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Abstract 

Fractal geometry is a branch of mathematics that deals with the study of patterns that repeat themselves infinitely in 

different scales. In this article, we propose a method to expand upon Menger-type fractal constructions to generate a 

variety of designs called Menger-Diaz fractals. The proposed method allows for the manipulation of the initial "atoms," 

rules, and distances to create a range of intriguing figures, including cubes or polyhedral shapes. We also describe how 

to apply this process to other polyhedra besides cubes or combinations of compatible polyhedra. Additionally, we 

investigate the concept of a recursive "atom" that is fundamental to the Menger process and can be a cube, a tetrahedron, 

or any other polyhedron that tessellates space. We present the most outstanding never seen before figures and the fractal 

dimension and volume of all them.  

Introduction 

The Sierpinski tetrahedron is a fractal geometric shape that is named after the Polish 

mathematician Wacław Sierpiński. It is a three-dimensional analogue of the Sierpinski 

triangle, which is a fractal made of repeated iterations of removing triangles from a larger 

triangle, in a Menger-like style. 

To create the Sierpinski tetrahedron, you start with a regular tetrahedron (a pyramid with 

a triangular base), and then repeatedly divide each of the four triangular faces into smaller 

triangles by connecting the midpoints of each side. Then, you remove the central 

tetrahedron that is formed by connecting the midpoints of the four faces of the original 

tetrahedron. This process is repeated on the remaining tetrahedra, ad infinitum. 

As the process continues, the resulting shape becomes increasingly complex and 

resembles a sponge-like structure with an infinite number of interconnected cavities. It 

has a fractal dimension of approximately 2.7, which means it is more complex than a two-

dimensional shape but less complex than a three-dimensional solid. 

In a recent submission to the Bridges conference, the authors have described how to 

expand upon Menger-type fractal constructions to generate a variety of designs1. The 

authors propose a method that allows for the manipulation of the initial "atoms," rules, 

and distances to create a range of intriguing figures. Additionally, this method can be 

utilized to produce a new variant of Menger fractals called Menger-Diaz, achieved by 

modifying the process of removing initial "atoms" at each level. This modification results 

in a distinctive shape with distinct characteristics, demonstrated through various 

examples. 

To create the cubes or polyhedral Menger-Diaz we start with a cube of edge length 1, 

which we iterate by dividing it into smaller cubes with edge length 1/n and discarding d 

of them in appropriate positions. We repeat the process with the remaining n3-d smaller 

cubes. The resulting portion of the cube after infinitely many iterations is called a sponge 

and can be obtained using various rules of discarding. We can apply this process to other 

polyhedra besides cubes or combinations of compatible polyhedra. 

Imagine a cube or prism with sides of length n, consisting of 1's and 0's. We begin by 

designing a face with holes, which we then duplicate in the final row, ensuring that all 

intermediate layers have transparent zeros. The second and second-to-last columns should 
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resemble the first face. The concept of a recursive "atom" is fundamental, as it is 

something that fits with its copies to build a new atom in each iteration of the Menger 

process. This atom can be a cube, a tetrahedron, or any other polyhedron that tessellates 

space. The process remains the same regardless of the chosen shape. There are many 

possible cubes with 1's and 0's, but we are only interested in the symmetrical ones with 

clear holes, the symmetrical ones, or the dual ones. 

Discussion 

Imagine a cube of side n (or a prism of rectangular faces) de 1 and 0. First we define one 

face. With each face and his axe in the center of the face, the figure that we search must 

be invariant to the rotation of 900 of each axe. Then we search that the figure resultant 

can be clear in his 0, we can see the other side with a light. Of other form, all the faces of 

the cube must be equals and vacuum must be face to face. Cubes with 1 and 0 there are 

many possible 2nxnxn (too many, more than the number of grains of sand in the Earth) but 

we only are interested, here, by the “regular ones”, symmetrical and with the clear holes, 

or only symmetrical, or the ”dual” ones (The dual rule changes from its original rule that 

0 becomes 1 and 1 becomes 0). 

The Sierpinski tetrahedron fractal is a case of 2x2x2 Menger-Diaz fractal. There exist 

various algorithms to generate the Sierpinski tetrahedron, including the one proposed by 

Alsina and Nielsen in their book2: For example, the first three iterations of the regular 

tetrahedron and octahedron are shown in Figure7.3.3. In the initial step with the 

tetrahedron we remove an octahedron leaving four tetrahedra with half the side length 

of the original and joined at common vertices. In the initial step with the octahedron, we 

remove eight tetrahedra leaving six octahedra with half the edge length of the original 

and joined at common edges. The limiting fractals are known as the Sierpinski ´ 

tetrahedron and the Sierpinski octahedron, since the triangular faces of each are 

Sierpinski triangles.  

Our algorithm does not distinguish tetrahedron of octahedron. Only in the first “atom”. 

Three steps: choose an “atom”; choose the distance between atoms in each iteration; 

choose a cubic set of numbers 1 or 0 indicating the existence or not of atom in this 

position. We have the nested list of vectors 2x2x2: 

a= [[[1,0], [0,1]], [[0,1], [1,0]]]  

 

Figure 1: Tetrahedron Menger-Diaz fractal 



Only in the tetrahedron the figure dual is different. In the other cases the dual has different 

orientation. To see that’s a Menger-Diaz fractal (because to get it we use the same 

algorithm) we can change to a cube and obtain that with the cube also gives a similar 

figure. 

 

Figure 2: Cube Menger-Diaz fractal 

 

Figure 3: Octahedron Menger-Diaz fractal 

 



Figure 4: Cuboctahedron Menger-Diaz fractal 

 

 

Figure 5: Rhombicuboctahedron Menger-Diaz fractal 

 

 

Figure 6: Rhombidodecahedron Menger-Diaz fractal 

The Menger-Diaz algorithm offers greater flexibility and applicability, and also has a dual 

counterpart. 

This section presents numerical definitions and images using cubic rules ranging from 

4x4x4 to 7x7x7. Since the 3x3x3 rules were studied in the previous article. 

a=[[[1,1,1,1],[1,0,0,1],[1,0,0,1],[1,1,1,1]],[[1,0,0,1],[0,0,0,0],[0,0,0,0],[1,0,0,1]],[[1,0,0,1

],[0,0,0,],[0,0,0,0],[1,0,0,1]],[[1,1,1,1],[1,0,0,1],[1,0,0,1],[1,1,1,1]]] 



 

Figure 7: Fractal with great hole. 

 

Another one: 

a=[[[0,1,1,0],[1,1,1,1],[1,1,1,1],[0,1,1,0]],[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]],[[1,1,1,1

],[1,1,1,1],[1,1,1,1],[1,1,1,1]],[[0,1,1,0],[1,1,1,1],[1,1,1,1],[0,1,1,0]]] 

 

Figure 8: Fractal Double Cross 

 



 

Figure 9: The previous with 4 holes more. 

 

a=[[[1,1,1,1],[1,0,1,1],[1,1,0,1],[1,1,1,1]],[[1,0,1,1],[1,0,1,1],[0,0,0,0],[1,0,1,1]],[[1,1,0,1

],[0,0,0,0],[1,1,0,1],[1,1,0,1]],[[1,1,1,1],[1,0,1,1],[1,1,0,1],[1,1,1,1]]] 

       

Figure 10: Fractal with 2 holes in the center 

 



This is an example of rule 4x4x4 that we obtain from rules 2x2x2 

 

Figure 11: 4x4x4 rule that is the result of two 2x2x2 rules. 

 

The following are examples by following 5x5x5 rules, for:  

a=[[[1,1,1,1,1],[ 1,1,0,1,1],[ 1,0,0,0,1],[ 1,1,0,1,1],[ 1,1,1,1,1]],[[1,1,0,1,1],[ 1,1,0,1,1],[ 

0,0,0,0,0],[ 1,1,0,1,1],[ 1,1,0,1,1]],[[1,0,0,0,1],[ 0,0,0,0,0],[ 0,0,0,0,0],[ 0,0,0,0,0],[ 

1,0,0,0,1]],[[1,1,0,1,1],[ 1,1,0,1,1],[ 0,0,0,0,0],[ 1,1,0,1,1],[ 1,1,0,1,1]],[[1,1,1,1,1],[ 

1,1,0,1,1],[ 1,0,0,0,1],[ 1,1,0,1,1],[ 1,1,1,1,1]]] 



 

Figure 12: Cross in center 

 

 

Figure 13: Cross-type dual Menger-Diaz fractal 

 

a=[[[1,1,1,1,1],[1,0,1,0,1],[1,1,0,1,1],[1,0,1,0,1],[1,1,1,1,1]], 

[[1,0,1,0,1],[0,0,0,0,0],[1,0,0,0,1],[0,0,1,0,0],[1,0,1,0,1]], 

[[1,1,0,1,1],[1,0,0,0,1],[0,0,0,0,0],[1,0,0,0,1],[1,1,0,1,1]], 

[[1,0,1,0,1],[0,0,0,0,0],[1,0,0,0,1],[0,0,1,0,0],[1,0,1,0,1]], 

[[1,1,1,1,1],[1,0,1,0,1],[1,1,0,1,1],[1,0,1,0,1],[1,1,1,1,1]]] 



 

Figure 14: 5 on center or dice of 5  

 

 

 



 

Figure 15: Dual of the previous 

 

Examples of rules 6x6x6 

a=[[[0,0,0,0,0,0],[0,0,1,1,0,0],[0,1,1,1,1,0],[0,1,1,1,1,0],[0,0,1,1,0,0],[0,0,0,0,0,0]],[[0,0,

1,1,0,0],[0,1,1,1,1,0],[1,1,1,1,1,1],[1,1,1,1,1,1],[0,0,1,1,0,0],[0,0,1,1,0,0]],[[0,1,1,1,1,0],[

1,1,1,1,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1],[0,1,1,1,1,0]],[[0,1,1,1,1,0],[1,1,1,1,1,

1],[1,1,1,1,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1],[0,1,1,1,1,0]],[[0,0,1,1,0,0],[0,1,1,1,1,0],[1,1,1,

1,1,1],[1,1,1,1,1,1],[0,1,1,1,1,0],[0,0,1,1,0,0]],[[0,0,0,0,0,0],[0,0,1,1,0,0],[0,1,1,1,1,0],[0,

1,1,1,1,0],[0,0,1,1,0,0],[0,0,0,0,0,0]]] 



 

Figure 16: Double cross 6x6x6 

 

Figure 17: Dual of the previous one 

 

 

 

 



Example of rule 7x7x7 

Definition 

a=[[[1,1,1,1,1,1,1],[1,0,1,0,1,0,1],[1,1,0,1,0,1,1],[1,0,1,0,1,0,1],[1,1,0,1,0,1,1],[1,0,1,0,1,

0,1],[1,1,1,1,1,1,1]],[[1,0,1,0,1,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,0,

0,0,1],[0,0,0,0,0,0,0],[1,0,1,0,1,0,1]],[[1,1,0,1,0,1,1],[1,0,0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,

0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[1,1,0,1,0,1,1]],[[1,0,1,0,1,0,1],[0,0,0,0,0,0,0],[1,0,

0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,1,0,1,0,1]],[[1,1,0,1,0,1,1],[1,

0,0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[1,1,0,1,0,1,1]],[[

1,0,1,0,1,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,0,0,0,0,0,0],

[1,0,1,0,1,0,1]],[[1,1,1,1,1,1,1],[1,0,1,0,1,0,1],[1,1,0,1,0,1,1],[1,0,1,0,1,0,1],[1,1,0,1,0,1,

1],[1,0,1,0,1,0,1],[1,1,1,1,1,1,1]]] 

 

Figure 18: Chessboard 

 



 

Figure 19: And his dual 

 

When considering fractals with higher dimensions, it becomes more challenging for a 

computer to construct them beyond a few iterations, but the algorithm remains the same 

regardless of the size of the cube, whether it's 2x2x2 or 1000x1000x1000. 

Regarding the dimensions of volume, in each iteration, if t=n3 where n is the number of 

cubes of this side, t represents the total number of cubes. If s is the number of zeros in a 

particular case, we have that the fraction (t-s)/t is less than 1, and in each iteration, we 

multiply by a number less than 1. Vn=((t-s)/t)n in the limit is zero. The fractal has volume 

zero. His fractal dimension D =log(t-s)/log(3) 

What can be said of a figure where each iteration uses different cubes of varying sizes? 

See Figure 11, for example. It would have a larger number of symmetrical shapes than 

the others, easily obtainable, making it an incredibly complex set of shapes. 

Conclusion 

Fractal geometry provides a powerful tool for understanding complex and self-similar 

shapes. In this paper, we have proposed a method for generating Menger-Diaz fractals, 

which is an expansion of Menger-type fractal constructions. We have shown how to apply 



this method to generate a variety of shapes and discussed the concept of a recursive 

"atom" that is fundamental to the Menger process. The proposed method can be used to 

create intriguing designs in various fields, including architecture, art, and computer 

graphics. Moreover, we have presented a detailed discussion of the algorithm for 

generating the Sierpinski tetrahedron using our proposed method, which can be extended 

to other polyhedra besides tetrahedra. Overall, our study contributes to the understanding 

of fractal geometry and opens up new avenues for exploring the possibilities of Menger-

Diaz fractals. 

Some ideas are in some preprints, books and articles. But no one seriously considers 

representation with a nested list of existence vectors or cube. And then our algorithm 

doesn't work. It is this trivial representation that is the core of our algorithm. If you don't 

understand that, you can't understand the algorithm. Thus, many approximations are 

forgotten and lost. In his honor we do not put a bibliography. 

But, from now on, we propose to publish on the Internet all the artistic figures or those of 

scientific interest, produced with our algorithm, with the name of their authors. That will 

be our future bibliography. 
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