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Abstract—Reaction-diffusion (RD) models are widely used to
study the spatio-temporal evolution of pattern formation during
development. Nonlinear RD models are usually analytically in-
tractable, and require numerical solution methods. Interrogation
of RD models for a large physiological range of parameters
covers many orders of magnitude- establishing situations where
solutions are stiff and solvers fail to provide accurate results
to the time-dependent problem. The spatial dependence of these
parameters, and the nonlinearity of the underlying dynamics,
impose additional challenges. We developed an efficient approach
of simulating stiff RD models of pattern formation and we used
supercomputer clusters to carry out a large scale screen of
spatially varying parameters for biological pattern formation.
The approaches outlined herein are applicable to any systems
biology problem requiring numerical approximation of RD equa-
tions with spatially non-uniform properties and stiff non-linear
reactions.

Index Terms—Reaction-diffusion models, Systems biology,
Cluster-computing, In-silico data.

I. INTRODUCTION

The ever increasing use of mathematical modeling in the
analysis of biological systems has facilitated our understanding
in many ways. Computational models are now used to consider
the interactions of components within and between cells in
several ways including testing hypotheses, generating new
hypotheses and designing new experiments. [1]–[21].

Although computational models (for instance, RD systems)
produce insights into how system behavior is regulated by the
interaction network, the complexity of systems can prevent
decisive conclusions. For instance, because numerous factors
(temperature change, pH variation, lack of nutrients) can
change the dynamics of biochemical process, it is difficult
to determine the exact kinetics of physiological processes.
This demands an exhaustive screen on the physiological range
of parameter values which, due to the sheer number of
simulations needed, imposes a large computational burden.
Parameters may vary over space and, as parameters are chosen
from a large range, the parameters in any given simulation
may be very small, very large, or both- conditions that create
numerical stiffness. Taken together, the numerical screening
requires a fast, accurate, and efficient simulation strategy for
millions of realizations of RD models to generate trustworthy
in-silico data within a stipulated time.

To efficiently conduct a large-scale screen of RD models,
this work integrates a multi-step method and implemented it in
CVODE [22] on super-computer clusters. The rest of the paper
is organized as follows. First, we provide an example generic
RD system in section II that is useful in many systems, and in
many contexts. It is followed by a precise outline of the exact
simulation strategy in Section III. Section IV demonstrates the
efficacy of the strategy with an example system from systems
biology research that attempts to identify scaling mechanisms
of pattern formation. Finally, this paper concludes with a
discussion along with a few potential enhancement to fine tune
the performance of the proposed strategy.

II. REACTION-DIFFUSION MODELS

Let’s consider a system S with impermeable boundaries,
where N species of concentration C = [C1, C2 . . . CN ] that
transport within S by diffusion. The spatio-temporal evolution
of any component k can be represented using the following
equation:

∂Ck

∂t = ∇(Dk(C,x,P)∇Ck) +R(C,x,P) in S
jk(C,x,P) = −Dk(C,x,P)∇Ck on ∂S (1)

where, ∇ = êx ∂
∂x + êy ∂

∂y + êz ∂∂z
with appropriate initial conditions. Here, R(C,x,P) contains
the interaction terms, with P, x and m representing the kinetic
parameters, spatial coordinates, and components interacting
within S respectively. For a spatially-dependent diffusivity, the
1D form of Eq.2 simplifies to:
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+ R(C,x,P) + ICs+BCs (2)

Here, IC’s and BC’s are necessary initial and boundary con-
ditions respectively. Nonlinearity of Eq.2 often makes the
analytical solution intractable, and the underlying dynamics
of the system is numerically approximated. To obtain the
approximate solution, finite difference method (FDM) or finite
element method (FEM) can be used. Discretization of the PDE
system, as in Eq.2, translates the problem from a boundary
value parabolic PDE system to an initial value problem of
ordinary differential equations (ODEs) of the form:

C
′
(t) = f(t, C(t)), C(t0) = C0 (3)

A general form of the one-step method of Eq.3 is as follows
[23]:

Ci+1 = Ci + ∆tZ(f, ti, Ci, Ci+1,∆t) (4)

where ∆t = ti+1 − ti and Z is the aggregation of all
the discretized transport and reaction terms. Any numerical
method that involves update terms on the left side and the
function evaluation on the right is treated as implicit. To
numerically solve such an implicit method, Newton’s method
[24] is often applied to determine the value at ti+1.

A. Numerical Challenges

The numerical approximation of RD models introduces
numerical issues that often limit either the accuracy of the
solution, or the ability to solve the problem at all. First, stiff-
ness becomes a major challenge that arises from separation of
space and time-scales that lead to widely varying eigenvalues
of the Jacobian matrix constructed to compute the numerical
solutions. Secondly, when carrying out a large-scale parametric
screen, the amount of data, and the time required to generate
it, limit the types of problems that can be solved. Further
explanation of all these challenges are provided below:



1) Stiffness: The stiffness of Ordinary Differential Equation
(ODE) System is not precisely defined. Instead, a number
of different observations have been proposed to differentiate
between a stiff and non-stiff system. Even a stable and well-
posed system may behave stiffly when the system is approx-
imated using a discrete approach [25]. From a computational
point of view, in [26], stiffness is defined as ”... are the prob-
lems for which explicit methods don’t work”. Mathematically,
these definitions do not provide a standard measure of stiffness
for the system, and a few alternative approaches for stiffness
quantification are outlined below:

1) A system could be stiff because of the presence of
widely varying time-scales in the system.

2) A stiff system should have no unstable component (that
is, all eigenvalues have negative real parts), and one
of the stable components should be dominantly stable
(meaning, a very large negative real part). Also, the
solution will vary slowly with respect to the most
negative real part of eigenvalues [27]. The stiffness of
the system can be quantified using the stiffness ratio
(SR), where SR is defined as the ratio between the
magnitude of largest and smallest negative real part of
eigenvalues.

Let us consider a system of N differential equations as C
′

=
AC. Solution of the system can be written as C(t) = C0e

At.
Now, for a diagonalizable matrix A, eigenvalue decomposition
provides A = TΛT−1, where ith column of T is the
eigenvector of eigenvalue λi. The diagonal matrix Λ contains
a total of N eigenvalues (λ1, λ2, . . . λN ). With A = TΛT−1,
the solution Ct takes the following form:

C(t) = C0e
TΛT−1

= C0Te
ΛT−1 (5)

The system is stiff if the exponential term has vastly different
time-scales, which is determined by the eigenvalues of A. A
more formal definition of stiffness, defining a stiffness ratio
(SR), is as follows:

SR = Max|Re(λk)|/Min|Re(λk)| (6)

Generally, RD models of system length L have two different
time-scales– i) diffusion time-scale (defined as, τD = L2/D),
ii) reaction time-scale (defined as, τR = 1/decay rate(kδ)).
The time-scales τD and τR may change abruptly due to the
spatial dependence of both D and kδ . As a result, RD models
are prone to stiffness depending on the relative amounts of
these quantities. Also, the stiffness of the system may change
in time as components that regulate each other are created or
destroyed. Additionally, when parameter values are selected
over a wide range, it requires appropriate arrangements for a
large-scale and efficient simulation.

2) Mesh size: Numerical approximation of PDEs gives rise
to two different errors, namely, i) truncation error due to
discretization, and ii) round-off error. The two errors behave
oppositely with the mesh spacing used to discretize the spatial
domain. If system length L is divided into N mesh points
with h = L/N , truncation error approaches zero as N
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Fig. 1. Cluster-based data generation: The parameter space Ω is subdivided
into N equal chunks. The discretized RD model uses these chunks, and each
chunk runs on a separate core available in cluster node. Here, a square block
in yellow represents individual core, and each cluster node consists of 20
different cores. For simulation, each core is accessed using single user policy
to optimize the simulation time.

becomes larger. While truncation error reduces, the rounding
error increases with larger N . An optimum mesh size for
RD models balances the errors to keep both at an acceptable
level. Additionally, if h is unusually small, it causes a drastic
increase in computational cost.

3) Time constraints on data generation: While the dis-
cretization itself creates computational burden because of a
sufficiently large N , allowing the system dynamics to evolve
for a long enough time (Tss) to reach steady state increases the
CPU-time needed in each realization of the RD model. A large
TSS is common in systems with spatially varying coefficients,
as the time-scales may vary many fold for processes that occur
in different regions of space. For instance, if the intrinsic
diffusivity and degradation rate of a species in an RD model
is D = 0.1µm2s−1 and kδ = 0.0001s−1, the associated time-
scales for a system of L = 100µm is τd = L2/D = 27hrs
and τR = 1/kδ = 2.8hrs. If spatial regulation reduces D by
10 fold, and the degradation rate is slowed down by 100 fold,
τD and τR change to 500hrs. This is suggestive of a large TSS
requirement. Also, regulation (positive, negative, and none) of
biophysical properties, and a large parameter space Ω, increase
the total CPU-hours necessary to generate the in-silico data.

III. SIMULATION STRATEGY

To efficiently simulate RD models, a few factors that cover
computational challenges are outlined here, and the steps are
schematically shown in Fig.1.

1) Divergence vs. Non-divergence form: RD models may
either be in a divergence (also known as conservative
form) or non-divergence form. Specifically, the deriva-
tive of parameters does not appear in the governing



equations [2] for the divergence form, whereas it does
in a non-divergence form (Eq.2). Although both forms
produce similar qualitative and quantitative data, they
may demonstrate model specific performance for conver-
gence failures, accuracy, and required CPU-time needed
etc, for each formulation. Therefore, it is important to
identify the best model-specific approach for subsequent
steps.

2) Discretization: Use FDM or FEM approach to discretize
the spatial domain. An optimum mesh size reduces
CPU-time required for simulation while restricting errors
within an acceptable range through a balance between
the round-off and truncation error. This study considers
both absolute error (ABS) and the Root Mean Square
Error (RMSE), and the corresponding equations are as
follows:

EABS = max
Ci∈C,i∈1...N

|Ci − Csi |

where Ci is the simulated value at spatial point i, and
Csi is the reference value at ith spatial point. Out of
all the values, only the absolute value of the maximum
difference is considered. The root mean square error
definition is as follows:

ERMSE =

√√√√ 1

N

N∑
i=1

(Ci − Csi )2

where, N is the total number of mesh points, and is
varied over a wide range. The absolute error is the
absolute difference of the reference and sample data, and
only the maximum difference is considered to quantify
the error.

3) Subdividing the parameter space: The parameter space
Ω is subdivided into M smaller disjoint chunks (Ω1 ∩
Ω2 = ∅) as follows:

Ω =

M⋃
i=1

Ωi (7)

The choice of M depends on the size of the parameter
space, and does not affect the simulation time. However,
a careful choice obviously eases the post-processing and
management of the generated data.

4) Solver for the ODE system: The computation intensive
step in Netwon’s method of solving a nonlinear ODE
system is the Jacobian J calculation and update J at the
each iteration step. To circumvent the cost of J calcula-
tion, this work uses a multi-step method, as implemented
in CVODE [22], to numerically simulate the set of ODEs
obtained from a discretized RD model. Specifically, the
method is based on the backward differentiation formula,
and implements a matrix-free [28] method that does
not require storage and update of the Jacobian J from
the underlying linear system during every iteration step.
Also, the solver option with the Krylov subspace method
[29] further reduces the underlying computational cost.

Together, CVODE based simulation reduces CPU-time
for each simulation, and hence, is considered as the core
of the proposed simulation strategy.

5) Computing-clusters: A set of computer nodes connected
together through local area network to facilitate par-
allel and distributed computing of problems requiring
intensive computational power. Clusters are generally
optimized for high-performance computations, and their
computational power may vary depending on specific
hardware configurations being used.

IV. EXAMPLE SIMULATION: REGULATION OF MORPHOGEN
SIGNALING

To demonstrate the efficacy of the proposed cluster-based
approach, we consider a system of morphogen mediated
pattern formation. In many developmental contexts, an extra-
cellular gradient of morphogen provides positional information
to a field of cells that leads to a distinct pattern. Specifically,
morphogens are a group of molecules secreted from a localized
source that undergo transport from the source to create a
concentration gradient [9], [10], [30]–[32]. A homogenous
group of cells sense their respective positional information
by responding to predefined thresholds of the morphogen
level [10], [30], [33] and differentiate into distinct cellular
patterns (schematically shown in Fig. 2). In developmental
contexts, morphogen transport may happen by diffusion, or
by other alternative mechanisms [32], [34]. This work assumes
that morphogen transport occurs by diffusion, and therefore,
the spatio-temporal evolution of a morphogen falls under the
reaction-diffusion (RD) paradigm delineated in Eq.2.

Specifically, the morphogen signaling model consists of two
tightly correlated species namely, a morphogen (m) and a
modulator (M), where m and M spatially regulate each-other’s
biophysical properties. The model considers positive (pos),
negative (neg) and none for the regulation of the production,
diffusion and degradation of m and M . If we consider a two
species system (m and M ) with spatially varying diffusion
coefficients Dm and DM respectively, 1-D representation of
the system becomes:

∂m

∂t
=

∂

∂x

(
Dm

∂m

∂x

)
+Km(m,M)

∂M

∂t
=

∂

∂x

(
DM

∂M

∂x

)
+KM (m,M) (8)

The model is accompanied by appropriate boundary conditions
(B.C.s) and initial conditions (I.C.s). Two flux sources jm and
jM , located either at X = 0 or X = L, produce m and M
respectively, and are regulated as well. Regulation of all the
three properties, each in three alternative ways, generates 729
different regulatory combinations between the properties.

A. Discretization of the example problem

1) Divergence form: The divergence form of the mor-
phogen dynamics in the example model takes the following
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Fig. 2. Example RD problem of morphogen-modulator system, and the relevant specifications for simulation: a) Morphogen mediated pattern formation. A
homogeneous field of cells sense morphogen gradient and differentiate intro patterns depending on thresholds p and q. b) Regulation of morphogen signaling
by a class of secreted modulators, defined as modulators. A modulator regulates the biophysical properties of a morphogen, and vice-versa. c) Comparison of
a morphogen and a modulator concentration as obtained through COMSOL and CVODE simulation. The two methods demonstrate almost equal concentration
for both components. Additionally, RD system reaches steady state within the Tss = 380 hours, a time that is calculated considering the slowest time-scale
of the system. This also indicates that a sufficiently large simulation time is needed to allow the RD dynamics to equilibrate. d) Dependency of RMSE, and
the simulation time, on the mesh-size. As observed, simulation time increases (right panel), but RMSE does not decrease after a minimum mesh size.

form:
∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m) (9)

As seen here, the coefficient Dm(M) is spatially varying and
its derivative does not appear in Eq.9. In the divergence form,
a central differencing scheme [23] is applied as follows:

∂m

∂t
=

1

∆x2
{
(
Dm(M)i+1/2

)
(mi+1 −mi)−

(
Dm(M)i−1/2

)
(mi −mi−1)}+Km(Mi,mi)

where D(M)i+1/2 and D(M)i−1/2 are the diffusion coeffi-
cients approximated at the mid point of (i + 1, i) and the
midpoint of (i, i − 1), respectively, according to the formula
given below:

D(M)i+1/2 =
D(Mi+1) +D(Mi)

2

D(M)i−1/2 =
D(Mi) +D(Mi−1)

2

All the subsequent comparison uses an alias DIV for diver-
gence form of the model discretization.

2) Non-divergence form: In a non-divergence form of PDE,
we apply the chain rule to expand (alias, EC) the derivative

of the spatially dependent parameters [2] as in Eq. 10.

∂m
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After discretization of Eq. 10 using a central difference scheme
along the X direction on a mesh of N grid points, the equation
for a morphogen dynamics becomes as follows:

fi =
∂mi

∂t
=
Dm(Mi)

L2

(
mi+1 − 2mi +mi−1

(∆ξ)2

)
+
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∂
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2∆ξ
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(
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2∆ξ

)
+Km(Mi,mi) (11)

where 0 ≤ i ≤ N , ∆ξ = 1/N , and the dimensionless
variable ξ is defined as ξ = x/L. Similarly, we can obtain
the discretized version of a modulator equation by applying
a central difference scheme as elaborated here in Eq.11 for
a morphogen. Similar equations apply for the discretization
of modulator dynamics, and the PDEs of the RD system

take an ODE form similar to
dm

dt
= f(t,m). The numerical

approximation is later obtained using CVODE [22].
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V. IMPLEMENTATION STEPS

A. Divergence vs. non-divergence

To compare EC and DIV approaches of model imple-
mentation, we consider a system length L = 600µm, and
choose negative regulation of biophysical properties. Simu-
lated data reveal that when a morphogen and a modulator are
mostly confined near their respective source of production,
DIV implementation of the model approximates the reference
concentration (COMSOL Multiphysics data is treated as the
reference) near the origin more accurately (comparison be-
tween green line and cyan circles) than it does by the EC
form of implementation (Figure 2). However, if the species
concentration is distributed over the spatial domain both ap-
proaches perform well when compared against the COMSOL
Multiphysics data.

Comparison of accuracy and simulation time of different
approaches (EC and DIV) reveal that they perform similarly
when accuracy is compared. It obtained by comparing both ab-
solute error and root mean square error against different mesh
size. Specifically, the DIV and EC forms of implementation
of morphogen-modulator systems demonstrate similar trend
(data not shown). However, the approaches differ in simulation
time and simulation failures. For example, EC performs better
when all the regulations are positive, whereas DIV works
better for negative regulation. The EC form of implementation
experiences more simulation failures for mesh size 301 as
compared to DIV form of implementation. Furthermore, if
the two approaches are compared against the time taken to
simulate about 1000 grid points it is seen that EC requires
less time than DIV (Table II). DIV is chosen to generate
data for the subsequent analysis. However, if a user-supplied

precondition matrix is possible, the failures may be removed
as supplying a preconditioning matrix in a reaction-diffusion
implementation often improves CVODE’s performance [35].

B. CPU-hours for clusters

1) Initial calculation: An initial comparison shows differ-
ent time requirements for different regulation types. Specif-
ically, when both diffusivity and degradation rates are pos-
itively regulated, simulations take longer for a common set
of parameters. This is shown in Table II. The initial com-
parison considers 3 motifs out of the theoretically possible
729 motifs, indicating a large CPU time for all the motifs
considered. Additionally, the example morphogen-modulator
system included about 22.4 million runs for initial screening,
and thus, each regulatory motif was simulated for about 30,000
different parameter sets. The initial comparison was conducted
on a Intel Core i5 -2050M CPU, 2.5 GHz, RAM 4GB machine
with Ubuntu 12.04 operating system.

2) Computing cluster and the CPU hours : To simulate the
three alternative forms of the morphogen-modulator system,
we used 3 cluster nodes with 20 processors in each. The nodes
were equipped with the selected CVODE solver. Example sim-
ulations consider single-user access policy as ensured through
the workload manager of the supercomputing facility. The
complete technical specification of the cluster is as follows–
it consists of HP compute nodes with two 10-core Intel Xeon-
E5 processors. Each node contains 64 GB of memory. In the
cluster, all nodes have 56 Gb FDR infiniband interconnect.
Each node runs Red Hat Enterprise Linux 6 and uses Moab
Workload Manager 8. For resource and job management, it
uses the portable batch system (PBS). We submitted jobs
in queue, which we managed based on a customized job
scheduler available in the Purdue supercomputing facility. The
scheduler reduced the job waiting time, and increased the
CPU-hours harnessed per node as well.

Study of the example RD system required a total of about
200 million (M) simulations using the computing cluster.
This required about 1681 CPU-days. A detailed description
of the problem is shown in Table I. Employing more cluster
nodes can reduce the number of actual working days needed
for the simulation. Additionally, the processing speed of a
cluster is another factor that contributes to reducing the
working days required for a simulation– we conducted a
comparison between the two clusters (of different hardware
facility) available at Purdue, and found about a two-fold
performance improvement. That is, in theory, such large scale
data generation may be obtainable within a few working days.
Based on the availability of the cluster nodes, and other pre-
arrangement for job submission, the total CPU-hours harvested
during different job submission over a period is distributed as
in Fig.4.

VI. DISCUSSION

The proposed strategy efficiently generated in-silico data
for millions of realizations of a reaction-diffusion system.
However, it would require a larger time if the supercomputing



TABLE I
CPU HOURS REQUIRED DURING THE INITIAL DATA GENERATION FOR THE

STUDY OF TWO PERFORMANCE OBJECTIVES

Total sim. Chunks Jobs Cluster Time (hrs)

200 M
34992 34992

3X20 4034515552 15552
139968 139968

TABLE II
COMPARISON BETWEEN THE DIVERGENCE AND NON-DIVERGENCE FORM

OF THE TCS FOR 301 MESH POINTS: L1 = 300µm AND L2 = 600µm

Reg. M Time (s) SIV Failures RBST Failures
L1 L2 φ1 φ2

EC D EC D EC D EC D EC D
Pos 1000 1367 1587 0 4 0 0 0 4 2 5
Neg 1000 254 234 0 0 13 0 0 0 0 0
No. 1000 168 190 0 0 0 0 0 0 0 0

cluster was not integrated with a stiff solver and other neces-
sary considerations to discretize the underlying PDEs of an RD
system. Precisely, the efficiency of this strategy depends on the
identification of a suitable mesh size that reduces truncation
error and balances that without making the ODE form of the
system too large. A comparison shows that reducing the mesh-
spacing ∆x (that is, increasing mesh size) does not reduce
error significantly after a certain level is attained. Instead,
it increases the CPU time requirement as shown in Fig. 2.
Another caveat is that, although increasing the mesh grid size
reduces error (such as, RMSE and ABS), a small mesh spacing
∆x may increase other error types (roundoff errors), and
may generate additional convergence failures. One common
attempt to improve the accuracy of CVODE solution would be
reassessing the tolerance values, and preferably, using different
tolerance limits for each species of the system. However, when
a large number of regulatory relations of the nonlinear RD
system studied here, identifying a specific tolerance values
for each different stiff ODE system is not tenable. To circum-
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Fig. 4. Distribution of CPU hours harvested over the period of data generation:
During data generation for all the models, jobs were submitted during different
attempts based on the basic pre-arrangement and preparation needed for the
cluster submission. The job submission duration spanned over several days.

vent this, the Krylov subspace-based iterative implementation
and CVODE provide an alternative approach by supplying a
preconditioning matrix. This approach improves the accuracy,
and it also has the ability to improve convergence, reducing
simulation failures.

Simulation failures were generally within 1-5%, and re-
sulted for many different reasons. However, one crucial reason
is that they arise because of improper handling of the stiffness
of the system, and can be improved by supplying a customized
preconditioner designed using the system equations. The ex-
ample illustrated in this study uses the default preconditioning
technique available in CVODE. In stiff reaction-diffusion
systems, a customized preconditioner matrix for a Krylov
subspace based iterative solver reduces convergence failures,
and improves the performance of the solver as demonstrated
in [35].

Together, the strategy demonstrated here harnesses the im-
mense computational power of supercomputing cluster, and
the ability of a reduced-storage, matrix free stiff ODE solver
(CVODE) to efficiently generate in-silico data for reaction-
diffusion systems. With adequate customization, the proposed
strategy can be used to conduct similar parametric and topo-
logical screens for other systems requiring analysis of the
reaction-diffusion mechanism in 1D or higher spatial dimen-
sions.
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