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Abstract—The advent of deep learning brings the possibility
of better and faster applications in real world. In this work, deep
learning models are used for application of spam classification
in mobile devices. A Binary Classification model is trained with
deep learning and is transformed to a graph using tensorflow
and then, is converted to a protobuf file to be deployed on
mobile devices. Instead of looking into the spam messages in
an algorithmic way i.e. just with keywords, binary model deals
with experience of learning and predicts if a text message is spam.
The training was performed multiple times on resource-deficient
devices and hyper-parameter optimization was performed to
enhance the training accuracy to 99.87%. The test accuracy
of mobile application is 98.7% and testing happens in real-
time without any internet access. Our simulation shows that a
model with an embedding layer (size 128), an LSTM layer (size
64, dropout 0.2) and a dense layer (sigmoid) yields the highest
performance. Also, the comparative evaluation with state-of-the-
art methods displayed that our model achieves higher accuracy.

Keywords—Deep learning; recurrent neural networks; transfer
learning; spam classification; text analysis.

I. Introduction

The number of spam messages received on mobiles is
tremendously growing. There is a high probability that the
next target of spammers will be the instant messaging apps.
Such spam messages received over instant messengers are
called SPIM (SPAM over Instant Messaging). Panda labs in
Spain have announced in 2015 of the well-known deception
hoax messages on a famous internet messaging platform called
Whatsapp. The messages request the users to click on links
as well as to forward the message to a chain of friends to
acquire a reward. Also, in the U.K., there have been reports
of many spam campaigns focusing on Whatsapp users who
receive messages from supposedly U.S. numbers, but actually
advancing phony extravagance products. To prevent such spam
messages, a strong spam detection system must be in place.
Spam classification initially started with simpler techniques
like blacklist, whitelist and greylist [1]. Messages can be
classified using automatic spam detection techniques using
basic principles based on the content of text. Change in
media type leads to challenges of using rule based techniques.
Later, there has been significant improvement in the detection
of spam messages using different machine learning (ML)
models involving Support Vector Machines (SVM), Naı̈ve

Bayes, ensemble methods like Random Forest and classifiers
based on Decision Trees. These algorithms worked very well,
but involve feature engineering and hybrid classifiers, which
are time consuming. This study focuses on building a spam
detection model using Recurrent Neural Networks (RNN). The
trained RNN model is transferred to a mobile device to execute
as an application (app) to classify if a message is spam.

II. Research Objectives
The primary goal of this work is to deploy the deep learning

(DL) model on a mobile device. Our research was successful
deploying text classification model that exploits the context
of the words in the sentences and takes advantage of DL
models to enhance the classification accuracy. DL models are
usually computationally hungry and deploying these models on
a mobile device with less resources stands out as a challenge.

The essential objective of this research work is to enable
the mobile carriers to provide the facility to classify an SMS
as spam. This study focuses on using DL model built on RNN
to detect spam messages, by extracting features automatically.
The model used has shown exceptional performance on spam
messages test data with ROC curve area of 0.9958 (Fig. 5).

In this setting, we present the following objectives:
• Representation of words based on the context: extracting

features that uses the context of words in sentences.
• Evaluate performance of text classification using DL

models: involves pre-processing the training data, training
DL models with the spam dataset and performing hyper-
parameter optimization to enhance the training accuracy.

• Deployment of a DL model to mobile phone and transfer
of knowledge to resource-deficient devices: Here, the
aim to generate final sequential model and do graph
transformations. These allow for the transfer of a trained
DL model to mobile device and the developed app uses
the model for the classification of the incoming texts.

III. Background Work
DL is a division of ML inspired by the neurons in brains.

The word deep refers to the large count of layers in neural
networks (NN), however its meaning has changed with time
from 10 layers considered as deep once to hundreds of layers
being deep today [2]. The basic architecture of a DL model



involves input, hidden and output layers. A few of the concepts
used in the work are described below:

A. Recurrent Neural Networks (RNN)
RNN are a class of Artificial NN used in Natural Lan-

guage Processing (NLP) applications with promising results.
The idea behind RNN is to utilize sequential information. It
uses the concept of ’memory’ which arrests and accumulates
information of the calculations.

B. Long Short Term Memory (LSTM)
A well-known architecture of RNN is the LSTM network. It

uses gradient based method to store information for extended
duration of time and combats vanishing gradients. It consists
of a memory block with one cell, three gates and multiplicative
units. The gating functions are learned together with weights,
and determine how much information is preserved from last
state and current computation, etc.

The memory in LSTM can be taken as input of the ot−1

and yt. For output, mt is the current memory unit and ot is the
current result. Different sections of LSTM are given below:
New Memory: New memory and a new memory gate(valve).

it = σ(θxiyt + θoiot−1 + θmimt−1 + bi) (1)

Forget Valve: Valve that shuts down the old memory.

ft = σ(θxfyt + θofot−1 + θmfmt−1 + bf ) (2)

Memory: Sum to combine new and old memory to form mt.

mt = ftxt−1 + it tanh θxcyt + θocot−1 + bc (3)

Output: Output of LSTM unit and output valve.

ot = σ(θxoyt + θooot−1 + θmomt + bo)

ot = ot tanhmt

(4)

C. TensorFlow
Tensorflow uses a multi-layered nodes’ system, that allows

to design and train artificial NN with massive data at high
speed. It provides various dependencies and functionalities. In
this work, TensorFlow has been utilized for training RNN.

D. Keras
It is an open source NN API developed in Python and has

the capability of running on top of tensorflow. Keras makes
it easier to work with tensorflow which otherwise is not user-
friendly and is low-level. It runs seamlessly with GPU, CPU
and supports RNN and CNN. Keras is used in our model.

The sequential modelling in Keras provides a model with a
linear stack of layers [2]. The sequential modelling expects the
input’s shape to be an array or a matrix. The input shape and
batch size are given as inputs for stateful RNN. The process
of Keras sequential modeling involves following stages:

1) model.fit - Trains the model for a fixed number of
iterations (epochs) and returns a history object attribute
as a record of training loss values, metrics for each epoch
and validation loss metrics.

2) model.compile - sets the model configuration for training.
3) model.evaluate - evaluates the model based on evaluation

metrics and returns the test dataset loss value.

E. Regularization
Deep Neural Networks (DNN) are vulnerable to overfitting.

Some of the most used regularization techniques are L1 or
Lasso (penalizes non-zero weights), L2 or Ridge (penalizes
large weights) and soft weight sharing. In this work, Dropout
regularization [3] has been utilized. Unlike L1 or L2 reg-
ularizer, instead of modifying the cost function, the system
network is modified using Dropout. Units (hidden or visible)
are randomly (temporarily) dropped thinning the networks,
accompanied by removing the connections. Dropout provides
the impact of averaging the results over a number of networks.
At test time, it makes easier to average the output of the thinned
networks by utilizing a solitary network with little weights.

F. One Hot Encoding
In ML applications, data is required to be in binary or num-

ber format so computers can interpret. Hence, huge amount of
time is spent to pre-process and clean the data. Categorical or
string features need to be encoded to a number to be fed to
the NN. The method of transformation of categorical features
to integer representations is One Hot Encoding. This method
modifies each categorical feature with n +ve values into n
binary features, with just a single active [4]. In cases of missing
values in the train data, one has to use any imputation method
to fill in the missing fields [5].

IV. Related Work
Research is actively in progress in the area of spam clas-

sification. Although the field of implementing deep inference
networks on mobile devices is new, researchers have active
profound interest to convert the heavy and trained NN models
into miniature models which can run in mobile devices.
Mostly, research in implementation of the DL models and
in the area of text classification have been done mostly
independently. In this section, we will first present the DL
models and literature review in text classification and then,
present our work that combines two different areas.

In [6], Nicolas et al. present the possibility of using DL
models for speech and object detection on mobile devices in
the form of sensor app. Their implementation prototypes a
low-paper DNN engine for activity recognition. The findings
prove the robustness and acceptable levels of resource usage
of DNNs on the mobile devices In [7], Syed et al. present
the use of DL models in the integration of multi-sensor data
including video feed for real-time occupancy detection for
environment control strategies. They have worked on resource-
deficient devices of raspberry pi and micro-arduino controller.
The results show high accuracy after transfer learning to the
devices. In [8], Mohammad et al. present a survey on the use
of DL in mobile big data analytics and propose a framework
using apache spark. The spark-based framework has been val-
idated for speed effectiveness of DL on mobile devices using



context-aware application with real-world dataset. Adoption of
DL models on mobiles requires considerable resources and
this issue has been lowered by design and implementation
of a software accelerator called DeepX by Nicholas et al.
[9]. The accelerator uses resource control algorithms which
work during the inference stage of DL and performs the
resource scaling that adjusts the architecture of DL models
to be used efficiently on mobile devices and the results show
better efficiency over cloud-based offloading. In [10], Nicholas
et al. developed a cloud-free DSP prototype for the smart
phones for speech recognition applications. The application
called DeepEar has been developed after training 5-layer 1024
unit deep NN with large datasets and the resultant trained
model containing 2.3 million parameters is still feasible to be
executed on mobile devices in terms of accuracy and battery
consumption.

With the increasing usage of the internet, the chances
of spam messages have been increasing. Spam detection is
an adversarial classification problem, where the predictive
models are trying to adapt continuously to spam with evolving
spamming techniques to evade filtering [11]. The traditional
method of using bag of words always had limitations in text
categorization problems . In [12], Zongda et al. presented
an effective approach of text classification based on semantic
matching using huge wikipedia semantic space. In [13], Zenun
et al. worked on the classification of financial documents
based on semantics in the document. In the first stage of clas-
sification, the documents are represented semantically using
ontology and this serves as input to the next stage. The results
were found using different simulations with DL configuration
of 3 layers each with 1024 neurons resulting in an accuracy
of 78% with INFUSE dataset.

Similarly, we have used word2Vec because it stresses on
the context of the words. Word-vectors position themselves in
the vector space so that the words having common context are
positioned at close proximity. Basically it uses the words close
to each other so as to estimate the target words within a NN.
Also, there have been many methods that tried to complement
developed techniques with Bag of Words features. Almeida et
al. offered real, open and non-encoded dataset (SMS Spam
Collection) and used it to analyze spam detection using ML
strategies [14]. Their study demonstrated that the SVM outper-
formed other classifiers, concluding that for further correlation,
it can be classified as a decent baseline. Uysal et al. (2012)
[15] used two distinct feature selection methods to discover
distinctive features that constitute SMS messages, based out
of chi-square metrics and information gain. To label the SMS
as spam or not spam, the discriminated feature subsets were
employed into two different Bayesian-based classifiers with
highly accurate classification results.

Ahmed et al. employed the Bayesian filtering approaches
utilized in blocking email spam and extended it to the issue of
detecting and curbing spam in mobiles [16]. They eventually
built two SMS corpus test collections in two languages (En-
glish and Spanish) to conduct their study. The results display
that Bayesian filter techniques used for email spam can be

successfully used on spam SMS. Almeida et al. have evaluated
a procedure to normalize and interpret short messages with an
aim of acquiring better attributes resulting in an enhanced clas-
sification performance [17]. The proposed approach is based
on semantic and lexicographic dictionaries for text process-
ing, context identification and semantic analysis. Boujnouni
proposed a filter based on three components for text message
classification: N-grams method (for extracting features from
short messages), the information gain ratio (for selecting the
most relevant features), and an enhanced version of Support
Vector Domain Description (SVDD) to SSPV-SVDD [18].

V. Methodology

Training of a network needs high computational resources.
Most complex models take weeks to train on machines even
with GPU resources. Owing to the model complexities and
size, training of a model is usually hosted in the cloud. For a
mobile-device to use this model, connection with the network
is required and it increases response time. There has been
considerable success to equip mobile devices with GPUs to
be able to train the models on the device. This work focuses
on the device-based model where the trained model weights
are moved to a mobile device. With the help of protobuf(.pb)
file(android) and core ML(iOS), the trained ML models can
be integrated into an application. Tensorflow, a DL library,
supports this feature in Android. The design in Fig. 1 illustrates
the process flow of implementation.

Fig. 1: Device-based Inference - Process Flow

A. Tools
a) Android Studio: It is the official Integrated Develop-

ment Environment for Android operating system. In this work,
the android studio version of 3.0, SDK version of 26.0.2 and
NDK version of 12.1.2977051 were used on the mobile device
(Lenovo P2 2017).

b) Tensorboard: Tensorboard was used to visualize the
trained ML model. Since the graph visualizations are com-
plicated and humanely impossible to interpret, tensorboard
provides visual capabilities and aid in debugging the graph.



The tool makes it easy to understand the in-depth nodes
and the flow of the graph. Visualization was comprehensive
enough to locate all the node labels, hidden nodes, grouping
of nodes, etc.

1) Data Acquisition: The SMS Spam Collection database
has been used for training our model [14]. This collection is
considered a benchmark dataset in SMS Spam research. The
data set contains 747 spam messages (13.40%) and 4827 ’not
spam’ messages (86.60%).

2) Data Statistics: The longest word length of a sentence
(MAX LENGTH) in train data was 215 and words count in
the dictionary (WORD FREQS) was 9774.

3) Word to Vector (word2vec): To deal with the strings data,
the data has been converted to arrays of vectors with the help
of python word2vec feature. The word2vec feature uses the
concept of creating dictionaries using all the data fed, and
assigns a rank to each word. The dictionary in our analysis
consisted of 9774 words. Once the dictionary is created, each
word is replaced with a rank from the dictionary. Each word is
tracked with the occurrence of a space in the sentence. Since
all the sentences are not of unique length, zero padding has
been used to append all the arrays with 0’s (to match the length
of the longest sentence). Hence, all the sentences are converted
to arrays of fixed length and fed to the Keras DL model.

B. Keras model used
Keras Sequential model, that is used to train the data,

contains Embedding, LSTM and Dense layers. The embedding
layer is used to process the words in NLP and is a vital ad-
vancement in the process.. The Dense layer (or fully connected
layer) has been added at the end. The data has been divided
into train (80%) and validation set (20%). The dataset has also
been evaluated on various division metrics such as (60% train
- 40% validation, 50% train - 50% test) and found to have
achieved similar accuracy results (Table II). All the layers can
be summarized as below:

(4459, 220) (1115, 220) (4459, 1) (1115, 1)
Layer (type) Output Shape Param #
I (Embedding) (None, 220, 128) 1251328
lstm 9 (LSTM) (None, 64) 49408
output activation node (Dens) (None, 1) 65
Total parameters: 1,300,801,
Dropout % in LSTM layer is 20%

TABLE I: Keras sequential model

The model has been fit with training data with batch size 32
and 10 epochs. The trained model is moved to a weights’ file of
format .h5. using graph feature compatible with tensorflow in
Python. The trained weights have been converted to a protobuf
file. The workflow of the model is depicted in Fig. 2.

C. Graphs
The base of the computations in tensorflow is a graph object

which contains a network of nodes linked to each other as input
and output. After creation, a graph object can be saved as a
GraphDef object. A protocol buffer library creates an object
using GraphDef class. The graph converted to protobuf is in

Fig. 2: Steps in the process of application

text (graph.pbtxt) or binary (graph.pb) format. The text file is
readable but is huge in size whereas the binary file is a smaller
in size and not readable. Once a file is loaded into a graphdef
object, the data inside it can be accessed i.e., list of nodes,
name of the layers, etc.

Each node in a NodeDef is the building block of Tensorflow
graphs. The weights file is usually stored in variable ops called
checkpoint files, which saves the latest values when initialized.
These files are freezed into a single file to overcome the hassle
of having separate files. This replaces each variable operation
(add, mul, etc.) with a constant operation in all the variables
from latest checkpoint file. The constant operation removes all
the extra nodes which are not utilized for forward inference
and stores only the numerical data of the stored weights in its
attributes. The flow process is described briefly in the Fig. 3.

Fig. 3: Graph Model structural flow

D. Evaluation Measures
1) Area under the Receiver Operating Characteristic

(ROC): The region under the ROC curve (AUC) is an es-
tablished method of evaluation in classification analysis. It
is a graph of operating points that focus on the plausible
trade off of a classifiers’ True Positive (TP) rate against the
False Positive (FP) rate. The ROC value between 0.9 and 1.0
indicates highest performance of the classifier.

2) Matthews correlation coefficient (MCC): MCC score is
utilized for performance evaluation of binary classification ML
models. It is a balanced measure, even if the classes are of



unequal sizes. It takes into account sensitivity, specificity, false
positives and false negatives. It typically lies between -1 and
+1.

MCC =
TP ∗ TN − FP ∗ FN√

(FP + TP )(FN + TP )(FP + TN)(FN + TN)
(5)

Value of +1 for MCC indicates impeccable prediction,
value of 0 shows average random prediction and value of -
1 illustrates an inverse prediction.

3) K-Fold Cross Validation: It has been utilized for the
evaluation of our training model. It splits the data set into k
sections considering k-1 bins as part of the training data set
and the rest as the validation set. For a K-Fold cross validation,
the algorithm is run k times and the k test set performances are
averaged. This method helps avoid over fitting. The accuracy
results on considered dataset are shown in Table II.

Training Data(%) Test data (%) Accuracy (%)
50 50 99.89
80 20 99.87
60 40 99.85
70 30 99.95

TABLE II: Accuracy results for different data partitioning

E. Android Implementation
The model expects a text input and results in a numerical

output (0 or 1) classifying if the message is a spam or not.
The steps applied to achieve this are:

The Protobuf (.pb) file is the output of the trained model
and is added to the assets folder. Two different classes built
for android implementation are discussed below:

1) MainAcitivity Class: The input to the android app is the
text. This text input is divided into an array of words as shown
below:
input - ’The essence of deep networks will ever be interesting’
input to the ArrayList - [’The’ ’essence’ ’of’ ’deep’ ’networks’
’will’ ’ever’ ’be’ ’interesting’]
This input array is passed through a HashMap dictionary.
Output of HashMap Array - [51, 15, 426, 80, 41, 25, 551,
34, 208]
This input sequence length is one-hot encoded to the length of
the longest sentence and sent to the textClassifier class using
intents in Android studio.

2) TextClasssifier Class: The textClassifier is a main class
file that performs classification. The .pb file is collected from
the Assets folder and input, output layer names are provided
as inputs to TensorflowInferenceInterface. Tensorflow provides
Android support and the necessary packages for compatibility
of Tensorflow and Android. This library supports Tensorflow
and understands the graph file (.pb). The Tensorflow Android
follows three steps namely (1) feed: which feeds the input
name, type and size, (2) run: which runs the feed forward
network, and finally, (3) fetch: which gets the result from the
network.

The result is displayed in the application using textView
feature. A sample result is shown in Fig. 6.

Fig. 4: Performance metrics of the Keras trained model

VI. Results
The results of proposed methodology have been compared

to other detection mechanisms and the proposed model has
achieved the best accuracy to date, especially compared to pre-
viously proposed models [17]. We have evaluated using MCC
score which provide balanced evaluation even for unbalanced
datasets.. Our model provides the best accuracy with an AUC
of 0.9958 (Fig 5) and 0.96 MCC score (Table III).

Fig. 5: Area under the Curve for test Data

Method used MCC Score Accuracy %
(Train, Test)

Proposed 0.956 99.87, 98.7
Improved LZms Algorithm [17] 0.921 Not reported
SGD [19] 0.907 Not reported
SVM + tok1 [14] 0.893 Not reported
SSPV-SVDD1 [18] Not reported 95.13, 89.32
CHI2 and IG2 [15] Not reported 90.17 (overall)

TABLE III: Performance evaluation as against the
benchmark works on SMS spam collection dataset

A. Spam Detection on Android
Fig. 4 shows the accuracy of experiment when the train-

test split is 80% and 20%. The training accuracy is at 0.9987
and the test accuracy is 0.987. The ROC curve for the test data
had Area under the curve of 0.9958 (Fig. 5). The implemented
model on Android has outperformed the state-of-art results and
runs successfully on the mobile device (Fig. 6).



Fig. 6: Spam message: ”Had your mobile 11 months or
more? You are eligible to win a latest camera phone and for

free. For more information, call 07204996860”

Fig. 7: Ham message: ”Nah I don’t think he goes there. He
is very efficient and humble individual.”

VII. Challenges
The challenges during the deployment of DL model for

spam detection on a mobile are summarized below:
• Making trained NN compatible for deployment
• DL is resource hungry and the NN models are quite

complex. It is hard for a device to interpret the number
of layers, the connections and the flow structure.

• Model compression techniques to convert huge model to
a tiny constant model calls for multiple constraints.

• Tensorflow has mostly been used to train NN on PCs but
the proposed work makes use of tensorflow on a phone.

VIII. Conclusion
The work focused on deploying deep NN to mobile devices

and the testing has been performed successfully for spam
detection. A mobile app has successfully been built, and it
uses the Keras sequential model trained on a spam dataset.
Fig. 6 shows the successful execution of installed app on a
mobile device. The ML model has the same accuracy even
after transfer. When a message is input, the app classifies if
the message is a spam or not. This application is applicable
to any messaging service and performs without any internet
connection and with accuracy as high as 98%. Also, it is fast
on a mobile with RAM as low as 1 GB. With transfer learning
possible, it opens the gates for on-device intelligence leading
to many possibilities for smart devices. TensorFlow Lite, a
light weight cross platform for mobile and embedded devices,
if used, would improve speed. In future, this work should be
adapted to other languages like Spanish, Chinese, etc.
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