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GROUP RINGS OF FINITE GORENSTEIN HOMOLOGICAL DIMENSIONS

YUEMING XIANG

Abstract. Let K be a field and let G be a group. In the study of group ring K[G], there is the
well-known Serre’s theorem which consider the finiteness of global dimension of group ring. In the
present paper, we investigate when the group ring K[G] has finite Gorenstein global dimension.
It is shown that the Gorenstein global dimension of K[G] shares many properties with the global
dimension of K[G]. Finally, we give some analogous versions of the Serre’s Theorem for Gorenstein
global dimension.
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1. Introduction

Let R ba a commutative ring and let G be a multiplicative group (finite or infinite). The group
ring R[G] is an associative R-algebra with the elements of G as a basis and with multiplication
defined distributively using the group multiplication in G. This subject is a meeting place of group
theory and ring theory. The study of group rings involves the theory of field, linear algebra and
algebraic number theory and so on. Representation and homological properties of group rings
have been extensively studied (cf. [1], [7-9], [14] and [16]). Among others, Connell in [7] considered
necessary and sufficient conditions on R and G so that R[G] have some ring theoretic properties such
as being artinian, regular, self-injective and semiprime. There is the well-known Serre’s theorem
(see [14]), i.e., let K be a field of characteristic p and G be a group, and let H be a subgroup of
G of finite index. If G has no elements of order p, then the global dimension of K[H] is equal to
the global dimension of K[G]. The Serre’s Theorem also has the other versions. The cohomology
theory of groups arose from both topological and algebraic sources, which offered possibilities for
a great deal of intersection between topology and algebra. Let R = Z and Γ be a group. the
cohomological dimension, denoted cdΓ, which is defined as the projective dimension of the trivial
ZΓ-module Z. It was shown that if Γ is a torsion-free group and Γ′ is a subgroup of finite index,
then cdΓ′ = cdΓ (see [4, Theorem 8.3.1]). A deep result was that a non-trivial group Γ is free if
and only if its cohomological dimension is 1 (see [16]).

In classical homological algebra, the projective, injective and flat dimensions of modules play
an important and fundamental role. Subsequently, Auslander [5] introduced G-dimensions for
finitely generated modules over commutative Noetherian rings. As an extension of the G-dimension,
Enochs and Jenda in [10] defined the Gorenstein projective dimensions of modules (need not be
finitely generated) over a general ring, which is a refinement of the usual projective dimension.
Furthermore, the Gorenstein global dimension of a ring was defined (see [2]). In [8], Emmanouil
proved that Gorenstein global dimension of a ring R is finite if and only if any R-module M admits
a complete projective resolution if and only if spli(R) = fin.dim(R) = silp(R) is finite.

In this paper, we mainly consider the condition so that the Gorenstein global dimensions of
group ring K[G] is finite using the facts above. It is shown that the Gorenstein global dimensions
of K[G] is equal to the Gorenstein projective dimension of a principal K[G]-module. Moreover,
we obtain some results which generalize many properties of global dimensions of group ring K[G].
More precisely, we prove that
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Theorem 1.1. (Theorem 3.16) Let K be a field and let H be a normal subgroup of G. If
Ggl.dim(K[H]) and Ggl.dim(K[G/H]) are finite, then so is Ggl.dim(K[G]), and we have

Ggl.dim(K[G]) ≤ Ggl.dim(K[H]) + Ggl.dim(K[G/H]).

Theorem 1.2. (Theorem 3.19) Let K be a field and let H be a subgroup of G of finite index. If
Ggl.dim(K[G]) is finite, then Ggl.dim(K[H]) = Ggl.dim(K[G]).

2. Preliminaries

In this section, we set notations and discuss basic facts which will be useful in the sequel.
Unless otherwise stated, R denotes an associative ring with identity and all modules are right
R-modules. For an R-module M , pdR(M) and GpdR(M) denote the projective dimension and
Gorenstein projective dimension of M , respectively. We write gl.dim(R) and Ggl.dim(R) for the
global dimension and Gorenstein global dimension of a ring R, respectively. R−Mod denotes the
category of R-modules. For unexplained concepts and notations, we refer the reader to [3], [14],
and [15].

Module Structure over Group Rings

(1) Let K be a field and G be a group, and let V and W be K[G]-modules. Then V ⊗K W
becomes a K[G]-module under the diagonal action (v ⊗ w)g = (vg) ⊗ (wg) for all v ∈ V ,
w ∈ W and g ∈ G. It is trivial that V ⊗K W ∼= W ⊗K V .

(2) The principal K[G]-module V0 is a one-dimensional K-vector space in which vg = v for all
v ∈ V0 and g ∈ G. For example, K with trivial G-action is a principal K[G]-module.

(3) Let H be a subgroup of G. Following [13], for a K[H]-module M , we define the induced
module M ↑GH := M ⊗K[H] K[G] with K[G] acting on the right side and the coinduced
module HomK[H](K[G],M). Moreover, every K[G]-module N can be viewed as a K[H]-

module. We denote this restricted module by N ↓GH (Sometime we omit the symbol ↓GH
if not confuse). Since K[G] is a left and right free K[H]-module, the induced functor
and restricted functor are exact, and preserve projective modules. The coinduced functor
preserves injective modules.

Gorenstein Dimensions

A complete projective resolution is an exact sequence of projective R-modules

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · · ,

which remains exact after applying the functor HomR(−, P ), for any projective R-module P . An
R-module M is called Gorenstein projective [11] if it is a syzygy of a complete projective resolution,
i.e., M = Ker(P 0 → P 1). The Gorenstein projective dimension GpdR(M) is at most n if there is
an exact sequence

0 −→ Gn −→ Gn−1 −→ · · · −→ G1 −→ G0 −→ M −→ 0

with every Gi Gorenstein projective. It is clear that GpdR(M) ≤ pdR(M) and GpdR(M) =
pdR(M) provided pdR(M) is finite. Dually, we have the concepts of Gorenstein injective module
and Gorenstein injective dimension (GidR(M)).

Bennis and Mahdou in [2] showed that

sup{GpdR(M) | M ∈ R−Mod} = sup{GidR(M) | M ∈ R−Mod}.

The common value is called the Gorenstein global dimension of R and denoted by Ggl.dim(R). By
[2, Proposition 2.6], Ggl.dim(R) = 0 if and only if R is quasi-Frobenius (i.e., it is left and right
Noetherian and both left and right self-injective). So the Gorenstein global dimension measures
how far away a ring R is from being quasi-Frobenius.
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3. Main Results

The following lemma can be seen in [14].

Lemma 3.1. Let K be a field and G be a group, and let M be a K[G]-module. If F is a free
K[G]-module, then so is M ⊗K F . Moreover, if P is a projective K[G]-module, then so is M ⊗K P .

By Lemma 3.1, we have immediately

Lemma 3.2. If N is a K[G]-module, then pdK[G](M ⊗K N) ≤ pdK[G](N) for any K[G]-module
M .

Lemma 3.3. Let M be a K[G]-module. If N is a Gorenstein projective K[G]-module, then so is
M ⊗K N .

Proof. If N is Gorenstein projective, then there is a complete projective resolution

P • := · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · · ,
such that N = Ker(P 0 −→ P 1). Since K is a field, every K-module is flat. Then we have the
following exact sequence of K[G]-modules

M ⊗K P • := · · · −→ M ⊗K P1 −→ M ⊗K P0 −→ M ⊗K P 0 −→ M ⊗K P 1 −→ · · · ,
and M ⊗K N = Ker(M ⊗K P 0 → M ⊗K P 1). By Lemma 3.1, all M ⊗K Pi and all M ⊗K P i

are projective. Now it is enough to show that HomK[G](M ⊗K P •, Q) is exact for every projective
K[G]-module Q. By the adjoint isomorphic theorem,

HomK[G](M ⊗K P •, Q) ∼= HomK(P •,HomK[G](M,Q)).

Noting that HomK[G](M,Q) is a projective K-module because K is a field, the right complex is
exact by [17, Proposition 2.3 (2)], and hence the left complex is exact. �

The following result will be used frequently in the sequel.

Theorem 3.4. Let K be a field and let G be a group. If V0 is a principal K[G]-module, then

Ggl.dim(K[G]) = GpdK[G](V0).

Proof. It is trivial that Ggl.dim(K[G]) ≥ GpdK[G](V0). Now suppose that GpdK[G](V0) = n < ∞.

Then there is an exact sequence of K[G]-modules

0 −→ Pn −→ · · · −→ P0 −→ V0 −→ 0,

where all Pi are Gorenstein projective K[G]-modules. For any K[G]-module M , it is flat as a
K-module because K is a field. So, it yields an exact sequence of K[G]-modules

0 −→ M ⊗K Pn −→ · · · −→ M ⊗K P0 −→ M ⊗K V0 −→ 0.

By Lemma 3.3, M ⊗K Pi is Gorenstein projective for all i. Thus, GpdK[G](M ⊗K V0) ≤ n. It is

easy to verify that M ⊗K V0
∼= M as K[G]-modules. Then GpdK[G](M) ≤ n, and hence

Ggl.dim(K[G]) ≤ n = GpdK[G](V0). �
For a group ring K[G], the ring homomorphism ϵ : K[G] → K,

∑
rgg →

∑
rg, is called the

augmentation mapping of K[G] and its kernel, denoted by ∆(K[G]), is

∆(K[G]) = {
∑
g∈G

ag(g − 1) : 1 ̸= g, ag ∈ K}.

Proposition 3.5. Let K be a field and let G be a group.

(1) If H is a subgroup of G, then Ggl.dim(K[H]) ≤ Ggl.dim(K[G]).
(2) Ggl.dim(K[G]) = 0 if and only if G is a finite group.
(3) If G = ⟨gi | i ∈ I⟩ is a nonidentity free group, then ∆(K[G]) is a free K[G]-module.

Furthermore, Ggl.dim(K[G]) = 1.
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Proof. (1) It follows from [17, Theorem 2.4].
(2) IfK is a field andG is a finite group, thenK[G] is quasi-Frobenius, and so Ggl.dim(K[G]) = 0.

Conversely, if K[G] is quasi-Frobenius, then K[G] is Artinian, and hence G is finite by [7, Theorem
1].

(3) The first part of the proof is due to a contribution in [14].
Let G = Π∗

i (gi) be the free product of infinite cyclic group (gi). Then, every element g ∈ G can
be written uniquely as a finite product of the form g = gn1

i1
gn2
i2

· · · gns
is

with nj ̸= 0 and ij ̸= ij+1.
We call |n1|+ |n2|+ · · ·+ |ns| the length of g.

Noting that ∆(K[G]) is generated by {gi−1 | gi ∈ G−{1}}. It is only to show {gi−1 | gi ∈ G−{1}}
are independent, i.e., Σ(gi − 1)αi = 0 implies that αi = 0 for all i. Because of the uniqueness of
g = gn1

i1
gn2
i2

· · · gns
is
, the map σ : G → G given by σ(gi) = g2i for all i, defines an isomorphism

of G onto its subgroup H = (g2i | i ∈ I). Moreover, σ can be extended to a monomorphism
σ∗ : K[G] → K[H]. So, if Σ(gi − 1)αi = 0, then

Σ(g2i − 1)σ∗(αi) = σ∗(Σ(gi − 1)αi) = σ∗(0) = 0.

Since σ is monomorphism, it is enough to prove that Σ(g2i − 1)βi = 0 implies that βi = 0 for all

i. Suppose that Σ(g2i − 1)βi = 0. We set γi = giβi, then Σ(gi − g−1
i )γi = 0. If some γi ̸= 0, then

there exists g ∈ supp(γi) with the maximal length n. For convenience, we set g ∈ supp(γ1). Then,
in at least one of g1g and g−1

1 g no cancellation occurs, and hence at least one of these two group

elements has length n+ 1, say gδ1g. Thus, gδ1g occurs in the support of γ = Σ(gi − g−1
i )γi. By the

definition of n, the only possible group elements in supp(γ) of length n+ 1 must have the reduced
form g±1

i h with h ∈ supp(γi). So, g
±1
i h = gδ1g yields i = 1,±1 = δ and h = g, and hence gδ1g occurs

precisely once. Thus gδ1g ∈ supp(γ) and γ ̸= 0, a contradiction. Therefore, {gi − 1 | gi ∈ G− {1}}
is a free K[G]-basis of ∆(K[G]).

In addition, we have the following exact sequence of K[G]-modules

0 −→ ∆(K[G]) −→ K[G] −→ K −→ 0.

As ∆(K[G]) is free, GpdK[G](K) ≤ 1. By Theorem 3.4, Ggl.dim(K[G]) = GpdK[G](K) ≤ 1. Since

G is infinite, Ggl.dim(K[G]) = 1 in terms of (2) above. �

Example 3.6. Let (Gi)I be an arbitrary family of finite normal subgroups of G. Then S =⊕
I K[G/Gi] is a Gorenstein projective K[G]-module. In fact, since Gi is finite, for any princi-

pal K[Gi]-module V0, in view of Proposition 3.5(2), V0 is Gorenstein projective. Then, V0 ↑GGi
∼=

K[G/Gi] is a Gorenstein projective K[G]-module. Therefore, S =
⊕

I K[G/Gi] is Gorenstein
projective because the class of Gorenstein projective modules is closed under arbitrary direct sums.

Let p be a prime. A group G is call a p′-group provided that G has no element of order p. Let
GP be the class of Gorenstein projective R-modules. GP⊥ denotes the orthogonal class of GP, i.e.,
the class of modules such that Ext1R(P,−) = 0 for all P ∈ GP. Obviously, the modules of finite

projective dimensions and injective modules are contained in GP⊥. Let P be a module of finite
projective dimension but not be injective and let I be an injective module of infinite projective
dimension. Then P ⊕ I ∈ GP⊥ while P ⊕ I is neither finite projective dimension nor an injective
module.

Lemma 3.7. Let K be a field and let H be a subgroup of G. If any K[G]-module M ∈ GP⊥, then
N ∈ GP⊥ for any K[H]-module N .

Proof. For any Gorenstein projective K[H]-module P , in view of Eckmann-Shapiro Lemma (see [3,
Corollary 2.8.4]), we have

Ext1K[H](P,N ↑GH↓GH) ∼= Ext1K[G](P ↑GH , N ↑GH).
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Noting that P ↑GH is also Gorenstein projective as K[G]-module, Ext1K[G](P ↑GH , N ↑GH) = 0, and

hence Ext1K[H](P,N ↑GH↓GH) = 0. By [15, Theorem 7.14], Ext1K[H](P,N) = 0 because N is a direct

summand of N ↑GH↓GH . �
Proposition 3.8. Let K be a field of characteristic p and let G be a group. If Ggl.dim(K[G]) < ∞
and any K[G]-module M ∈ GP⊥, then G is a p′-group.

Proof. Suppose that H = (x) is a cyclic subgroup of order p. Set R := K[H] and let

a = 1− x, b = 1 + x+ · · ·+ xp−1 ∈ R.

By [12, Lemma 6.2], rR(a) = bR and rR(b) = aR. Thus, we have the exact sequences of R-modules

0 −→ bR −→ R −→ aR −→ 0, and 0 −→ aR −→ R −→ bR −→ 0.

By Proposition 3.5(1), Ggl.dim(R) < ∞, and hence let GpdR(aR) = n < ∞. By [11, Theorem
2.10], aR admits an exact sequence of R-modules

0 −→ Q −→ P −→ aR −→ 0,

where P � aR is a Gorenstein projective precover and pdR(Q) = n− 1 (If n = 0, then Q = 0). In
addition, we have the following commutative diagram

0 −→ bR
i−→ R

π−→ aR −→ 0
↓ g ↓ f ∥

0 −→ Q
i′−→ P

π′
−→ aR −→ 0.

The diagram gives rise to a sequence

0 −→ bR
α−→ R⊕Q

β−→ P −→ 0,

where the map α : bR → R⊕Q is given by α(m) = (i(m),−g(m)), and the map β : R⊕Q → P is
given by β(r, q) = f(r) + i′(q). Now we show that the sequence is exact.

(1) The map α is injective because i is so.
(2) For any p0 ∈ P , there exists an element r0 ∈ R such that π(r0) = π′(p0). Thus

π′(p0 − f(r0)) = π′(p0)− π′f(r0) = π(r0)− π(r0) = 0.

Hence, p0 − f(r0) ∈ Kerπ′ = Imi′, and p0 = f(r0) + i′(q0) = β(r0, q0) for some q0 ∈ Q. So β is
surjective.

(3) For any m0 ∈ bR, βα(m0) = β(i(m0),−g(m0)) = fi(m0)− i′g(m0) = 0, and so Imα ⊆ Kerβ.
On the other hand, for any (r, q) ∈ Kerβ, f(r) + i′(q) = 0. It implies π(r) = π′f(r) = π′(f(r) +
i′(q)) = π′(0) = 0, and hence r ∈ Kerπ = Imi, i.e., there exists an element n of bR such that
r = i(n). By the commutative diagram, fi(n) = i′g(n). Then i′g(n) = f(r) = −i′(q), and so
i′(g(n) + q) = 0. By the injectivity of i′, q = −g(n). It implies that Kerβ ⊆ Imα.

By hypothesis and Lemma 3.7, Ext1R(P, bR) = 0, and hence bR ⊕ P ∼= R ⊕Q. By [15, Exercise
9.7], pdR(bR) ≤ n− 1, and so R ≃ aR⊕ bR in terms of [14, Lemma 10.3.3]. But b ̸= 0 annihilates
both aR and bR, a contradiction. Therefore, G is a p′-group. �
Remark 3.9. (1) The condition ”M ∈ GP⊥ for any K[H]-module M” in the proposition above
can not be omitted. For example, let K be a field of characteristic 3 and S5 be the symmetric group
of degree 5. Then Ggl.dim(K[S5]) = 0 by Proposition 3.5 (2). However, the order of α = (1 2 3)
in S5 is 3.

(2) The foregoing example also show that Ggl.dim(K[S5]) = 0, while gl.dim(K[S5]) is infinite.

Now Corollary 10.3.7 in [14] can be seen as a corollary of Proposition 3.8.

Corollary 3.10. Let K be a field of characteristic p and let G be a group. If gl.dim(K[G]) < ∞,
then G is a p′-group.
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Proof. It is clear that Ggl.dim(K[G]) ≤ gl.dim(K[G]) < ∞. In addition, since gl.dim(K[G]) < ∞,
any K[G]-module M ∈ GP⊥. Therefore, it follows from the proposition above. �

A group G is called Polycyclic-by-finite if there is a subnormal series for G, (1) = G0▹G1▹ · · ·▹
Gn = G, where Gi/Gi−1 is either cyclic or finite. By Proposition 3.8 and [14, Theorem 10.3.13],
we have

Corollary 3.11. Let K be a field of characteristic p and let G be a Polycyclic-by-finite group.
Then the following are equivalent:

(1) G is a p′-group;
(2) gl.dim(K[G]) < ∞;
(3) Ggl.dim(K[G]) < ∞ and any K[G]-module M ∈ GP⊥.

In this case Ggl.dim(K[G]) = gl.dim(K[G]).

Here, spli(R) denotes the supremum of the projective lengths of all injective R-modules and
silp(R) denotes the supremum of the injective lengths of all projective R-modules (cf.[8]). We
study these invariants because it is completely related to Gorenstein global dimensions.

Proposition 3.12. Let K be a field and let H be a normal subgroup of G. Then

(1) spli(K[G]) ≤ spli(K[H]) + spli(K[G/H]).
(2) silp(K[G]) ≤ silp(K[H]) + spli(K[G/H]).

Proof. For convenience, we set G/H := G.
(1) Suppose that spli(K[H]) = n and spli(K[G]) = m are finite. For any injective K[G]-module

I, it is sufficient to show that pdK[G](I) ≤ m+ n. Noting that the augmentation sequence

0 −→ ∆(K[G]) −→ K[G] −→ K −→ 0

yields the K-split exact sequence of K[G]-modules

0 −→ K −→ A −→ B −→ 0,(3.1)

where A = HomK(K[G],K) and B = HomK(∆(K[G]),K). Hence I is a direct summand of I⊗KA,
and so it is enough to prove that pdK[G](I ⊗K A) ≤ m+ n.

Since K is an injective K-module, A is an injective K[G]-module, and hence pdK[G](A) ≤ m.

Let

P • := 0 −→ Pm −→ Pm−1 −→ · · · −→ P0 −→ A −→ 0

be a K[G]-projective resolution of A. Choose a K[G]-projective resolution of I and

Q• := 0 −→ Qn −→ Qn−1 −→ · · · −→ Q0 −→ I −→ 0

is the truncation, where Qi is K[G]-projective for i = 0, · · · , n − 1 and Qn is K[H]-projective as
restricted module. Then the total complex Q• ⊗K P • is a K[G]-complex over I ⊗K A of length
m + n. Since A is flat as a K-module, Q• ⊗K P • is a K[G]-resolution of I ⊗K A by the Künneth
formula. Finally, we claim that Q•⊗K P • is K[G]-projective. To prove this, it suffices to show that
Qn ⊗K K[G] is a projective K[G]-module. This is true because we have

Qn ⊗K K[G] ∼= Qn ⊗K (K ↑GH) = Qn ⊗K (K ⊗K[H] K[G])
∼= (Qn ⊗K K)⊗K[H] K[G]
∼= Qn ⊗K[H] K[G].

(2) Suppose that silp(K[H]) = n and spli(K[G]) = m are finite. Let P be a projective K[G]-
module. Applying HomK(−, P ) to (3.1) above, it gives an exact sequence of K[G]-modules

0 −→ HomK(B,P ) −→ HomK(A,P ) −→ P −→ 0.
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Since P is also a projective K[G]-module, the exact sequence above is K[G]-split, and hence P is a
direct summand of HomK(A,P ) as K[G]-modules. Then it suffices to prove idK[G](HomK(A,P )) ≤
n+m.

Choose a K[G]-injective resolution of P and

I• := 0 −→ P −→ I0 −→ · · · −→ In−1 −→ In −→ 0

is the truncation, where Ii is K[G]-injective for i = 0, 1, . . . , n − 1 and In is K[H]-injective as
restricted module. Since K is an injective K-module, A is also an injective K[G]-module. By
hypothesis, pdK[G](A) ≤ m. Let

P • := 0 −→ Pm −→ Pm−1 −→ · · · −→ P0 −→ A −→ 0

be a K[G]-projective resolution of A. Thus, HomK(P •, I•) is a K[G]-complex over HomK(A,P ) of
length n+m. Since A is projective asK-module, HomK(P •, I•) is aK[G]-resolution of HomK(A,P )
by Künneth’s cohomological formula. Now, we need to show HomK(P •, I•) is K[G]-injective. It is
enough to prove that HomK(K[G], In) is K[G]-injective. In fact, we have

HomK(K[G], In) ∼= HomK(K ⊗K[H] K[G], In)
∼= HomK[H](K[G],HomK(K, In))

= HomK[H](K[G], In).

Since In is K[H]-injective, HomK[H](K[G], In) is also K[G]-injective as coinduced module, as de-
sired. �

An immediate consequence of proposition above with H = {e} is the following corollary.

Corollary 3.13. Let K be a field and let G be a group. Then silp(K[G]) ≤ spli(K[G]).

Following [8], we say that M admits a complete projective resolution of coincidence index n if
there exists a complete projective resolution, which coincides with a projective resolution of M in
degrees ≥ n. Hence, M admits a complete projective resolution of coincidence index 0 if and only
if M is a syzygy of a complete projective resolution, i.e., if and only if M is Gorenstein projective.
We say that M admits a complete projective resolution if it admits a complete projective resolution
of coincidence index n for some n.

Proposition 3.14. Let K be a field and let G be a group. Then the following are equivalent:

(1) Ggl.dim(K[G]) < ∞;
(2) spli(K[G]) < ∞;
(3) Any K[G]-module admits a complete projective resolution and silp(K[G]) < ∞;
(4) There is an exact sequence of K[G]-modules 0 −→ V0 −→ A −→ B −→ 0, where V0 is a

principal K[G]-module and pdK[G](A) < ∞.

In this case, pdK[G](A) = Ggl.dim(K[G]).

Proof. (1)⇔(2) and (2)⇔(3) follow from [8, Theorem 4.1] and Corollary 3.13.
(1)⇒(4) follows from [6, Lemma 2.17].
(4)⇒(2). By hypothesis, there exists an exact sequence of K[G]-modules

0 −→ V0 −→ A −→ B −→ 0,

where V0 is a principal K[G]-module and pdK[G](A) < ∞. If I is an injective K[G]-module, then

the exact sequence of K[G]-modules

0 −→ I −→ I ⊗K A −→ I ⊗K B −→ 0

isK[G]-split, and hence I is a direct summand of I⊗KA. Thus, it suffices to prove pdK[G](I⊗KA) <

∞. In fact, it follows that pdK[G](I ⊗K A) = pdK[G](A) < ∞ by Lemma 3.2.

Moreover, in view of [6, Lemma 2.17] and Theorem 3.4, pdK[G](A) = GpdK[G](V0) = Ggl.dim(K[G]).
Therefore, we complete the proof. �
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As mentioned in [9], the Weyl groups of the (finite) subgroup H of G, denoted W = NG(H)/H,
are important objects and tools in the study of actions of G on topological spaces. We have the
following result analogue to [9, Proposition 2.5] but its proof is somewhat different.

Proposition 3.15. Let K be a field and let G be a group. Then, for any finite subgroup H of G,
we have Ggl.dim(K[W ]) ≤ Ggl.dim(K[G]), where W = NG(H)/H is the Weyl group of H.

Proof. By Proposition 3.5(1), Ggl.dim(K[NG(H)]) ≤ Ggl.dim(K[G]). Then we assume that H is
normal in G, i.e., NG(H) = G. So K[W ]-modules are precisely K[G]-modules with trivial H-action,
and we set K[W ]−Mod = {M ∈ K[G]−Mod : MH = M}. For any projective K[G]-module P ,
noting that (K[G])H ∼= K[W ], it follows that PH is a projective K[W ]-module. Furthermore, if
pdK[G](M) = n < ∞, then there exists an exact sequence of K[G]-modules

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ M −→ 0

with all Pi projective. By the proof of [9, Proposition 2.5],

0 −→ PH
n −→ PH

n−1 −→ · · · −→ PH
0 −→ MH −→ 0

is also an exact sequence of K[W ]-modules. Thus, pdK[W ](M
H) ≤ pdK[G](M).

Now, let Ggl.dim(K[G]) = m < ∞. By Proposition 3.14, there exists an exact sequence of
K[G]-modules

0 −→ V0 −→ A −→ B −→ 0,

where V0 is a principal K[G]-module and pdK[G](A) = m. Then

0 −→ V H
0 −→ AH −→ BH −→ 0

is an exact sequence of K[W ]-modules. Noting that the group G (and H) acts trivially on V0, V
H
0

is also a principal K[W ]-module. By the result above, pdK[W ](A
H) ≤ pdK[G](A) = m. Then, in

view of Proposition 3.14, Ggl.dim(K[W ]) is finite and Ggl.dim(K[W ]) = pdK[W ](A
H) ≤ m. �

Now we elaborate the main results in this paper.

Theorem 3.16. Let K be a field and let H be a normal subgroup of G. If Ggl.dim(K[H]) and
Ggl.dim(K[G/H]) are finite, then so is Ggl.dim(K[G]), and we have

Ggl.dim(K[G]) ≤ Ggl.dim(K[H]) + Ggl.dim(K[G/H]).

Proof. If Ggl.dim(K[H]) and Ggl.dim(K[G/H]) are finite, in view of Proposition 3.14, then spli(K[H])
and spli(K[G/H]) are finite. By Proposition 3.12, spli(K[G]) is finite, and hence Ggl.dim(K[G]) is
finite by Proposition 3.14 again.

Now suppose that Ggl.dim(K[H]) = n and Ggl.dim(K[G/H]) = m. If V0 is a principal K[H]-
module, then there is an exact sequence of K[H]-modules

0 −→ Pn −→ · · · −→ P0 −→ V0 −→ 0,

where all Pi are Gorenstein projective. By [17, Proposition 2.3], there is an exact sequence of
K[G]-modules

0 −→ Pn ↑GH−→ · · · −→ P0 ↑GH−→ V0 ↑GH−→ 0,

and all Pi ↑GH are Gorenstein projective. On the other hand, V0 ↑GH∼= K[G/H] as K[G]-modules,
and hence

GpdK[G](K[G/H]) = GpdK[G](V0 ↑GH) ≤ n.

For any projective K[G/H]-module P , in view of [11, Proposition 2.19], GpdK[G](P ) ≤ n. Now we

claim that GpdK[G](Q) ≤ n for any Gorenstein projective K[G/H]-module Q. In fact, there exists

an exact sequence of K[G/H]-modules

0 −→ Q −→ P 0 −→ P 1 −→ · · · , with all P i projective.
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Assume that GpdK[G](Q) > n, and let Qi = Ker(P i → P i+1) for i = 1, 2, . . . . By [1, Theorem 2.6],

GpdK[G](Q1) = GpdK[G](Q) + 1.

Inductively,

GpdK[G](Qi) = GpdK[G](Q) + i,

and hence ⊕iQi has infinite Gorenstein projective dimension over K[G], a contradiction.
If W0 is a principal K[G/H]-module, in view of Theorem 3.4,

GpdK[G/H](W0) = Ggl.dim(K[G/H]) = m.

Then we have the following exact sequences of K[G/H]-modules

0 −→ Wi+1 −→ Pi −→ Wi −→ 0, i = 0, 1, · · · ,m− 1,

where Pi, i = 0, 1, · · · ,m − 1 and Wm are Gorenstein projective K[G/H]-modules. The exact
sequences above are also the exact sequences of K[G]-modules, and W0 is also a principal K[G]-
module. To prove GpdK[G](Wi) ≤ n+m− i, we carry out the inverse induction on i.

(1) GpdK[G](Wm) ≤ n+m−m because Wm is a Gorenstein projective K[G/H]-module.

(2) Suppose that GpdK[G](Wi) ≤ n+m−i for 1 < i < m. Then GpdK[G](Wi) and GpdK[G](Pi)

are finite and GpdK[G](Pi) ≤ n.

(3) By [1, Theorem 2.6],

GpdK[G](Wi−1) ≤ 1 + sup{GpdK[G](Wi),GpdK[G](Pi−1)}
≤ 1 + (n+m− i) = n+m− (i− 1).

In particular, when i = 0 we have GpdK[G](W0) ≤ n+m. Thus, in view of Theorem 3.4,

Ggl.dim(K[G]) = GpdK[G](W0) ≤ n+m.

Therefore, we complete the proof. �

Corollary 3.17. Let K be a field, and let H be a normal subgroup of G.

(1) If H has a finite index, then Ggl.dim(K[G]) = Ggl.dim(K[H]).
(2) If H is finite, then Ggl.dim(K[G]) = Ggl.dim(K[G/H]).

Proof. (1) If H has a finite index, then Ggl.dim(K[G/H]) = 0 by Proposition 3.5(2). Thus, the
result follows from Proposition 3.5(1) and Theorem 3.16.

(2) It follows from Proposition 3.5(2), Proposition 3.15 and Theorem 3.16. �

By Proposition 3.5 (2) and Corollary 3.17, we have a plain group theoretic property.

Corollary 3.18. Let H be a normal subgroup of G. If any two groups, among G, H and G/H,
are finite, then so is the third.

The following results provide some analogous versions of the Serre’s Theorem for Gorenstein
global dimensions.

Theorem 3.19. Let K be a field, and let H be a subgroup of G of finite index. If Ggl.dim(K[G])
is finite, then Ggl.dim(K[H]) = Ggl.dim(K[G]).

Proof. By Proposition 3.5(1), Ggl.dim(K[H]) ≤ Ggl.dim(K[G]). We assume that Ggl.dim(K[G]) =
n < ∞. Let V0 be a principal K[G]-module. By Theorem 3.4, GpdK[G](V0) = Ggl.dim(K[G]) =

n. Then, in view of [11, Theorem 2.20], there exists some projective K[G]-module M such that
ExtnK[G](V0,M) ̸= 0 and for any projective K[G]-module P , Extn+1

K[G](V0, P ) = 0. Consider the

following exact sequence of K[G]-modules

0 −→ N −→ M ⊗K[H] K[G]
π−→ M −→ 0,
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where π(m ⊗ g) = mg for m ∈ M and g ∈ G. Noting that M and M ⊗K[H] K[G] are projective,
then N is also projective. Applying the functor HomK[G](V0,−) to the sequence above, we get a
long exact sequence

· · · −→ ExtnK[G](V0,M ⊗K[H] K[G]) −→ ExtnK[G](V0,M) −→ Extn+1
K[G](V0, N) = 0.

Since ExtnK[G](V0,M) ̸= 0, ExtnK[G](V0,M ⊗K[H]K[G]) ̸= 0. In addition, by [3, Corollary 2.8.4] and

[16, Lemma 9.2], we have

ExtnK[H](V0,M) ∼= ExtnK[G](V0,HomK[H](K[G],M))

∼= ExtnK[G](V0,M ⊗K[H] K[G]) ̸= 0.

Noting that M is also K[H]-projective as restricted module and V0 is also a principal K[H]-module
as restricted module, then Ggl.dim(K[H]) = GpdK[H](V0) ≥ n. This completes the proof. �

Corollary 3.20. Let K be a field, and let H be a subgroup of G of finite index. If spli(K[G]) is
finite, then Ggl.dim(K[H]) = Ggl.dim(K[G]).
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