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Abstract— The SDSS-IV dataset contains information about 
various astronomical bodies such as Galaxies, Stars, and 
Quasars captured by observatories. Inspired by our work on 
deep multimodal learning, which utilized transfer learning to 
classify the SDSS-IV dataset, we further extended our research 
in the fine tuning of these architectures to study the effect in the 
classification sceanrio. Architectures such as Resnet-50, 
DenseNet-121 VGG-16, Xception, EfficientNetB2, MobileNetV2 
and NasnetMobile have been built using layer wise fine tuning 
at different levels. Our findings suggest that freezing all layers 
with Imagenet weights and adding a final trainable layer may 
not be the optimal solution. Further, baseline models and models 
that have higher number of trainable layers performed similarly 
in certain architectures. Model need to be fine tuned at different 
levels and a specific training ratio is required for a model to be 
termed ideal. Different architectures had different responses to 
the change in the number of trainable layers w.r.t accuracies. 
While models such as DenseNet-121, Xception, EfficientNetB2 
achieved peak accuracies that were relatively consistent with 
near perfect training curves, models such as Resnet-50,VGG-16, 
MobileNetV2 and NasnetMobile had lower, delayed peak 
accuracies with poorly fitting training curves. It was also found 
that though mobile neural networks have lesser parameters and 
model size, they may not always be ideal for deployment on a 
low computational device as they had consistently lower 
validation accuracies. Customized evaluation metrics such as 
Tuning Parameter Ratio and Tuning Layer Ratio are used for 
model evaluation. 

Keywords—Efficient Transfer Learning models, Deep Neural 
Networks, Layer-wise Fine Tuning, Resnet50, MobileNetV2, 
NasNetMobile, Xception, EfficientNetB2, SDSS 

I. INTRODUCTION 
There have been numerous large-scale surveys that have 

been done to map the universe and various astronomical 
objects present in it. The Sloan Digital Sky Survey (SDSS) 
(Blanton et al., 2017) contains information captured by the 
observatoriers which include optical, spectroscopic, and 
photometric information, along with an array of other 
observations. This paper aims to evaluate transfer learning 
models by sequentially fine tuning the layers in a classification 
task. Various transfer learning architectures including mobile 
architectures are evaluated to identify the ideal methodology 
apt for these class of models. The experiments will help us 
gain insights on the transfer learning models and study the 
effect of sequential fine tuning and model performance. 
Models are evaluated using metrics such as validation 
Accuracy, Tuning Layer Ratio and Tuning Parameter Ratio. 
The objective of this paper is as follows: 

1) To evaluate transfer learning on variety of 
architectures using layer wise fine tuning  

2) To evaluate the models based on the training curves 

II. RELATED WORK 
Machine learning and Deep learning architectures are 

being continually designed and utilized in many large-scale 
astronomical surveys. Algorithms such as SKYNET that are 
based on Artificial neural networks have also been used in 
Astronomical datasets. Skynet [1] is one such neural network 
used in regression, classification, and clustering algorithms. A 
similar neural network called AstroNN [2] was designed and 
built specifically for astronomical surveys used to analyze 
spectroscopic data of the APO - Apache Point Observatory - 
Galactic Evolution ExperimentThe work done by [1] 
demonstrates the use of this network in astronomical 
classification.  

A. Machine Learning on SDSS Dataset  
The work done by Acharya et al. [2] in 2018 wherein the 

entire SDSS-3, DR-12 dataset was classified. The 
classification was built on the same photometric parameters 
you, g, i, r, and z using PySpark on Google Proc. Cloud-based 
computing was used in this case due to the sheer volume of 
the data. Models such as KNN, Support Vector Machines, and 
Random Forest were evaluated for their performance, with 
Random Forest showed the highest performance in both 
binary and multi-class classification. This study was later 
followed by a comparative evaluation study in 2020 by 
Petrusevich  [3] on the SDSS-4 DR 14 dataset. Baseline 
machine learning models such as Logistic regression, Naive 
Bayes Classifier, Gradient Boosting, Decision Trees, and 
Random Forest were applied to this dataset and the enhanced 
version using feature engineering techniques. It was shown 
that these baseline machine learning models performed better 
than or as good as conventional deep learning models in terms 
of Accuracy, Precision, and Recall on both the baseline and 
enhanced dataset. Similar machine learning models were also 
used in the classification of images, as is the work done by du 
Buisson et al. in 2015 [6], where different images were created 
from the actual images of the sky at two different points in 
time on the transient images of the SDSS 2- survey.  

B. Deep Learning on Astronomical Classification  
Deep learning architectures have been created using 

photometric parameters of the SDSS dataset and passing them 
through a customized CNN architecture using temporal and 
filter convolutions [5]. Combining these models with a 
baseline machine learning model such as KNN and Random 
Forest Classifier increased the performance of these models. 



Similar work was done by Khramtsov et al. in 2019 [6] on the 
SDSS DR 9 dataset and Galaxy Zoo2 dataset, wherein models 
were built using the photometric parameter and later the deep 
network Xception [7] was comvined with a SVM to build a 
classification algorithm. 

C. Efficient Transfer learning 
It is a well known fact that transfer learning models need 

to be fine tuned before using them for training on any given 
dataset. In this regard, several innovative approaches have 
been proposed and experimented with state of the art results. 
The concept of adapter modules [8] was proposed which 
consisted of an additional network connected to the parent 
architecture in series and in parallel. The architecture was 
based on the priniciple of sharing of parameters and that the 
additional adapter module would learn the difference in 
features. Adapters were used to integrate both at lower and 
upper layers even though lower layers were responsible only 
for exracting low level features but however it was shown that 
a combination a low level and higher level integration resulted 
in better model performance than just baseline fine tuning of 
the models or high level integration of adapters. In order to 
learn across multiple domains the concept of residual adapters 
[9]were later introduced. These adapters contain parameters 
that are shared across multiple domains. The learning here was 
done across newer domains without forgetting the existing 
older learning. A similar work was done in the field of NLP 
wherein the adapter module was incorporated in the BERT 
framework[10]. The literature mentioned above involved 
addition of extra models resulting in an increase in the number 
of parameters. However the work done by [11] introduced the 
concept of Spot tune which involved selective fine tuning of 
certain layers that are specific to a particular input image or 
instance. The study showed that the accuracies achieved this 
way were higher than the conventional fine tuning approach.  

III. METHODOLOGY 
The fourth phase of the Sloan Digital Sky Survey (SDSS) 

survey, DR 16 release consists of six types of data namely, 
images,optical-spectra,infrared-spectra (APOGEE/APOGEE-
2), IFU spectra (MaNGA), stellar library spectra (MaStar) and 
catalog data (parameters such as magnitudes and redshifts 
obtained from spectra). The dataset used in this research has 
taken the image data for  the evaliuation of various transfer 
learning models such as Resnet50, VGG16, Xception, 
EfficientNetB2, DenseNet121 and light weight architectures 
such as MobileNetV2 and NasnetMobile. 

A. Description of Dataset 
The images are obtained using the tabular data which 

contains the Ra and Dec values which represent the location 
of the object in the sky. A scale of 0.1 would focus on the 
target at the center of the image thus eliminating any artefcats 
present in the dataset. The dimension of the images 
downloaded are 2048x2048x3. A subset of the total dataset 
which consists of 1000 data points are used in this study. The 
data is split into a ratio of 70:30 into the train and the 
validation set. Figure 1 shows the three different classes of 
images present in our dataset. 

 
Fig 1. Galaxies, Stars, and Quasars 

B. Data Preprocessing 
The target variable is identified from the tabular data. A 

dataset is created using TensorFlow consisting of images as 
the training features and a categorical variable with three 
different categories as the target variable.  The images are 
resized from 2048x2048x3 to 512x512x3 to reduce the 
number of training parameters as higher image size results in 
a higher dimension of the output channels. 

C. Class Imbalance 
  Initial metadata analysis reveals a class imbalance in the 

dataset where the Quasar Class is heavily imbalanced. The 
class imbalance is mitigated using appropriate class 
imbalancing techniques such as incorporation of class weights 
during model training. The distribution of the target variables 
in the dataset is shown in Table 1 

Table 1. Class Imbalance distribution 

Class Total % of Distribution 
Galaxy 440 44.0 
QSO 62 6.2 
Star 498 49.8 

 

D. Transfer Learning architectures 
In this study, we used Resnet50, VGG16, DenseNet121, 

EfficientNetB2, Xception, and mobile architectures such as 
MobileNetV2 and NasnetMobile for classification and 
evaluation of transfer learning using Imagenet weights. The 
original weights trained on ImageNet are used as the baseline 
weights before fine-tuning. The original softmax layer has 
been replaced by a custom softmax output with a 3 class 
classification (Figure 3). No augmentation techniques were 
used in the training algorithm. The summary of the 
architectures with the number of layers and the parameters is 
shown in Table 2. 

 
Table 2. Transfer learning  - Parameters and Layer configuration 

Transfer Learning Model Layers Parameters 
Resnet50 176 23,593,859 
Xception 133 20,867,627 
VGG16 20 14,716,227 

EfficientNet B2 340 7,772,796 
DenseNet121 428 7,040,579 
NasNetMobile 770 4,271,830 
MobileNetV2 155 2,260,546 

 
The above table shows that Resnet50 has the highest number 
of parameters among the older architectures while mobile 
architectures such as MobileNetV2 and NasNet mobile have 
the least number of parameters. 

 



Table 3.Parameter-layer configuration of Various Architectures 

E. Layer wise Fine-tuning 

 
Fig 2. Tuning of Layer training - Representative diagram 

 
 

Fig 3. Transfer Learning Layer Tuning 

 
Experiments have been done by gradually increasing the 

ratio of trainable layers and parameters as shown in Figure 2. 
The optimal number of trainable layers for a particular 
architecture at which the highest accuracy is obtained is 
considered the best performing model. The details of 
parameters and layers tuned are described in Table 3. 

F. Loss Functions 

     The loss function used here is the Categorical Cross-
Entropy loss as this is a multi-class classification problem. 
The following equation defines categorical cross entropy 
loss. 

𝐶𝐶𝐶𝐶 =  −�𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑖𝑖)

𝐶𝐶

𝑖𝑖

 

Equation 1. Cross Entropy Loss 

G. Evaluation Metrics 
The evaluation metrics used in this study are Recall, 

Accuracy, Precision, and F1 score. Layer Tuning Ratio is the 
ratio between the number of tuned layers to the total number 
of layers. Paramter tuning ratio is the ratio between the 
number of tuned parameters to the total number of 
parameters. 

IV. RESULTS  

A. Transfer Learning on Image Data 
Table 4 summarises the performance of the baseline 

transfer learning models without any fine tuning. 
 

Table 4. Baseline Transfer Learning Model performance 

Models R 
 

V D 
 

X E 
 

M N 

Trainable 
Params 

6.1K 1.5K 3K 6.1K 4.2K 3.8K 3.1K 

Acc 48 44 66 83.5 80 78.5 80 
 
(*R-Resnet50, V-VGG16, D-Densenet121, X-Xception, E-

EfficientNetB2, M-MobileNetV2, N-NasnetMobile) 

Base 
Model 

Resnet50 VGG16 Densenet121 Xception EfficientNet2 MobileNetV2 NasNetMobile 
P L P L P L P L P L P L P L 

BM0 6.1K 0 1.5K 0 3.07K 0 6.14K 0 4.22K 0 3.8K 0 3.1K 0 
BM1 1.06M 5 1.5K 1 41.9K 5 6.14K 2 7.04K 3 3.8K 1 3.5K 10 
BM2 3.42M 10 1.5K 2 171K 10 3.16M 4 502K 6 6.4K 3 137K 20 
BM3 5.52M 15 2.36M 3 331K 15 3.17M 6 1.24M 9 416K 5 174K 30 
BM4 7.88M 20 4.72M 4 369K 20 4.75M 8 1.62M 12 723K 7 343K 40 
BM5 8.94M 25 7.08M 5 490K 25 4.75M 10 1.62M 15 734K 10 715K 50 
BM6 14.4M 30 7.08M 6 642K 30 5.50M 12 1.64M 18 1.04M 15 717K 60 
BM7 14.9M 35 9.44M 7 686K 35 6.25M 14 2.83M 21 1.05M 20 886K 70 
BM8 15.8M 40 11.8M 8 830K 40 6.79M 16 2.96M 24 1.36M 25 1.02M 80 
BM9 16.1M 45 12.9M 9 939K 45 6.79M 18 2.96M 27 1.52M 30 1.42M 90 

BM10 NA NA 12.9M 10 NA NA 7.33M 20 2.97M 30 NA NA NA NA 
BM11 NA NA 13.5M 11 NA NA 7.33M 22 3.23M 33 NA NA NA NA 
BM12 NA NA 14.1M 12 NA NA 7.87M 24 3.49M 36 NA NA NA NA 
BM13 NA NA 14.4M 13 NA NA 8.40M 26 3.62M 39 NA NA NA NA 



 
Fig 4.Resnet, MobileNetV2 and Nasnet Training Curves - Val Accuracies 

 
Fig 5. Xception, EfficientNetB2, and DenseNet121 Training Curves-Val Accuracies 

B. Baseline Models Analysis 
Baseline models contain the trainable weights of only the 

last softmax layer. The weights of the other layers are frozen 
and not trained. As shown in Table 6, it is evident that baseline 
models without any fine-tuning perform poorly on the given 
dataset, with accuracy as low as 44% in the case of VGG16. 
It is observed that older architectures perform poorly 
compared to newer architectures such as Xception and 
EfficientNetB2, which perform significantly better as 
indicated by the validation accuracies. Additionally, it is 
observed that baseline mobile architectures outperform older 
architectures with accuracy comparable to that of Google's 
architectures. Trainable layers vs. Accuracy 

 Optimum model identification requires fine-tuning the 
number of trainable layers. As the number of trainable layers 
increases, the accuracy increases gradually until it either 
reaches a plateau with no further increase or a dip in the 
accuracy is observed. The models can be classified into three 
categories based on their number of parameters, trainable 
layers, and validation accuracies. 

- Consistently higher accuracies of newer 
architectures 

- Lesser Performing Older Architectures including 
Mobile Architectures 

- Ideal Densenet121 architecture 

C. Xception and EfficientNetB2 – Consistency of Accuracies. 
As illustrated in Figures 6 and 7, newer architectures such as 
Xception and EfficientNetB2 achieve higher accuracy even 
in baseline models with a single trainable layer, and the 
accuracy remains consistent across a range of trainable 
layers. Our experiments revealed that accuracy is 
proportional to the number of trainable layers, as 
EfficientNetB2 achieved 95.5 percent accuracy at 36 
trainable layers and Xception achieved 95 percent accuracy 
at 18 trainable layers, which is slightly lower than 
Densenet121. Even with more trainable layers added, the 
accuracies remain relatively constant after attaining a peak 
effeiciency. 

 
 

Fig 6. EfficientNetB2 Accuracy vs. Trainable Layers vs. Parameters 
 

  

 
 

Fig 7. Xception Accuracy vs. Trainable Layers vs. Parameters 

D. Resnet50 – Dipping Accuracies 
 Resnet50 architecture in Figure 8 shows an increase in 
accuracy as the number of trainable layers increases; however, 
the accuracies show a dip after 30 trainable layers. The 
highest accuracy attained by this architecture is 93.5% which 
is slightly lower than other models. 



 
Fig 8. Resnet50 Accuracy vs. Trainable Layers vs. Parameters 

E. VGG – 16  
After the fifth trainable layer, VGG16's validation 

accuracy gradually increases until it reaches a plateau of 92.5 
at the tenth layer. Following that, there is no significant 
increase in the model's accuracy. VGG 16's accuracy graphs 
are shown in Figure 9. 

 
Fig 9. VGG16 Accuracy vs Trainable Layers vs Parameters 

F. MobileNetV2 and NasnetMobile 
 MobileNetV2 and NasnetMobile (Fig 10 & Fig 11) 
models perform similar to  Resnet50 where in there is rise and 
dip in accuracies. The overall accuracies are slightly lower 
than the other architectures (90% for MobileNetV2 and 88% 
for NasnetMobile). However in terms of consistency 
NasNetmobile performs better than MobileNetV2.  

 

Fig 10. MobileNetV2 Accuracy vs Trainable Layers vs Parameters 

 
Fig 11. NasNetMobile Accuracy vs. Trainable Layers vs. Parameters 

G. DenseNet121 – Highest accuracy with least trainable 
layers 

As a baseline model, DenseNet121 performs poorly in 
comparison to newer architectures. However, as illustrated in 
Figure 12, it only requires ten trainable layers to achieve the 
highest accuracy (95.5 percent) of all transfer learning models. 
The accuracy is consistently higher than the other models and 
remains constant (plateau effect) even after adding trainable 
layers. 

 
Fig 12. DenseNet121 Accuracy vs. Trainable Layers vs. Parameters 

H. Effect of Parameters on Accuracy 
 Different architectures have a different effect on the 
number of trainable parameters required to achieve the highest 
possible accuracy. DenseNet121 reached the highest accuracy 
while also requiring the least number of trainable parameters 
and layers. Even Google's Xception and EfficientNetB2 
architectures are outperformed by this network. Table 7 plots 
the trainable parameters against the accuracy of the best-
performing models for each architecture. 

I. Training curves of Transfer Learning 
The training curves for the five distinct transfer learning 
architectures are depicted in Figure 4 and 5. Densenet121's 
training curves for the best trainable layers demonstrate a 
near-perfect fit with no overfitting/underfitting. Additionally, 
the curve is steeper than other architectures, with the model 
achieving maximum accuracy in the fewest possible epochs. 
Moreover, the curves of newer architectures such as Xception 
and EfficientNetB2 are steeper and smoother than those of 
Resnet50 and VGG16. Mobile architectures such as 
MobileNet and NasNet are similar to Resnet50 and VGG16 
as they exhibit a much slower convergence rate to the optimal 
minima. 

 
 



Table 5. Trainable Parameters vs. Highest Accuracy

Model Layers Trained Parameters 
Tuned 

Layer Tuning Ratio ParameterTuning 
ratio 

Acc 

DenseNet121 10 171,203 0.02 0.02 95.5% 
EfficientNetB2 36 3,498,479 0.10 0.45 95.5% 
Xception 18 6,794,531 0.13 0.32 95% 
Resnet50 25 8,945,667 0.14 0.37 93.5% 
VGG16 10 12,980,739 0.5 0.88 94% 
MobileNetV2 5 416,643 0.03 0.18 90% 
NasNetMobile 60 717,379 0.07 0.16 88% 

 

J. Layer Tuning Ratio / Parameter Tuning Ratio 
 
From Table 5 it is evident that DenseNet121 has the least 
layer tuning ratio (0.02) and the least parameter tuning ratio  
(0.02), indicating that the architecture achieves the peak 
accuracy with just minimal tuning. VGG16 has the highest 
ratio amongst all the architecture (0.5 & 0.88) for layer and 
parameter fine tuning respectively. This coupled with 
architectural consistency  in attaining peak accuracies 
establishes the supremacy of the Densenet121 architecture. 

V. CONCLUSION 
Straightforward transfer learning in Deep Learning should 
not be implemented with the transferred weights to achieve 
better results. Though the baseline models broadly perform 
well on a given dataset, fine-tuning of these models is 
required, specific to the dataset being used. The outcome and 
observations of our work can be summarized as below. 

- Contemporary architectures, such as Xception and 
EfficinetNetB2 (Google's architectures), demonstrated 
consistency in terms of increased accuracy regardless of 
the number of layers trained in the network.. 
- Older architectures such as Resnet50 and VGG16 
displayed an initial increase in accuracy followed by a 
decline as the number of trainable layers increased. 
- Densenet121 architecture resulted in the highest and 
consistent performance among all architectures with the 
least layer and parameter tuning ratio. 
- Mobile Architectures achieved validation 
accuracies comparable to Resnet50 and VGG16; 
however, they are lighter and have a smaller model size, 
and their applicability must be determined on a case-by-
case basis. 
- The training curves of newer architectures, 
including Densenet121, showed better, smoother, and 
faster convergence than Resnet and VGG16. 

While the findings above are specific to this dataset, they may 
be generalizable to other large datasets, and additional 
research can validate the effect of layer tuning to achieve 
peak performance. Future work in this aspect may also be 
conducted by performing block wise fine-tuning instead of 
layer wise fine-tuning. Research into specific variations in 
these architectures needs to be done that can add 
explainability to the findings of this research. 
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