Lemma.

Lemma 2. Let a, b and c be three different natural numbers greater than 1 and p, q and r be
three prime numbers not necessarily distinct. If we have p | (a + b), q2 | (c − b), r2 | (c − a),
p | c, q2 | a and r2 | b, then this implies that c = (a + b) or (gcd(a, b) > 1 or gcd(b, c) > 1 or
gcd(a, c) > 1).

Proof. We can rewrite the same statement as

a + b = p · u,

c − b = q · v,

c − a = r · w,

c = p · U,

a = q · V,

b = r · W,

such that u, v, w, U, V and W are natural numbers. Now, we would have

1. First, substituting a and c in

q · V + b = p · u

p · U − b = q · v,

gives
p · U + q · V = p · u + q · v.

2. Again, substituting b and c in

a + r · W = p · u

p · U − a = r · w,

gives
p · U + r · W = p · u + r · w.

There are two cases to consider:

• case (i): c = (a + b), u = U, v = V and w = W;
• case (ii): (gcd(a, b) > 1 or gcd(b, c) > 1 or gcd(a, c) > 1), (v − V), (w − W) and

(u − U) are nonzero values.

The case (i) is supported by the fact that if any of these values (v − V), (w − W) or (u − U)
is equal to zero, then that necessarily forces u = U, v = V and w = W. Indeed, if u = U,
then v = V and w = W. For example, this is derived from the equation

p · U + r · W = p · u + r · w

and so u = U implies r · W = r · w, hence W = w. The same happens if v = V or w = W.
Let’s assume that u = U, v = V and w = W. That would mean that

a = q · V = q · v = c − b.
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which implies that c = (a + b) and so, the proof is done for the case (i). Suppose that
(v − V), (w − W) and (u − U) are nonzero values. By Lemma 1, we know that necessarily

p = k · (v − V)

gcd(v − V, U − u)
= k′ · (w − W)

gcd(w − W, U − u)

for some integers k and k′ whenever (v − V), (w − W) and (u − U) are nonzero values.
Suppose that | k |=| k′ |= 1 or | k |=| k′ |= p since p is prime and therefore,

(v − V)

gcd(v − V, U − u)
=

(w − W)

gcd(w − W, U − u)

which is
gcd(w − W, U − u) · (v − V) = gcd(v − V, U − u) · (w − W)

where | . . . | is the absolute value function. Since we know that

p · U − p · u = q · v − q · V

p · U − p · u = r · w − r · W,

then
q · (v − V) = r · (w − W).

Putting both equations together become into q = gcd(w − W, U − u) and r = gcd(v −
V, U − u). That would be the same as q = gcd(w − W, v − V, U − u) and r = gcd(w −
W, v − V, U − u) since q | (v − V) and r | (w − W) due to q2 | (c − b), r2 | (c − a), q2 | a
and r2 | b. Certainly, we deduce that q | v, q | V, r | w and r | W which produces that
q | (v −V) and r | (w −W) whenever q2 | (c − b), r2 | (c − a), q2 | a and r2 | b. This implies
that q = r which means gcd(a, b) > 1. Next, suppose that | k |= 1 and | k′ |= p since p is
prime and thus,

1 =
1
p
· (v − V)

gcd(v − V, U − u)
=

(w − W)

gcd(w − W, U − u)

which is
gcd(w − W, U − u) · (v − V) = p · gcd(v − V, U − u) · (w − W).

Since we know that
q · (v − V) = r · (w − W).

then we arrive at q = gcd(w − W, U − u) and r = p · gcd(v − V, U − u). By Proposition
2, we know that r = p · gcd(v − V, U − u) implies that r = p which means gcd(b, c) > 1.
Finally, suppose that | k |= p and | k′ |= 1 since p is prime and so,

1 =
(v − V)

gcd(v − V, U − u)
=

1
p
· (w − W)

gcd(w − W, U − u)

which is
p · gcd(w − W, U − u) · (v − V) = gcd(v − V, U − u) · (w − W).

Using the equation
q · (v − V) = r · (w − W).

then we get q = p · gcd(w − W, U − u) and r = gcd(v − V, U − u). By Proposition 2,
we know that q = p · gcd(w − W, U − u) implies that q = p which means gcd(a, c) > 1.
Consequently, the proof is done for the case (ii) too. To sum up, we conclude that the
Lemma 2 is true.

This is the main theorem.
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Theorem 1. The Beal’s Conjecture is true.

Proof. Suppose that the Beal’s Conjecture is false. Hence, there would exist an equation
Ax + By = Cz, where A, B, C, x, y, and z are all positive integers, and x, y, and z are
greater than 2, and A, B, and C are coprime numbers. We can confirm that A, B, C > 1
according to the Catalan solution [14]. Let’s take three different prime numbers p, q and r
such that p | Cz, q2 | Ax and r2 | By (we assume that p is odd otherwise we could take q or
r in the next step and obtain the same result). Putting together the binomial theorem and
Proposition 1, we can rewrite the equation Ax + By = Cz as

a + b + p · Ax · By · k = c

a = c − b + p · Cz · By · n

b = c − a + p · Cz · Ax · m

such that a = Ax·p, b = By·p and c = Cz·p where k, m and n are natural numbers (in case of
taken into account q or r as a possible odd prime candidate instead of p, then we should
readjust into an equivalent statement as either (a′ = −Cz·q, b′ = By·q and c′ = −Ax·q) or
(a′′ = Ax·r, b′′ = −Cz·r and c′′ = −By·r), respectively). The central purpose of using the
Proposition 1 is to guarantee that a + b − c is always divisible by p since p divides all the
coefficients (p

k) for every integer 0 < k < p in the expansion of the binomial theorem. After
that, we substitute the previous values of a, b, c, p, q and r inside of Lemma 2. Certainly,
we deduce that p | (a + b), q2 | (c − b), r2 | (c − a), p | c, q2 | a and r2 | b, because of q2 | n,
r2 | m and p | (p · Ax · By · k) whenever

a + b − c = p · Cz · By · n = p · Cz · Ax · m

such that Ax | n and By | m by Proposition 2. By the Fermat’s Last Theorem, we know that
c ̸= (a + b) using p as an integer exponent greater than 2 due to p is an odd prime [5]. In
general, we can show that there is a contradiction under the assumption that c ̸= (a + b),
gcd(a, b) = 1, gcd(b, c) = 1 and gcd(a, c) = 1 according to the Lemma 2. Since this implies
that the natural numbers A, B, and C cannot be coprimes, then we prove that the Beal’s
Conjecture is true.
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