
EasyChair Preprint
№ 1677

Potential Candidate selection using Information
Extraction and Skyline Queries

Farzana Yasmin, Mohammad Imtiaz Nur and
Mohammad Shamsul Arefin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 16, 2019

Potential Candidate selection using Information

Extraction and Skyline Queries

Abstract. Information extraction is a mechanism for devising an automatic

method for text management. In the case of candidate recruitment,

nowadays different companies ask the applicants to submit their

applications or resumes in the form of electronic documents. In general,

there are huge numbers of resumes dropped and therefore the volume of the

documents increases. Extracting information and choosing the best

candidates from all these documents manually are very difficult and time

consuming. In order to make the recruitment process easier for the

companies, we have developed a framework that takes the resumes of

candidates as well as the priorities of the employer as input, extract

information of the candidates using Natural Language Processing (NLP)

from the resumes, rank the candidates according to predefined rules and

return the list of dominant candidates using skyline filtering.

Keywords: Informat ion Extraction, natural language processing,

skyline query, candidate selection.

1 Introduction

Information ext raction (IE) infers the process of automatically gisting of

informat ion in a strucutred way from unstructured and/or semi-

structured machine-readable documents. The task involves the utilization

of natural language processing (NLP). The present purpose of IE refers to the

growing amount of information available in unstructured form [1].

Nowadays huge volume of documents are found online and offline. Extracting

informat ion from these vast volumes of data manually is time consuming.

Moreover generating some pattern from the extracted information has recently

been a new challenge and prime concern of the modern technological era.

Recru itment is the process of searching and selecting best candidates for filling the

vacant positions of an organization. Recruitment process requires planning,

requirements setup strategy, searching candidates, screening the candidates

according to the requirements and evaluation of the candidates. These steps are

usually conducted by the Human Resource (HR) department of any company.

2

Whenever there is a job opening for the vacant positions, large amount of

applications are dropped. Searching and screening the best candidates from these

applicants after assessing the ablites and qualifications manually takes huge

amount of time, cost and effort of the HR department as the volume of data are

big. If we can develop an efficient system for extract ing information from the

resumes of the applicants and process these information in an automated way, it

will ease the work of the HR management. An automated system for choosing the

potential candidates that best suits the position’s requirements can increase the

efficiency of the HR agencies greatly.

Therefore, in order to make the recruitment process easy, effective and automated,

we have developed a framework of potential candidate ranking system. To

perform this task we have chosen a domain of document informat ion extraction

which can be helpful in choosing the best potential candidates for any job

openings i.e. CV/resume document. This development task involves the

informat ion ext raction based on natural language processing i.e. tokenizat ion,

named entity recognizer (NER) and utilizes skyline query processing for candidate

scoring and ranking which works well in filtering the non-dominating objects

from database and also makes a new addit ion to this domain.

So the objectives of the system development can be summerized as follows:- 1) To

design an efficient information extraction system from documents like curriculum

vitae, 2) To generate scores on different features based on ext racted informat ion,

3) To perform appropriate filtering of informat ion using skyline queries and 4) To

generate proper ranking system for candidate selection.

The rest of the paper is presented as follows: In Section II related works of the

candidate ranking system development has been portrayed. The system

architecture and design is elaborated in Section III. Sect ion IV represents the

implementation of our work with some experimental results. And finally, a

conclusion over the work has been drawn in section V.

2 Related Work

D. Celik [2] proposed an informat ion extract ion system for candidate selection

where the information extract ion was based on ontology. The proposed

methodology used Ontology-based Resume Parser(ORP) to convert English and

Turkish documents into ontological format. The proposed method constructed

seven reference ontologies to extract the information and categorize them into one

3

of these ontologies. Though the methodology worked good on information

extraction but it did not describe any score generation mechanism to rank the

candidates.

Another form of candidate selection was proposed by S. Kumari et. al. [3] where

candidate selection was done by using Naïve Bayes algorithm for classifying the

candidate profiles. They also considered employers importance criteria. No

description given of how the informat ion extraction are done. Also it requires

GRPS connection every time as it is online based.

R. Farkas et. al. [4] worked on a method of extracting informat ion for career portal

where the informat ion of applicants’ are stored in a uniform data structure named

HR-XML format. They used a CV parser to automatically extract data from the

CV. It is basically template specific method and doesn’t work for all formats of

documents.

In [5], the authors used a hybrid cascade model for information extraction from

CVs. In the first pass, the proposed method segments resume using Hidden

Markov Model. The second pass uses HMM and SVM to ext ract further detailed

informat ion. The cascaded pipeline suffers from error propagation i.e. errors from

first step are passed in the second pass and the precision and recall value decreases

subsequently.

Information is extracted from resumes using basic techniques of NLP like word

parsing, chunking, reg ex parser in [6]. Information like name, email, phone,

address, education qualification and experience are extracted using pattern

matching in this work. Some other online resume parsers are found in [7, 8].

A two step resume informat ion extraction algorithm is developed in [9]. In the

first step, raw texts are retrieved as resume blocks. Then in the next step they

developed a mechanism to identify the fact information from the resume like

named entities.

There also have been developed some works using skyline queries. [10], [11] &

[12] describes some algorithms for processing skyline queries with their

implementation.

S. Patil et. al. [13] developed a method for learning to rank resumes with the help

of SVM rank algorithm. In [14], X. Yi et. al. applied a Structured Relevance

Model to select resumes for a given post or to choose the best jobs for a given

candidate based on their CV. İn [15] job narration are transformed into queries

4

which are then searched in a database of Dutch CVs. The best-ranked candidates

gets selected automatically from these queries. Some authors explo it additional

informat ion like social media information along with informat ion gained direct ly

from resumes [16]. Moreover, [17] takes consideration of data collected from the

LinkedIn profile and personality traits from the personal blogs of the candidates .

In [18], digital resumes of candidates are generated by extracting data from social

networking sites like Facebook, Twitter and LinkedIn. Candidates are evaluated

based on their digital resume and ranked accordingly. In [19], CVs are filled in a

predefined format and the scoring and ranking process is based on Analytic

Hierarchy Process (AHP).

Though many works have been developed for candidate ranking, the use of

skyline query in this sceneraio is relatively new approach and we have

implemented this novel approach in our framework.

3 System Architecture and Design

The proposed framework works in 4 modules: Document processing module,

Query Execution Module, Analysis & Output module and Storage module.

According to figure-1:

3.1 Processing Module

Document Input. First we will need to input the resumes in the interface for a

specific job id. After documents are being fed to the system in processing module,

informat ion extract ion process begins and we used a NLP module named spaCy

[20] for the rest of the processing steps. Suppose, we have fed the following

resumes in the system:

5

Fig. 1. System Architecture of Potential Candidate Selection

6

(a) (b)

(c)

Fig. 2. (a), (b), (c) Sample Resumes

Conversion to Text. The standard format of resumes for our system is considered

english resumes in PDF format. At first we need to convert the pdf into plain text

using UTF-8 encoding. UTF-8 is a compromise character encoding that can be as

compact as ASCII (if the file is just plain English text) but can also contain any

Unicode characters (with some increase in file size). UTF stands for Unicode

Transformat ion Format. The '8' means it uses 8-bit blocks to represent a character.

The number of blocks needed to represent a character varies from 1 to 4 [21].

7

Tokenization. After conversion to text, now we have our necessary text file . We

start reading the text file and tokenize the whole document. Tokenizat ion is the

process of splitting a document into its smallest meaningful p ieces named tokens.

Tokenization is done using the language rule i.e. removing the white space,

checking the exception rules like punctuation checking, abbreviation rules etc.

Named Entity Recognition. Named entity recognition (NER) is the most

important task to do next. The success of the extract ion process mainly depends on

the accurately recognized entities from a resume. The subtask of information

extraction that seeks to locate and classify named entity mentions in unstructured

text into pre-defined categories such as the person names, organizations, email,

phone, address, time, quantities, numeric values, etc. can be defined as Named

entity recognition [22]. We are considering 12 criteria for information extract ion-

university, degree, major, result, experience, publicat ion, skill/others,

training/certification and personal information (name, date of birth, email, phone

etc.).

A statistical model is used to classify our desired entities in a standard resume like

name, date of b irth, email, phone number, university, education, major,

publications, experience, skills, etc. The NER t rain ing model is designed using

incremental parsing and residual CNNs. In case of train ing our model (Fig. 3.)

with the desired annotation we used resumes in JSON format.

Fig. 3. spaCy’s NER model training process (Source: [23])

At first we have to manually annotate our training data in JSON format (2). Then

we load or build the NER model (step 4-6). For training the NER model with our

custom entities, now we add the labels for each annotations (step 11-15). For

starting the training of our NER model, we must disable other pipeline

components like tokenizer, tagger of spaCy (step 16). Then we shuffle and loop

over our training examples (step 18). At each word the model makes a prediction.

It then consults the annotations to see whether it was right. If it was wrong, it

makes adjustment of the weight so that the correct action will score higher next

8

time (step 19). Then we save the model (step 21) and test it to make sure the

entities in the test data are recognized correctly (step 22).

The adapted algorithm of spaCy’s NER training module is provided below:

After the validation of the training of the NER model, now we use this model to

extract the values of the entities trained from the resumes. The recognized entity

values are stored in a row of a table for each candidate in the storage module. If

we send the sample resumes of Fig. 2. in the NER model the table of the extracted

informat ion take the form like below:

(a)

Algorithm 3.1: Named Entity Recognition Training

Input: Tokens of the resumes

Goal: To identify the named entities required for information extraction

1. Begin

2. Annotate the training data manually
3. Initialize the annotated model, no. of iterations, output directory path

4. If model not loaded do

5. Load the initialized model

6. End if

7. If ner pipeline is not set do
8. Create ner pipe

9. Add the ner pipe

10. Else get ner pipe

11. For annotations in training data do

12. For entities in annotations do
13. Add labels of entities

14. End for

15. End for

16. Disabling other pipeline, begin the training

17. For iterations in range do
18. Shuffle the examples in batches

19. For each example update the model

20. End for

21. Save the model in the output directory

22. Test the model with the test data

9

(b)

Fig. 4. (a), (b) Expected extracted information

3.2 Query Execution Module

Standard Scores and priorities setting for each criteria by Recruiter. In the

UI, employers set the standard scores required to evaluate the abilities of the

candidate according to their job criteria. Each criterion gets a value and a weight

for a specific keyword. The weight represents the relative importance or

prioritiesof the specific criteria and value represents the variations of the score of

each criteria. Keyword gives the matching criteria i.e. which information to be

satisfied for scoring. These standard scores are stored in the storage module as a

lookup table. For example, for software developer position, the employer sets the

following values and weights in the table for each criteria.

Table 1. Standard Score Setting Table

Job_criteria Keywords Value Weight

Skills C++ 10 5

Skills Java 10 5

Skills PHP 8 5

Experience 3 5 3

Experience 0 2 3

Major CSE 10 2

Major EEE 6 2

Parse the Requirements. The system will then parse these requirements of the

employer in the query execution module.

10

3.3 Storage Module

Storage module stores informat ion processed by the processing and query

execution module. The extracted informat ion table after the entites are recognized

are stored in the document database. The standard scores set by the recruiters in

the query execution phase are stored in the score database. The total storage is

required for the candidate score generation in the analysis and output generation

phase.

3.4 Analysis and Output Module

Candidate Score Generation. After parsing the requirement of the employer, the

system will start the score table generation of each candidate according to the

employer prio rity and previously set standard score by the employer for d ifferent

categories.

The algorithm of candidate score generation is given below:

The extracted information stored in the lookup table in document database is

retrieved (step 7-8) and matched with the keywords stored in the job_info_details

Algorithm 3.2: Candidate Score Generation

Input: Extracted information stored in Excel file

Goal: To generate score of each candidate in each criterion

1. Begin

2. Initialize Scores object with unique job_criteria

3. Initialize an empty Score_table list

4. For each row in excel do

5. Set Scores object value to zero
6. For each job_info details do

7. Find(Excel(column))

8. If job_criteria == Excel(column) do

9. If keyword matches with column value do

10. Calculate the Scores value as:
Scores [job_criteria] += job_details (val-

ue)*job_details(weight)

11. Else skip

12. Else skip

13. End For
14. Push Scores values in Score_table

15. End for

16. Set the mandatory required job_criteria

17. If Scores [mandatory_job_criteria] = 0 do

18. Delete the score row from the Score_table

11

table (step 9). If match found, the corresponding values are calculated by

multip lying the value and weight set in the standard score table (step 10).

If mult iple keywords are matched for a specific critria, then they are stored as

aggregated sum. For example, if multip le skills match, then all the skill values are

added and stored in the skill co lumn for that candidate.

The score calculation follows the following formula (1):

Score[job_criteria] = Score[job_criteria] + (job_details (value) * job_details

(weight)) (1)

For the result column scoring, extracted result of the applicant matched with the

sorted list of previously set result keywords. İf the extracted result is greater or

equal to any specified keyword of the result, the score is calculated according to

that result keyword. The same goes for the total years of experience column.

For the publication column, internation conference, international journal keywords

are searched and matched. İf found, the number of occurences are counted.

If any column informat ion contains missing value, then they are considered as

zero in the score calculation. The calculated score is stored in that specific criteria

column of the score table. After being scored in each criteria, now a table is

generated which is score of each candidate (step 14).

The sample score table for the resumes in Fig. 2 are depicted below:

Table 2. Sample Score Table

CV no. Skills Experience Major Total

1 50 15 20 85

2 0 15 20 35

3 50 6 0 56

The first candidate had the matching skill C++, experience of 3.7 years and major

CSE. So the first candidate fulfills all the requirements of the specified job

position and get scores according to the rules set as Table 1 i.e. Scores[skill]=

value for C++ (10) * weight of C++ (5) = 50. The skills of 2nd candidate doesn’t

match the required skills and so the missing value is scored as zero. Accordingly,

12

the 3rd candidate’s major doesn’t match the requirement and so he gets a zero in

major field. Now if we select the Major field as mandatory, the row containing

zero in this field i.e candidate 3 will be deleted.

Filter using Skyline Query. A skyline is defined as those points in a dataset those

are not dominated by any other point. A point dominates other points if it is as

good or better in all dimensions and better in at least one dimension. A study in

[24] states that during the past two decades, skyline queries are applied in several

multi-criteria decision support problems. Given a dominance relat ionship in a

dataset, a skyline query returns the objects that cannot be dominated by any other

objects. Skyline query utilizes the idea of sky line operator. There are several

algorithms for the implementation of skyline operator like using directly in SQL

queries, divide and conquer, branch and bound, map reduce etc. We have used the

combination of SQL query and the map reduce method. Applying skyline queries

on the score table according to employers’ priorit ies, now the dominant applicants

will be filtered. The algorithm is depicted below:

We can explain the working procedure of skyline query using Table 3. At first we

find the max value for each job criteria (step 4). For example, from Table 3., skills

column has the max value 50, experience co lumn has the max value 15 and major

column- 20. We map these max values in another list accouding to job criteria at

the same time (step-4). Now we filter the candidates holding any of these max

values (step 5) because these are the dominant objects as per the skyline filtering

and are pushed in the best_candidates list (step 6) i.e. candidate 1 & 2. Then we

remove the duplicate candidates from the best_candidates list and make the list

unique (step 8). As candidate 1 holds max value in all the 3 criteria, it is pushed 3

Algorithm 3.3: Filtering Using Skyline Query

Input: Generated Score_table

Goal: To filter the total candidate, create the best candidates list and remove

the non dominant candidates

1. Begin

2. Initialize an empty best_candidates list

3. For each job_criteria do

4. Find the max value from all the candidates by mapping according to

job_criteria

5. Filter all the candidates who have the max values in the job_criteria

6. Concatenate the candidates in the best_candidates list

7. End for

8. Remove the duplicate candidates from the best_candidates list

13

times in the list. So to make the list unique we remove the duplicate values of the

candidates and just take the row 1 t ime.

Table 3. Score table after filtering using skyline query

CV no. Skills Experience Major Total

1 50 15 20 85

2 0 15 20 35

Output Generation. The system output will show the result of the potential

candidates after the filtering process. The output will be sorted according to the

score obtained and personal details like name, email, phone number of each

candidate will be displayed. The sample output generation is shown in Fig. 5.

Fig. 5. Output generation

4 Implementations and Experiments

In this section, we have described the implementation and experimental setup of

our system with necessary illustrations.

4.1 Experimental Setup

Potential candidate selection system has been developed on a machine having

Windows 10, 2.50GHz Core i5-3210 processor with 12GB RAM. The system has

been developed in Python 3.7.3, Asp.Net Core and Angular5 in the front end and

MS SQL Server is used in the back end for storing related data to complete this

project.

14

4.2 Implementation

At the beginning of our system workflow, resume documents are fed into the sys-

tem. All the resumes are stored in a file according to the specific job id. These re-

sumes are then converted into text format using UTF-8 encoding and stored in a

file named lookup.py (Fig. 6).

Fig. 6. Snapshot of Resume in Text format

The text files are then called for tokenizat ion and named entity recognition. Next,

calling the trained model of NER, we extract the informat ion from the tokenized

data of the resumes. We have extracted information of 12 entities - university,

degree, major, experience, publication, skill, cert ification and personal

informat ion (name, date of birth, email, phone etc.). The information of these

entities are extracted according to the annotation of the trained NER model (Fig.

7).

Fig. 7. Snapshot of Extracted Information Table

15

Once we have found the extracted information table, it is stored in the document

database.

On the other hand, employers set the necessary informat ion for setting the re-

quirements and scores of each criteria. Job_info_details table holds the columns

like Job_info ID, Keyword, Value, Weight, Job Criteria Name i.e . the information

set by the recruiters on the score setting step (Fig. 8).

Fig. 8. Snapshot of Requirement Setting by Recruiters

For the specific job position, extracted information table can be uploaded next for

score generation (Fig. 9).

Fig. 9. Snapshot of Extracted Information File Upload

16

After scoring according to the rules set, the system generates the score table. This

table can be downloaded by the recruiter (Fig. 10).

Fig. 10. Snapshot of Score Table

Next the recruiter is given the option to choose the mandatory requirement crite-

ria. If any of the criteria is chosen and candidates holding zero value in that specif-

ic criterion is removed before applying skyline query.

Fig. 11. Snapshot of Output Generation

17

Applying skyline query on the score table now returns the dominant applicants for

the specified job by finding the max value and mapping them according to the job

criteria. Then the unique candidates holding maximum values in any of the cr iteria

are returned. The best candidates with score and personal details are shown in the

output generation page (Fig. 11) in a descending score order.

4.3 Performance Evaluation

We tested the performance of our system using 150 resumes. For the training of

our NER model, we used a dataset of 350 annotated resumes and validated the

model using 50 resumes from the dataset. Ext raction procedure is the toughest

task of the whole system. We found some incorrect values for extracted

informat ion and also some missing values. The prcision, recall and f-measure of

each entity of the NER model is given below:

Table 4. Accuracy, Precision, Recall and F-measure of the Entit ies Recognized

 Name Email Phone Date of Birth University

Accuracy

(%)

99.76525821596

243

100.0 100.0 99.87452948

557089

99.87452948557

089

Precision 0.998435054773

0829

1.0 1.0 1.0 1.0

Recall 0.997652582159

6244

1.0 1.0 0.998745294

855709

0.998745294855

709

F-measure 0.997885938218

8446

1.0 1.0 0.999372253

6095418

0.999372253609

5418

 Degree Major Publication Skills CGPA

Accuracy

(%)

99.2471769

1342535

98.3568075117

3709

98.708920187

79342

94.835680751

17371

100.0

Precision 0.99252851

45930405

0.99634846113

71936

0.9872584733

670198

0.9904364458

355068

1.0

Recall 0.99247176

91342535

0.98356807511

73709

0.9870892018

779343

0.9483568075

117371

1.0

18

F-measure 0.98966292

25927619

0.98872802990

97218

0.9852126262

984936

0.9654163803

961983

1.0

The accuracy of the skyline query depends on the accuracy of the scores genera t-

ed. If the score generation is accurate, the skyline query returns those candidates

that would be returned by manual filtering.

We have tested the filtering and ranking using skyline query with 3 different job

criteria- Software Developer with 2-4 years experience, Research Assistant with

cgpa above 3.5 and 2 publications and Assistant Programmer with skills Java, Ja-

vaScript, HTML and CSS. We have scored the 150 resumes for these 3 different

criteria. 3 criteria returned different combinations of candidates as the requ ire-

ments are different with a 100% accuracy.

We have also tested the skyline filtering with 50,000 synthesized score data. The

execution time for different number o f data is given in Table 5.

Table 5. Response Time of Skyline Filtering

No. of Data Response Time (mili sec)

3000 5.299999960698187

6000 9.265000000596046

25000 27.17999997548759

50000 81.80499996524304

The table shows that the skyline query can perform in a very responsive way.

5 Conclusion

In this paper, we have presented a candidate ranking system that finds the best po-

tential candidates by extracting informat ion and filtering using skyline query . Au-

tomating the total task may help the HR agencies by reducing time, cost and effort

of searching and screening the pioneer applicants from vast applications.

There are many automated candidate ranking system availab le online. But we

have developed a novel idea of using skyline query in ranking and returning the

dominant candidates for the job specified. Skyline queries are mostly applied in

multid imensional decision application. In candidate ranking, the implementation

of skyline is new and we have applied this novel approach in an efficient manner.

19

In the system performance evaluation, we have used 150 resumes in testing of the

system and found that, the system works in an efficient way of returning best can-

didates by matching the given requirements with qualifications of the candidates.

The performance of the extraction can be made higher by increasing the training

data. Altogether the system performs better in reducing the processing time as

skyline query returns the dominant applicants in a very responsive way.

References

1. Information Extraction,

https://en.wikipedia.org/wiki/Information_extraction

2. Celik, D.: Towards a Semantic-Based Information Extraction System for Matching Re-

sumes to Job Openings. Turkish Journal of Electrical Engineering & Computer

Sciences. vol. 24, pp. 141-159 (2016)

3. Kumari, S., Giri, P., Choudhury, S., Patil, S.R.: Automated Resume Extraction and

Candidate Selection System. In: International Journal of Research in Engineering and

Technology, e-ISSN. 2319-1163, p-ISSN. 2321-7308, vol. 03, issue. 01 (2014)

4. Farkas, R., Dobó, A., Kurai, Z., Miklós, I., Nagy, Á., Vincze, V., Zsibrita, J.: Informa-

tion Extraction from Hungarian, English and German CVs for a Career Portal. In: Pra-

sath R., O’Reilly P., Kathirvalavakumar T. (eds) Mining Intelligence and Knowledge

Exploration. Lecture Notes in Computer Science, vol. 8891, Springer, Cham (2014)

5. K. Yu, G. Guan, M. Zhou, “Resume Information Extraction with Cascaded Hybrid

Model”, In Proceedings of the 43rd Annual Meeting of the Association for Computa-

tional Linguistics, pp. 499–506, Ann Arbor, June 2005

6. Information Extraction from CV,

https://medium.com/@divalicious.priya/information-

extraction-from-cv-acec216c3f48

7. Writing Your Own Resume Parser,

https://www.omkarpathak.in/2018/12/18/writing-your-own-

resume-parser/

8. Resume Parser, https://github.com/bjherger/ResumeParser

9. Chen, J., Zhang, C., Niu, Z.: A Two-Step Resume Information Extraction

Algorithm. Mathematical Problems in Engineering, vol. 2018, Article ID 5761287

(2018)

10. Shah, S., Thakkar, A., Rami, S.: A Survey Paper on Skyline Query using Recommenda-

tion System. In: International Journal of Data Mining And Emerging Technologies, vol.

6, issue. 1, pp. 1-6, ISSN. 2249-3212 (2016)

11. Kalyvas, C., Tzouramanis, T.: A Survey of Skyline Query Processing. 2017.

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm for
Skyline Queries. In: ACM SIGMOD International Conference on Management of Data,

pp. 467-478 (2003)

20

13. Patil, S., Palshikar, G.K., Srivastava, R., Das, I.: Learning to Rank Resumes. In: FIRE,

ISI Kolkata, India (2012)

14. Yi, X., Allan, J., Croft, W.B.: Matching Resumes and Jobs Based on Relevance Mod-

els. In: SIGIR, Amsterdam, The Netherlands, pp. 809–810 (2007)

15. Rode, H., Colen, R., Zavrel, J.: Semantic CV Search Using Vacancies as Queries. In:

12th Dutch-Belgian Information Retrieval Workshop, Ghent, Belgium, pp. 87–88

(2012)

16. Bollinger, J., Hardtke, D., Martin, B.: Using Social Data for Resume Job M atching. In:

DUBMMSM, Maui, Hawaii, pp. 27–30 (2012)

17. Faliagka, E., Ramantas, K., Tsakalidis, A., Tzimas, G.: Application of Machine Learn-

ing Algorithms to an Online Recruitment System. In: Seventh International Conference

on Internet and Web Applications and Services, Stuttgart, Germany, pp. 215–220

(2012)

18. Dandwani, V., Wadhwani, V., Chawla, R., Sachdev, N., Arthi, C.I.: Candidate Ranking

and Evaluation System Based on Digital Footprints. In: IOSR Journal of Computer En-

gineering (IOSR-JCE), e-ISSN. 2278-0661, p-ISSN. 2278-8727, vol. 19, issue. 1, ver.

4, pp. 35-38 (2017)

19. Faliagka, E., Ramantas, K., Tsakalidis, A., Viennas, M.: An Integrated E-Recruıtment

System for CV Rankıng Based on AHP. In: 7th International Conference on Web In-

formation Systems and Technologies, Noordwijkerhout, The Netherlands, (2011)

20. spaCy, https://spacy.io/

21. UTF-8 encoding,

https://www.fileformat.info/info/unicode/utf8.htm

22. Named Entity Recognition, https://en.wikipedia.org/wiki/Named-

entity_recognition

23. spaCy NER training model, https://course.spacy.io/chapter4

24. Tiakas, E., Papadopoulos, A. N., Manolopoulos, Y.: Skyline queries: An introduction.

In: 6th International Conference on Information, Intelligence, Systems and Applications

(IISA), DOI: 10.1109/IISA.2015.7388053, E-ISBN: 978-1-4673-9311-9, July (2015)

