
EasyChair Preprint
№ 2468

Induction with Generalization in Superposition
Reasoning

Petra Hozzová, Laura Kovács, Johannes Schoisswohl and
Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 27, 2020



Induction with Generalization in Superposition
Reasoning

Petra Hozzová1, Laura Kovács1,2, Johannes Schoisswohl1, and Andrei Voronkov3,4

1 TU Wien, Austria
2 Chalmers University of Technology, Sweden

3 University of Manchester, UK
4 EasyChair

Abstract. We describe an extension of automating induction in superposition-
based reasoning by strengthening inductive properties and generalizing terms
over which induction should be applied. We implemented our approach in the
first-order theorem prover Vampire and evaluated our work against state-of-the-
art reasoners automating induction. We demonstrate the strength of our technique
by showing that many interesting mathematical properties of natural numbers and
lists can be proved automatically using this extension.

1 Introduction

Recent advances related to automating inductive reasoning, such as first-order reason-
ing with inductively defined data types [6], the AVATAR architecture [13], inductive
strengthening of SMT properties [10], structural induction in superposition [5] and gen-
eral induction rules within saturation [8], make it possible to re-consider the grand chal-
lenge of mechanizing mathematical induction [4]. We contribute to these advances in
two ways:
(1) We present a new inference rule for first-order superposition reasoning, called in-
duction with generalization. Our work extends [8] by proving properties with multiple
occurrences of the same induction term and by instantiating induction axioms with log-
ically stronger versions of the property being proved.
(2) We implemented our work in the VAMPIRE theorem prover [7] and compared it to
state-of-the-art reasoners automating induction, including CVC4 [2], ZENO [11], ZIP-
PERPOSITION [5] and IMANDRA [1]. We also provide a set of handcrafted mathematical
problems over natural numbers and lists. We show that induction with generalization in
VAMPIRE can solve problems that existing systems, including VAMPIRE without this
rule, cannot.

2 Motivating Example

We assume familiarity with multi-sorted first order logic and the theory of finite term al-
gebras, as well as saturation-based superposition reasoning, for details, we refer to [7,6].
We denote the equality predicate by =, the empty clause by�, and use the term algebras
of natural numbers N and lists L of natural numbers, as defined in Figure 1.



2 Petra Hozzová, Laura Kovács, Johannes Schoisswohl, Andrei Voronkov

Natural numbers N Natural lists L
Constructors 0 : N s : N→ N nil : L cons : N× L→ L
Functions + : N× N→ N ++: L× L→ L

≤: N× N→ bool prefix : L× L→ bool

Axioms ∀y.(0 + y = y) ∀l.(nil ++ l = l)
∀x, y.(s(x) + y = s(x+ y)) ∀x, l, k.(cons(x, l) ++ k = cons(x, l ++ k))
∀x.0 ≤ x ∀l.prefix(nil, l)
∀x.¬s(x) ≤ 0 ∀x, l.¬prefix(cons(x, l), nil)
∀x, y.

(
s(x) ≤ s(y) ∀x, l, y, k.

(
prefix(cons(x, l), cons(y, k))

↔ x ≤ y
)

↔ (x = y ∧ prefix(l, k))
)

Fig. 1. Term algebras of N and L, together with additional functions and axioms.

We motivate our approach to induction with generalization, by considering the fol-
lowing formula expressing the associativity of addition over N:

∀x, y, z.(x+ (y + z) = (x+ y) + z), with x, y, z ∈ N. (1)

The induction approach introduced in [8] is able to prove this problem. The main steps
of such a proof are shown in Figure 2 and discussed next. First, the negation of for-
mula (1) is skolemized, yielding the (unit) clauseC1 of Figure 2. Throughout this paper,
we use σ, σi to denote fresh Skolem constants introduced during clausification. Next,
the structural induction rule of N is instantiated so that its conclusion can resolve against
C1 using the constant σ1 as the induction term, resulting in the formula:(

0 + (σ2 + σ3) = (0 + σ2) + σ3 ∧
∀x.(x+ (σ2 + σ3) = (x+ σ2) + σ3)→ (s(x) + (σ2 + σ3)) = (s(x) + σ2) + σ3)

)
→ ∀y.(y + (σ2 + σ3) = (y + σ2) + σ3).

(2)

This formula is clausified and resolved against C1, yielding clauses C2, C3 of Figure 2.
Clause C4 originates by repeated demodulation into C3 using the second axiom of
Figure 1 over N. Further, C5 is derived from C4 by using the injectivity property of
term algebras and C6 is a resolvent of C2 and C5. Clause C7 is then derived by repeated
demodulation into C6, using the the first axiom of Figure 1 over N. By removing the
trivial inequality from C7, we finally derive the empty clause.

Consider now the following instance of associativity property (1):

∀x.(x+ (x+ x) = (x+ x) + x). (3)

While (3) is an instance of (1), we cannot prove it using the same approach since we
would add a different instance of structural induction, shown below, insufficient to prove
either associativity or (3):(

0 + (0 + 0) = (0 + 0) + 0 ∧
∀x.(x+ (x+ x) = (x+ x) + x)→ (s(x) + (x+ x)) = (s(x) + x) + x)

)
→ ∀y.(y + (y + y) = (y + y) + y).

(4)

The solution we consider in this paper is based on the idea of adding in addition to this
instance of the induction schema, also instance (2).



Induction with Generalization in Superposition Reasoning 3

(C1) σ1 + (σ2 + σ3) 6= (σ1 + σ2) + σ3 [input]
(C2) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) = (σ + σ2) + σ3 [induct. C1]
(C3) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) 6= (s(σ) + σ2) + σ3 [induct. C1]
(C4) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ s(σ + (σ2 + σ3)) 6= s((σ + σ2) + σ3) [C3 + axiom]
(C5) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) 6= (σ + σ2) + σ3 [Injective C4]
(C6) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 [res. C2, C5]
(C7) σ2 + σ3 6= σ2 + σ3 [C6 + axiom]
(C8) � [trivial ineq. C7]

Fig. 2. Proof of associativity of + in a saturation-based theorem prover with induction

3 Induction with Generalization

Following [8], we consider an induction schema/axiom to be any valid (in the under-
lying theory, such as the theory of term algebras) formula of the form premise →
(∀y)(L[y]). The work [8] introduces a rule of induction where a ground literal ¬L[t]
appearing in the proof search triggers addition of the corresponding induction axioms
premise→ (∀y)(L[y]) to the search space:

¬L[t] ∨ C
CNF(premise→ (∀y)(L[y]))

(induction)
, (5)

where L[y] is obtained from L[t] by replacing all occurrences of t by y.
While addition of a large number of such formulas may seem to blow up the search

space, in practice VAMPIRE handles such addition with little overhead, resulting in find-
ing proofs containing nearly 150 induction inferences [8]. The reason why the overhead
of adding structural induction axioms is small comes from the fact that the added ax-
ioms are ground and contain at most one positive equality, as detailed in [9]. They are
especially easy for the AVATAR architecture.
Induction with generalization. It is common in inductive theorem proving, giving a
goal, to try to prove a more general goal instead. For example, given formula (3) to be
proved we can try to prove (1) instead.

This makes no sense in saturation-based theorem proving. What we do instead is,
given the same goal, add an induction axiom corresponding to a more general one. The
rule can be formulated in the same way as (5), yet with a different condition:

¬L[t] ∨ C
CNF(premise→ (∀y)(L[y]))

(IndGen)
(6)

where L[y] is obtained from L[t] by replacing some occurrences of t by y.
Both induction rules are obviously sound because their conclusions are valid in the

underlying theory.
To implement IndGen, if a clause selected for inferences contains a ground literal

¬L[t] having more than one occurrence of t, we should select a non-empty subset of
occurrences of t in L[t], select an induction axiom corresponding to this subset, and
then apply the rule.



4 Petra Hozzová, Laura Kovács, Johannes Schoisswohl, Andrei Voronkov

Motivating example, continued. Suppose that t is σ1 and ¬L[t] is σ1 + (σ1 + σ1) 6=
(σ1 + σ1) + σ1, which is obtained by negating and skolemizing (3). Then by applying
IndGen we can add the following induction axiom:(

0 + (σ1 + σ1) = (0 + σ1) + σ1 ∧
∀x.(x+ (σ1 + σ1) = (x+ σ1) + σ1)→ (s(x) + (σ1 + σ1)) = (s(x) + σ1) + σ1)

)
→ ∀y.(y + (σ1 + σ1) = (y + σ1) + σ1),

(7)

which is different from (4). When we add this formula, we can derive the empty clause
in the same way as in Figure 2.
Heuristics for induction with generalization. The main questions to answer when
applying induction with generalization is how many and which occurrences of the in-
duction term in the induction literal to choose. An obvious heuristics is to try to use
all non-empty subsets. However, this can result in too many formulas added even for
one clause ¬L[t] ∨ C, when the number of occurrences of t is large. For example,
σ1 + (σ1 + σ1) 6= (σ1 + σ1) + σ1 would result in adding 63 induction formula. Note
that addition of an induction formula may result in clauses containing many ground
terms too, to which induction can again be applied.

Another heuristics can restrict the number of occurrences selected as induction term
to a fixed number. However, possible heuristics for selecting subsets common cases of
literals are out of scope of this paper.

4 Experiments

Implementation. We implemented induction with generalization in VAMPIRE5, with
two new options indgen and indgenss. Option indgen, with values on/off con-
trols the application of induction with generalization, using (i) all subsets of occurrences
of the induction term and (ii) subsets of size at most indgenss. In what follows, VAM-
PIRE refers to the (default) version of VAMPIRE with induction rule (5), and VAMPIRE*
is its extended version with the IndGen rule of induction with generalization.
SMT-LIB experiments. We evaluated our work using the UFDT and UFDTLIA prob-
lem sets from SMT-LIB [3], yielding all together 4854 problems. Induction (5) in VAM-
PIRE was already evaluated in [8] against other solvers on these examples. Hence, we
were only interested how VAMPIRE* performs against VAMPIRE. We ran our experi-
ments on the StarExec cluster [12]. Compared to VAMPIRE, VAMPIRE* solved 4 new
problems, using IndGen at most 3 times and having the depth of induction at most 4.
We conclude that SMT-LIB does not yet contain sufficiently challenging benchmarks
for which generalizations are needed. However, such examples would typically arise in
mathematical properties over naturals/lists, as next discussed.
Experiments with new challenges. We handcrafted 32 mathematical properties to test
inductive reasoning with generalization; Table 1 lists 15 such representative examples.
By increasing the number of occurrences of induction terms in these examples, we also
generated a set of 3637 examples, containing for example variations of (3) with 20
occurrences of x. We compared existing reasoners supporting induction on all these

5 Our implementation is avialable at https://github.com/vprover/vampire, in the
branch hzzv-induction1.

https://github.com/vprover/vampire


Induction with Generalization in Superposition Reasoning 5

Table 1. Experiments on 15 handcrafted benchmarks. “X” denotes success, “–” denotes failure.

The
ory

VAM
PIR

E*

VAM
PIR

E

CVC4
ZIP

PERPOSIT
IO

N

ZENO

IM
ANDRA

CVC4-G
EN

ZIP
REW

RIT
E

∀x, y.(x + y = y + x)

N

X X X X X X X X
∀x.(s(x) + x = x + s(x)) X – – – – – X X

∀x, y, z.(x + (y + z) = (x + y) + z) X X X X X X X X
∀x.(x + (x + x) = (x + x) + x) X – – – X – X X

∀x.(x+x)+((x+x)+x) = x+(x+((x+x)+x)) X – – – X – X X
∀x, y.(y + (x + x)) = ((x + y) + x) X – – – – – – X

∀x, y.(x ≤ x + y) X X X X X X X X
∀x.(x ≤ x + x) X – – – – – – –

∀x.(x + x ≤ (x + x) + x) X – – – X – – –
∀l, k, j.(l ++ (k ++ j) = (l ++ k) ++ j)

L

X X X X X X X X
∀l.(l ++ (l ++ l) = (l ++ l) ++ l) X – – – – – – X

∀l, k.l ++ (k ++ (l ++ l)) = (l ++ k) ++ (l ++ l) X – – – – – – X
∀l, k.prefix(l, l ++ k) X X X X X X X X
∀l.prefix(l, l ++ l) X – – – – – – –

∀l : L, x : N.cons(x + s(x), l) ++ (l ++ l)
= (cons(s(x) + x, l) ++ l) ++ l N,L X – – – – – – –

problems6. We translated these problems, together with the corresponding axioms of
Figure 1, in the input syntax of the respective prover: (i) SMT-LIB format for (versions
of) VAMPIRE and CVC4; (ii) functional program encodings for ZENO and IMANDRA;
(iii) the native input format of ZIPPERPOSITION. Except for IMANDRA (which is a
cloud-based service), we ran our experiments on a 2,9 GHz Quad-Core Intel Core i7
machine. We ran each solver as a single-threaded process with a 5 second time limit.
Our results are summarized in Table 1, where CVC4-GEN refers to the extension [10]
of CVC4 with automatic lemma discovery; and ZIPREWRITE is the ZIPPERPOSITION
version supporting heuristics using rewrite rules instead of function axiomatisations [5].

Table 1 shows that VAMPIRE* outperforms all solvers, including VAMPIRE itself.
Compared to ZIPPERPOSITION, we note that VAMPIRE* does not necessarily depend
on clause splitting performed by AVATAR. When considering solvers without fine-
tuned heuristics, such as in ZIPREWRITE and CVC4-GEN, VAMPIRE* solves many
more problems. Interestingly, ZIPREWRITE heuristics work well with addition and list
concatenation, but not with orders. Further, CVC4-GEN heuristics prove associativity
of addition, but not the list counterpart for concatenation. We believe our experiments
show the advantage of using induction with generalization as a new inference rule,
rather than a heuristic-driven approach.

5 Conclusions

We introduced a new rule for induction with generalization in saturation-based rea-
soning based on using induction axioms for generalizations of the of goals appearing
during proof-search. Our experiments show that we solve many problems that existing

6 all these problems are available on the url of our implementation



6 Petra Hozzová, Laura Kovács, Johannes Schoisswohl, Andrei Voronkov

systems cannot solve. Future work includes designing heuristics to guide proof search,
generalization on more complex terms and performing other kinds of generalization.

Acknowledgements

We thank Giles Reger for discussions related to the work. We acknowledge funding
supporting this work, in particular ERC starting grant 2014 SYMCAR 639270, EP-
SRC grant EP/P03408X/1, ERC proof of concept grant 2018 SYMELS 842066, the
Wallenberg Academy fellowship 2014 TheProSE, and Austrian FWF research project
W1255-N23.

References

1. Imandra, https://docs.imandra.ai/imandra-docs/
2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,

Tinelli, C.: CVC4. In: International Conference on Computer Aided Verification. pp. 171–
177. Springer (2011)

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

4. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in computing,
vol. 23. Academic Press (1979)

5. Cruanes, S.: Superposition with Structural Induction. In: Proc. of FRoCoS. pp. 172–188
(2017)

6. Kovács, L., Robillard, S., Voronkov, A.: Coming to Terms with Quantified Reasoning. In:
Proc. of POPL. pp. 260–270 (2017)

7. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: International Con-
ference on Computer Aided Verification. pp. 1–35. Springer (2013)

8. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: Proc. of CADE.
pp. 477–494 (2019)

9. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. EasyChair Smart Slide
(2020), https://easychair.org/smart-slide/slide/hXmP

10. Reynolds, A., Kuncak, V.: Induction for SMT Solvers. In: Proc. of VMCAI. pp. 80–98 (2015)
11. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An Automated Prover for Properties of

Recursive Data Structures. In: Proc. of TACAS. pp. 407–421 (2012)
12. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A Cross-Community Infrastructure for Logic

Solving. In: Proc. of IJCAR. pp. 367–373 (2014)
13. Voronkov, A.: AVATAR: The Architecture for First-Order Theorem Provers. In: Proc. of

CAV. pp. 696–710. Springer-Verlag (2014)

https://easychair.org/smart-slide/slide/hXmP

	Induction with Generalization in Superposition Reasoning (Short Paper)

