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Abstract This paper develops an autonomous tethered aerial visual assistant for
robot operations in unstructured or confined environments. Robotic tele-operation
in remote environments is difficult due to lack of sufficient situational awareness,
mostly caused by the stationary and limited field-of-view and lack of depth per-
ception from the robot’s onboard camera. The emerging state of the practice is to
use two robots, a primary and a secondary that acts as a visual assistant to over-
come the perceptual limitations of the onboard sensors by providing an external
viewpoint. However, problems exist when using a tele-operated visual assistant: ex-
tra manpower, manually chosen suboptimal viewpoint, and extra teamwork demand
between primary and secondary operators. In this work, we use an autonomous teth-
ered aerial visual assistant to replace the secondary robot and operator, reducing
human robot ratio from 2:2 to 1:2. This visual assistant is able to autonomously
navigate through unstructured or confined spaces in a risk-aware manner, while
continuously maintaining good viewpoint quality to increase the primary operator’s
situational awareness. With the proposed co-robots team, tele-operation missions in
nuclear operations, bomb squad, disaster robots, and other domains with novel tasks
or highly occluded environments could benefit from reduced manpower and team-
work demand, along with improved visual assistance quality based on trustworthy
risk-aware motion in cluttered environments.

1 Introduction

Tele-operated robots are still widely used in DDD (Dangerous, Dirty, and Dull) en-
vironments where human presence is extremely difficult or impossible, due to those
environments’ mission-critical task execution and current technological limitations.
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Projecting human presence to remote environments is still an effective approach to
leverage current technologies and actual field demand. However, one major chal-
lenge of tele-operation is the insufficient situational awareness of the remote field,
caused by the onboard sensing limitations, such as relatively stationary and limited
field of view and lack of depth perception from the robot’s onboard camera. There-
fore, the emerging state of the practice for nuclear operations, bomb squad, disaster
robots, and other domains with novel tasks or highly occluded environments is to
use two robots, a primary and a secondary that acts as a visual assistant to overcome
the perceptual limitations of the sensors by providing an external viewpoint.

However, the usage of tele-operated visual assistants also causes problems: it re-
quires an extra human operator, or even operating crew, to tele-operate the secondary
visual assistant. Human operators also tend to choose suboptimal viewpoints based
on experience only. Most importantly, communication between the two operators
of the primary and secondary robots requires extra teamwork demand, in addition
to the task and perceptual demands of the tele-operation. In this research, an au-
tonomous tethered aerial visual assistant is developed to replace the secondary robot
and its operator, reducing the human robot ratio from 2:2 to 1:2. The co-robots team
will then consist of one tele-operated primary ground robot, one autonomous aerial
visual assistant, and one human operator, whose situational awareness is maintained
by the visual feedback streamed from a series of optimal viewpoints for the partic-
ular tele-operation task.

Unmanned Ground Vehicles (UGVs) are stable, reliable, durable, and can thus
represent humans to actuate upon the real world, while Unmanned Aerial Vehicles
(UAVs) have superior mobility and workspace coverage and therefore are capable
of providing enhanced situational awareness [7]. Researchers have looked into uti-
lizing the advantages and avoiding the disadvantages by teaming up the two types
of robots [1, 3]. A more relevant area was to use a UAV to augment the UGV’s
perception or assist UGV’s task execution, such as “an eye in the sky” for UGV lo-
calization [2], providing stationary third person view for construction machine [6],
improving navigation in case of GPS loss [5], UGV control with UAV’s visual feed-
back [16, 10] using differential flatness [9]. However, instead of prior works’ flight
path execution in wide open space or hovering at a stationary and elevated view-
point, our aerial visual assistant needs to navigate through unstructured or confined
spaces in order to provide visual assistance to the UGV operator from a series of
good viewpoints. It is able to reason about the motion execution risk in complex
environments and plan a path that provides good visual assistance. In particular, this
work uses a tethered UAV, with the purpose of matching its battery duration with
UGV’s and as a failsafe in case of malfunction in mission-critical tasks. Our teth-
ered visual assistant utilizes the advantages and mitigates the disadvantages of the
tether, in terms of tether-based indoor localization, motion primitives, and environ-
ment contact planning.

The remainder of this article is organized as follows: Sec. 2 presents the hetero-
geneous co-robots team. The high level visual assistance components are described
in Sec. 3, while low level tether-based motion implementation in Sec. 4. System
demonstrations are provided in Sec. 5. Sec. 6 concludes the paper.
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2 Co-Robots Team

This section presents the co-robots team: a tele-operated ground primary robot, an
autonomous tethered aerial visual assistant, and a human operator of the primary
robot under the visual assistance of the aerial vehicle (Fig. 1).

Fig. 1 The Co-Robots Team:
tele-operated primary robot,
Endeavor PackBot 510 (upper
left), and autonomous tethered
visual assistant, Fotokite Pro
(lower left), picking up a
sensor and dropping it into a
radiation pipe in a confined
staircase (right).

2.1 Tele-Operated Ground Primary Robot

In the co-robots team, the primary robot is a tele-operated Endeavor PackBot 510
(Fig. 1 upper left). PackBot has a chassis with two main differential treads that
allow zero radius turn and maximum speed up to 9.3 km/h. Two articulated flippers
with treads are used to climb over obstacles or stairs (up to 40◦). PackBot’s three-
link manipulator locates on topic of the chassis, with an articulated gripper on the
second link and an onboard camera on the third. The manipulator can lift 5kg at full
extension and 20kg close-in. Motor encoders on the arm provide precise position
of the articulated joints, including the gripper, the default visual assistance point
of interest. Four onboard cameras provide first-person-views, but are all limited to
the robot body. On the chassis, a Velodyne Puck LiDAR constantly scans the 3-D
environments, providing the map for the co-robots team to navigate through. The
map does not necessarily need to be global, with the unknown parts being assumed
as obstacles. Four BB-2590 batteries provide up to 8 hrs run time.

2.2 Autonomous Aerial Visual Assistant

A tethered UAV, Fotokite Pro, is used as the autonomous aerial visual assistant (Fig.
1 lower left). It could be deployed from a landing platform mounted on the ground
robot’s chassis. The UAV is equipped with an onboard camera with a 2-DoF gim-
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bal (pitch and roll). The camera’s yaw is controlled dependently by the vehicular
yaw. The main purpose of the tether is to match the run time of the aerial visual
assistant with the ground primary robot, since flight power could be transmitted via
the tether. Additionally, tether serves as a fail-safe in mission-critical environments.
The UAV’s flight controller is based on the tether sensory feedback, including the
tether length, azimuth and elevation angles. The six dimensional coverage of the
workspace makes the UAV suitable for the visual assistance purpose.

2.3 Human Operator

The human operator tele-operates the primary ground robot with the visual assis-
tance of the UAV. In addition to the default PackBot uPoint controller with onboard
first-person-view, the visual feedback from the visual assistant’s onboard camera is
also available for enhanced situational awareness. For example, the visual assistant
could move to a location perpendicular to the tele-operation action, providing extra
depth perception to the operator. The visual assistant could be either manually con-
trolled or automated. For the focus of this research, autonomous visual assistance, a
3-D map is provided by the primary robot’s LiDAR, and a risk-aware path is planned
using a pre-established viewpoint quality map (discussed in the following sections).
The uPoint tele-operation and visual assistance interfaces are shown in Fig. 2

(a) PackBot uPoint Controller Interface (b) Visual Assistant Interface

Fig. 2 Interfaces with the Human Operator

3 Visual Assistance Components

This section introduces the key components of autonomous visual assistance, in-
cluding a viewpoint quality map based on the cognitive science concept of affor-
dances, an explicit path risk representation with a focus on unstructured or confined
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environments, and a planning framework to balance the trade-off between reward
(viewpoint quality) and risk (motion execution).

3.1 Viewpoint Quality Reward

The cognitive science concept of affordances is used to determine viewpoint quality,
where the potential for an action can be directly perceived without knowing intent
or models, and thus is universal to all robots and tasks [8]. For this work, four af-
fordances are used: manipulability, passability, reachability, and traversability (Fig.
3). In order to determine the viewpoint quality (reward) for each affordance, we use
a computer simulation to collect performance data with 30 professional PackBot
operators. A hemisphere centered at each affordance is created, with 30 viewpoints
evenly distributed on it. The 30 viewpoints are divided into five groups: left, right,
front, back, and above the affordance. For each affordance, every test subject is ran-
domly given one viewpoint within each of the five groups and tries to finish the
tele-operation task in an error-free and fast manner. The number of errors, such as
colliding with the wall for passability or falling off the ledge for traversability, and
the completion time are recorded. The average value of the product of error and
time collected by all subjects is the metric to reflect the viewpoint quality. Given
any point in the 3-D space, its viewpoint reward is assigned to be the viewpoint
quality of the closest point on the hemisphere. This study is still ongoing and its
results will be reported in a separate paper.

3.2 Explicit Risk Representation

In contrast to the traditional state-dependent risk representation or probabilistic un-
certainty modeling, this work uses an explicit risk representation as a function of en-
tire path. The workspace W of the robot could be constructed by an occupancy grid
from the LiDAR, excluding a set of obstacles OB= {obi|i = 1,2, ...,o}, where o is
the number of obstacles. Given a start location of the visual assistant S, a simple path
P could be defined as P = {s0,s1, ...,sn} where si denotes the ith state on the path P
while s0 = S, ∀1≤ i≤ n,1≤ j≤ o,si∩ob j = /0, and ∀i 6= j,1≤ i, j≤ n,si 6= s j. In a
conventional state-dependent risk representation, risk at state si is defined based on
a function mapping from one state to a risk index r : si 7→ ri and the risk of execut-
ing a path P is a simple summation of all individual states risk(P) = ∑

n
i=1 r(si). In

the proposed path-dependent risk representation, however, risk at state si cannot be
simply evaluated by the state alone, but also the path leading to si, Pi = {s0,s1, ...,si}
and the risk at si is computed through the mapping R : (s0,s2, ...,si) 7→ ri. The path-
level risk is relaxed from the simple summation to a more general representation
risk(P) = risk(s0,s1, ...,si).
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(a) Good Manipulability Viewpoint (b) Bad Manipulability Viewpoint

(c) Good Passability Viewpoint (d) Bad Passability Viewpoint

(e) Good Reachability Viewpoint (f) Bad Reachability Viewpoint

(g) Good Traversability Viewpoint (h) Bad Traversability Viewpoint

Fig. 3 Ongoing Viewpoint Quality Study in Simulation with Professional PackBot Operators
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Fig. 4 Examples of Risk Elements: visibility (upper left), tortuosity (lower left), tether length,
number of contacts, and azimuth (right)

Our explicit path risk representation does not exclude the traditional state-
dependent risk elements. Those risk functions r : si 7→ ri include risk elements
caused by distance to closest obstacles rdi = dis(si), visibility from isovists lines
(Fig. 4 upper left) rvi = vis(si), altitude due to propeller ceiling or ground effect
rai = alt(si), and tether singularity rsi = sig(si). Those risk elements are additive
along the path. Path-dependent risk elements include action length, access element,
tortuosity, number of tether contacts, tether length, and azimuth (Table 1). In order
to define these risk elements, we further define the action between two consecutive
states si−1 and si to be Ai. So the whole sequence of actions to execute the entire
path P is defined as A= {A1,A2, ...,An}. For action length, ‖Ai‖ denotes the length
of executing action Ai. For access elements, the function AE evaluates the diffi-
culty of entering from the void where si−1 is located to the void of si. Only positive
difficulty is added into the risk index. Tortuosity characterizes the the number of
“turns” necessary to reach the state. More generally speaking, this is the difference
by some measurement between two consecutive actions ‖Ai−Ai−1‖. Tether length
is a function of entire path, e.g., taking path 1 and path 2 in Fig. 4 right will have
completely different tether length. Number of contact points and azimuth angle are
also different. Risk index should never decrease with the execution of a path, which
is guaranteed by the norm and max operations for the first three elements in Table 1.
Thus they only need to be evaluated once for each path (unitary). For the last three,
however, risk associated with each state may decrease, e.g., contact points may be
relaxed [15] and tether length may decrease. But this does not cancel the previous
risk. Therefore those three elements need to be added for all states. Given a path P,
its execution risk could be evaluated based on each risk element. Weighted sum or
fuzzy logic could be used to combine all elements into one total risk index, quanti-
fying the difficulty of executing that path. Detailed information of the explicit risk
representation could be found in [13].
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Table 1 Path-dependent Risk Elements

Risk Element Risk Index Property
Action Length RAL(P) = ∑

n
i=1‖Ai‖ Unitary

Access Element RAE(P) = ∑
n
i=2 max(AE(void(si−1),void(si)),0) Unitary

Tortuosity RT (P) = ∑
n
i=2‖Ai−Ai−1‖ Unitary

Tether Length RT L(P) = f (s0,s1, ...,sn) Additive
Number of Contacts RNC(P) = g(s0,s1, ...,sn) Additive
Azimuth RA(P) = h(s0,s1, ...,sn) Additive

3.3 Risk-Aware Reward-Maximizing Planning

Given a viewpoint quality map as reward and motion execution risk as a function of
path, the risk-aware reward-maximizing planner plans minimum-risk path to each
state [14], evaluates the reward collected, and then picks the one with optimal utility
value, defined as the ratio between reward and risk. Executing the optimal utility
path approximates the optimal visual assistance behavior.

4 Tethered Motion

With a high-level risk-aware optimal utility path, this section presents a low level
motion suite to realize the path on the tethered aerial visual assistant.

4.1 Tether-Based Indoor Localization

Our aerial visual assistant uses its tether to localize in GPS-denied environments.
The sensory input is the tether length L, elevation angle θ , and azimuth angle φ .
The mechanics model M in [17] corrects the preliminary localization model under
taut and straight tether assumption (Fig. 5a) using the Free Body Diagram (FBD)
of the UAV (Fig. 5b) and tether (Fig. 5c) in order to achieve accurate localization
of the airframe M : (θ ,φ ,L) 7→ (x,y,z), from tether sensory input to Cartesian space
location.

4.2 Motion Primitives

Two types of motion primitives are used, which maps the waypoints in Cartesian
space into tether-based motion commands: position control uses the inverse trans-
formation from polar to Cartesian coordinates and three independent PID controllers
to drive the position of L, θ , and φ to their desired values (Eqn. 1). On the other
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(a) Localization Model (b) FBD of UAV (c) FBD ofTether

Fig. 5 Tether-based Localization [17]

hand, velocity control based on the system’s inverse Jacobian matrix computes ve-
locity commands L′, θ ′, and φ ′ using an instantaneous velocity vector pointing from
current location to next waypoint d−→x /dt (Eqn. 2). The vehicular yaw and camera
pitch and roll reactively point at the center of the affordance along the entire path.

L =
√

x2 + y2 + z2

θ = arcsin y√
x2+y2+z2

φ = atan2( x
z )

(1)

 dx
dt
dy
dt
dz
dt

=

cosθsinφ −Lsinθsinφ Lcosθcosφ

sinθ Lcosθ 0
cosθcosφ −Lsinθcosφ −Lcosθsinφ

L′

θ ′

φ ′

 (2)

The vehicular yaw and camera gimbal pitch are controlled using the 3-D vehic-
ular position localization and the 3-D Cartesian coordinates of the visual assistance
point of interest. The camera gimbal roll is passively controlled to align with grav-
ity so that the operator’s viewpoint is level to the ground. Therefore, the visual
assistant’s camera is pointing toward the point of interest along the entire motion
sequence [11, 4]. [12] reports detailed benchmarking results of the motion primi-
tives.

4.3 Tether Contacts Planning

In the case when some good viewpoints locate behind an obstacle and the UAV can-
not reach with a straight tether, contact points of the tether with the environment are
necessary. The tether contact point(s) planning and relaxation framework in [15],
which allows the UAV to fly as if it were tetherless, is implemented on the tethered
visual assistant. A new contact is planned when the current contact is no longer
within line-of-sight of the UAV, while current contact is relaxed when the last con-
tact becomes visible again. Fig. 6 shows the motion execution with multiple contact
points (CPs).
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Fig. 6 Motion Execution
with Contact(s) Planning and
Relaxation: given multiple
contact points along the tether,
static tether length denotes the
portion of the tether that
wraps around the obstacles
(Eqn. 3), while the effective
length is the last moving
segment (Eqn. 4). Effective
elevation and azimuth angles
(Eqn. 4) are with respect to
the last contact point (CPn),
instead of the tether reel
(CP0).

Lsta =
n−1

∑
0

√
(xi+1− xi)2 +(yi+1− yi)2 +(zi+1− zi)2 (3)


Le f f =

√
(x− xn)2 +(y− yn)2 +(z− zn)2

θe f f = arcsin( y−yn√
(x−xn)2+(y−yn)2+(z−zn)2

)

φe f f = atan2( x−xn
z−zn

)

(4)

5 System Demonstration

This section presents two system demonstrations in both indoor and outdoor envi-
ronments and shows the enhanced situational awareness of the operator achieved by
the visual assistance.

5.1 Indoor Test

In this demonstration, the co-robots team drives into a cluttered indoor environment,
with the aim of retrieving a hidden sensor. The ground robot is tele-operated and
creates a map of the environment. The entry points to the sensor are all blocked by
the clutter, leaving the only retrieval option through the narrow gap between the two
columns (shown in blue and white in Fig. 7a). Based on the viewpoint quality for
passability, the visual assistant takes off and deploys to a viewpoint from behind and
above to help perceive arm passability through gap (Fig. 7b). The visual assistant
view is shown in Fig. 7c, where the relative location of the arm to the narrow gap
along with the hidden sensor is well perceived.
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(a) Entering the Scene (b) Deploying for Passability (c) Visual Assistant View

Fig. 7 Visual Assistance for Passability

After the arm passes through the gap, visual assistant switches to assist with
manipulability. Good viewpoints for manipulability locate at the side of the gripper.
After balancing the viewpoint quality reward and motion execution risk, the planner
finds a goal and a path leading to it, which contains two tether contact points with the
obstacles. Fig. 8a shows the obstacles (red), inflated space for UAV flight tolerance
(yellow), waypoints on the planned path (purple), and two contact points on the
obstacles (green). The tether configuration is illustrated with black lines. The actual
deployment is shown in Fig. 8b. The onboard camera view on the left of Fig. 8c
completely misses the depth perception. With this onboard view alone, the risk of
not reaching or even knocking off the sensor is high. This lack of depth perception
is compensated by the visual assistant view (right).

5.2 Outdoor Test

The co-robots team is also deployed in an outdoor disaster environment, Disaster
City R© Prop 133 in College Station, Texas (Fig. 9). The environment simulates a
collapsed multi-story building and the mission for the co-robots team is to navigate
into the building and search for victims and threats in two stranded cars.

After reaching first stranded car, which was on second floor but is now squeezed
down by the collapse, primary robot’s onboard camera is not able to reach the height
to search victims inside the car. Visual assistant takes off from the landing platform
and autonomously navigates to a manually specified viewpoint to look inside the
car (Fig. 10a). Through the elevated viewpoint provided by the visual assistant, it is
confirmed that no victim is trapped in the first car. The visual assistant lands back
on the primary robot and the team is tele-operated to the second car.

The second car was tipped over during the collapse, with its sunroof open on the
side. The operator intends to insert the manipulator arm into the interior for a thor-
ough search and retrieval if necessary. For safety reasons, the goal is not automat-
ically selected, but manually specified above the side window (Fig. 11a). Looking
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(a) Path Planning with 2 Contacts (b) Deploying for Manipulability

(c) Onboard Camera and Visual Assistant View

Fig. 8 Visual Assistance for Manipulability

(a) View from Entry Point (b) View from End Point

Fig. 9 Disaster City R© Prop 133

down through the side window, the depth of the arm insertion into the car interior is
clearly visible. No victim or hazardous material exist in the car. The visual assistant
lands, the co-robots team finishes the mission and navigates back.

6 Conclusions

We present a co-robots team equipped with autonomous visual assistance for robot
tele-operations in unstructured or confined environments using a tethered UAV. The
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(a) Take-off and Deployment (b) No Victim in 1st Car

Fig. 10 Enhanced Coverage through Visual Assistance for 1st Car

(a) Inspection for 2nd Car (b) Assisting Insertion Depth Perception

Fig. 11 Car Inspection through Open Sunroof for 2nd Car

tele-operated primary ground robot projects human presence to remote environ-
ments, while the autonomous visual assistant provides enhanced situational aware-
ness to the human operator. The autonomy is realized through a formal study on
viewpoint quality, an explicit risk representation to quantify the difficulty of path
execution, and a planner that balances the trade-off between viewpoint quality re-
ward and motion execution risk. With the help of a low level motion suite, including
tether-based localization, motion primitives, and contact(s) planning, the high level
path is implemented on a tethered aerial visual assistant given the existence of obsta-
cles. The co-robots team is deployed in both indoor and outdoor search and rescue
scenarios, as a proof of concept of the system. Future work will focus on quan-
titatively measuring the performance of the co-robots team, including the reward
collected, risk encountered, flight accuracy of the autonomous visual assistant, and
the improvement in tele-operation of the primary robot.
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