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Abstract. This paper develops a method for robots to integrate stabil-
ity into actively seeking out informative measurements through cover-
age. We derive a controller using hybrid systems theory that allows us to
consider safe equilibrium policies during active data collection. We show
that our method is able to maintain Lyapunov attractiveness while still
actively seeking out data. Using incremental sparse Gaussian processes,
we define distributions which allow a robot to actively seek out infor-
mative measurements. We illustrate our methods for shape estimation
using a cart double pendulum, dynamic model learning of a hovering
quadrotor, and generating galloping gaits starting from stationary equi-
librium by learning a dynamics model for the half-cheetah system from
the Roboschool environment.

Keywords: active exploration, safe learning, active learning

1 Introduction

Robot learning has proven to be a challenge in real-world application. This is
partially due to the ineffectiveness of passive data acquisition for learning and a
necessity for action in order to generate informative data. What makes this prob-
lem even more challenging is that active data gathering is not a stable process. It
involves exciting states in order to acquire new information. Safe exploration then
becomes a challenge for modern day robotics. The problem becomes exacerbated
when memory and task constraints (i.e., actively collecting data after deploy-
ment) are imposed on the robot. If the structures that compose the dynamics of
the robot change over time, the robot will need to explore its own dynamics in a
manner that is systematic and informative, avoiding damage to the underlying
structures (and humans) in the environment. In this paper, we address these
fundamental issues by developing an algorithm that is inspired by hybrid sys-
tems theory. This algorithm enables robots to actively pursue informative data
by generating area coverage while guaranteeing Lyapunov attractiveness during
exploration.

Active data acquisition and learning are often considered part of the same
problem of learning from experience [1, 2]. This is generally seen in the field of
reinforcement learning (RL) where attempts at a task, as well as learning from
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the outcome of actions, are used to both learn policies and predictive models [1,
3]. As a result, generalizing these methods to real-world application has been a
topic of research [1, 3, 4] where data-inefficiency dominates much of the progress.
A solution to the problem of data-inefficiency is to simulate robots in a realistic
virtual environment and subsequently use the large amount of synthetic data
to solve a learning problem before applying the results on a real robot [5]. This
leads to issues such as the “reality-gap” where finer modelling details such as
motor delays lead to poor quality data for learning.

Existing work addresses the data-inefficiency problem by actively seeking
out informative data using information maximization [6] or by pruning a data-
set based on some information measure [7]. These methods still suffer from the
problem of local minima due to a lack of exploration or non-convex information
objectives [8]. Safety in the task is also a concern when actively seeking out
informative measurements. Methods typically provide some bound on the worst
outcome model using probabilistic approaches [9], but often only consider the
safety with respect to the task and not with respect to the data collection process.
We focus on problems where data collection involves exploring the state-space of
robots where safe generation of informative data is important. In treating data
acquisition as a dynamic area coverage problem—where the time spent during
the trajectory of the robot is proportional to regions where there is an expecta-
tion of informative data—we are able to uncover more informative data that is
not already expected. With this approach, we can provide attractiveness guar-
antees—that the robot will eventually return to a stable state—while providing
control authority that allows the robot to actively seek out informative data
in order to later solve a learning task. Thus, our contribution is an approach
to dynamic area coverage for active data collection that starts from equilibrium
policies for robots.

We structure the paper as follows: Section 2 provides a list of related work,
Section 3 defines the problem statement for this work. Section 4 formulates
the algorithm for active data acquisition from equilibrium. Section 5 provides
simulated and experimental examples of our method. Last, Section 6 provides
concluding remarks on our method and future directions.

2 Related Work

Existing work generally formulates problems of active data acquisition as infor-
mation maximizing with respect to a known parameterized model [10, 11]. The
problem with this approach is that robots need to address local optima [11, 12],
resulting in insufficient data collection. Other approaches have sought to solve
this problem by thinking of information maximization as an area coverage prob-
lem [12, 13]. Ergodic exploration, in particular, has remedied the issue of lo-
cal extrema by using the ergodic metric to minimize the Sobelov distance [14]
from the time-averaged statistics of the robot’s trajectory to the expected in-
formation in the explored region. This enables both exploration (quickly in low
information regions) and exploitation (spending significant amount of time in
highly informative regions) in order to avoid local extrema and collect informa-
tive measurements. The major downside is that this method assumes that the
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model of the robot is fully known. Moreover, there is little guarantee that the
robot will not destabilize during the exploration process. This becomes an issue
when the robot must explore part of its own state-space (i.e., velocity space) in
order to generate informative data. To the authors’ best knowledge this has not
been done to this date. Another issue is that these methods do not scale well
with the dimensionality of the search space, making experimental applications
with this approach challenging due to computational limitations.

Our approach overcomes these issues by using a sample-based KL-divergence
measure [13] as a replacement for the ergodic metric. This form of measure has
been used previously; however, it relied on motion primitives in order to compute
control actions [13]. We avoid this issue by using hybrid systems theory in order
to compute a controller that sufficiently reduces the KL-divergence measure
from an equilibrium stable policy. As a result, we can use approximate models
of dynamical systems instead of complete dynamic reconstructions in order to
actively collect data while ensuring safety in the exploration process through a
notion of attractiveness.

The following section formulates the problem statement that our method
solves.

3 Problem Statement

Modeling Assumptions and Stable Policies Assume we have a robot whose
approximate dynamics can be modeled using

ẋ = f(x, u) = g(x) + h(x)u (1)

where x ∈ Rn is the state of the robot, u ∈ Rm is a control vector applied to the
robot, g(x) : Rn → Rn is the free unactuated dynamics, h(x) : Rn → Rn×m is
the actuated dynamics, and ẋ is the time rate of change of the robot at state x
subject to the control u. Moreover, let us assume that there exists a Lyapunov
function V (x) such that under a policy µ(x) : Rn → Rm, V̇ (x) < 0 ∀x ∈ B,
where B = {x ∈ Rn|‖x‖ < r} for r > 0. For the rest of the paper, we will refer
to µ(x) as an equilibrium policy.

KL-divergence and Area Coverage Given the assumptions of known ap-
proximate dynamics and the equilibrium policy, we can define active exploration
for informative data acquisition as automating safe switching between µ(x) and
some control authority µ?(t) that generates actions that actively seek out in-
formative data. This is accomplished by specifying the active data acquisition
task using an area coverage objective where we minimize the KL-divergence be-
tween the time average statistics of the robot along a trajectory and a spatial
distribution defining the current coverage requirement. We can then define an
approximation to the spatial statistics of the robot as follows:

Definition 1. Given a search domain X v ⊂ Rn+m where v ≤ n + m, the Σ-
approximated time-averaged statistics of the robot, i.e., the time the robot spends
in regions of the search domain X v, is defined by

q(s | x(t), µ(t)) =
η

Tr

∫ ti+T

ti−tr
exp

[
−1

2
(s− xv(t))>Σ−1 (s− xv(t))

]
dt (2)
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where s ∈ X v ⊂ Rn+m is a point in the search domain X v, xv(t) is the component
of the robot’s trajectory x(t) and actions µ(t) that intersects the search domain
X v, Σ ∈ Rv×v is a positive definite matrix parameter that specifies the width of
the Gaussian, η is a normalization constant such that q(s) > 0 and

∫
Xv q(s)ds =

1, ti is the ith sampling time, and Tr = T + tr is sum of the time horizon T and
amount of time tr the robot remembers xv(t) into the past.

This is an approximation because the true time-averaged statistics, as de-
scribed in [12], is a collection of delta functions parameterized by time. We
approximate the delta function as a Gaussian distribution with covariance Σ,
converging as ‖Σ‖ → 0. Using this approximation, we are able to relax the
ergodic area-coverage objective in [12] and use the following KL-divergence ob-
jective [13]:

DKL(p‖q) =

∫
Xv

p(s) ln
p(s)

q(s)
ds = Ep(s) [ln p(s)− ln q(s)] ,

where E is the expectation operator, q(s) = q(s | x(t), µ(t)), and p(s), p(s) >
0,
∫
Xv p(s)ds = 1, is a distribution that describes where in the search domain an

informative measurement is likely to be acquired. We can further approximate
the KL-divergence via sampling where we approximate the expectation operator
as

DKL(p‖q) = Ep(s) [ln p(s)− ln q(s)] ≈
N∑
i=1

p(si) ln p(si)− p(si) ln q(si), (3)

where N is the number of samples in the search domain drawn from a uniform
distribution. With this formulation, we can approximate the ergodic coverage
metric using (3).

In addition to the KL-divergence, we can add a task objective

Jtask =

∫ ti+T

ti

`(x(t), µ(x(t)))dt+m(x(ti + T )) (4)

where ti is the ith sampling time, T is the time horizon, `(x, u) : Rn × Rm → R
is the running cost, m(x) : Rn → R is the terminal cost, and x(t) : R → Rn is
the state of the robot at time t. This additional objective will typically encode
some other task, in addition to the KL-divergence objective.

By summing the KL-divergence objective and a task objective (4), we can
then pose active data acquisition as an optimal control problem subject to the
initial approximate dynamic model of the robot. More formally, the objective is
written as

J = DKL(p‖q) +

∫ ti+T

ti

`(x(t), µ(x(t)))dt+m(x(ti + T )) (5)

where the goal is to generate a control µ?(t) that minimizes (5) subject to the
approximate dynamics (1). Because we are including the equilibrium policy in
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the objective, we are able to synthesize controllers that take into account the
equilibrium policy µ(x) and the desire to actively seek out measurements.

For the rest of the paper, we assume the following:

– We have an initial approximate model ẋ = f(x, u) of the robot.
– We also have an initial policy µ(x) that maintains the robot at equilibrium,

for which there is a Lyapunov function.

These two assumptions are reasonable in that often robots are designed around
stable states and typically have locally stable policies.

The following section uses the fact that we have an initial policy µ(x) in
order to synthesize control vectors µ?(t) : R→ Rm that reduce (5). Specifically,
we want to generate a hybrid composition of control actions that enable active
data collection and actions that stabilize the robotic system. That way, it is
possible to quantify how much the robot is deviating from a stable equilibrium.
Thus, we motivate using hybrid systems theory in order to consider how much
the objective (5) changes from switching from the equilibrium policy µ(x(t)) to
the control µ?(t). By quantifying the change, we specify an unconstrained opti-
mization which solves for a control µ? that applies actions that retain Lyapunov
attractiveness.

4 Algorithm

Our algorithm starts by considering the objective defined in (5) subject to the
approximate dynamic constraints (1) and policy µ(x). We want to quantify how
sensitive the objective is to switching from policy µ(x(t)) to the control vector
µ?(t) for time τ ∈ [ti, ti + T ] for a infinitesimally small time duration λ. This
sensitivity will be a function of µ? and inform us of the most influential time
to apply µ?(t). Thus, we can use the sensitivity to write an objective whose
minimizer is the schedule of control vectors µ?(t) that reduces the objective (5).

Proposition 1. The sensitivity of the objective (5) with respect to the duration
time λ, of switching from the policy µ(x) to the control µ?(t) at time τ is

∂J

∂λ

∣∣∣
t=τ

= ρ(τ)>(f2 − f1) (6)

where f2 = f(x(t), µ?(t)) and f1 = f(x(t), µ(x(t)), and ρ(t) ∈ Rn is the adjoint,
or co-state variable which is the solution of the following differential equation

ρ̇ = −

(
∂`

∂x
+
∂µ

∂x

> ∂`

∂u
− η

Tr

∑
i

p(si)

q(si)

(
∂g

∂x
+
∂µ

∂x

> ∂g

∂u

))
−
(
∂f

∂x
+
∂f

∂u

∂µ

∂x

)>

ρ (7)

subject to the terminal constraint ρ(ti + T ) = ∂
∂xm(x(ti + T )).

Proof. Taking the derivative of the objective (5) with respect to the duration
time λ gives

∂

∂λ
J =

∂

∂λ
DKL +

∂

∂λ
Jtask.
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The term ∂
∂λDKL is calculated by

∂

∂λ
DKL

∣∣∣∣∣
t=τ

= −
∑
i

p(si)

q(si)

η

Tr

∫ ti+T

τ+λ

(
∂g

∂x
+
∂µ

∂x

> ∂g

∂u

)>
∂x

∂λ
dt

= −
∑
i

p(si)

q(si)

η

Tr

∫ ti+T

τ+λ

(
∂g

∂x
+
∂µ

∂x

> ∂g

∂u

)>
Φ(t, τ)dt (f2 − f1) (8)

where g = g(si | x(t), µ(x(t))) = exp
[
− 1

2 (si − xs(t)) Σ−1 (si − xs(t))
]
, and

Φ(t, τ) is the state transition matrix for the integral equation

∂x

∂λ
= (f2 − f1) +

∫ ti+T

τ+λ

(
∂f

∂x
+
∂f

∂u

∂µ

∂x

)>
∂x

∂λ
dt (9)

where f2 = f(x(τ), µ?(τ)) and f1 = f(x(τ), µ(x(τ)).
We can similarly show that the term ∂

∂λJtask is given by

∂

∂λ
Jtask

∣∣∣∣∣
t=τ

=

∫ ti+T

τ+λ

(
∂`

∂x
+
∂µ

∂x

> ∂`

∂u

)>
∂x

∂λ
dt.

=

∫ ti+T

τ+λ

(
∂`

∂x
+
∂µ

∂x

> ∂`

∂u

)>
Φ(t, τ)dt (f2 − f1) (10)

using the same expression in (9). Combining (8) and (10) and taking the limit
as λ→ 0 gives

∂

∂λ
J =

∫ ti+T

τ

(
∂`

∂x
+
∂µ

∂x

> ∂`

∂u
− η

Tr

∑
i

p(si)

q(si)

(
∂g

∂x
+
∂µ

∂x

> ∂g

∂u

))>

Φ(t, τ)dt (f2 − f1) .

(11)

Setting

ρ(τ)> =

∫ ti+T

τ

(
∂`

∂x
+
∂µ

∂x

> ∂`

∂u
− η

Tr

∑
i

p(si)

q(si)

(
∂g

∂x
+
∂µ

∂x

> ∂g

∂u

))>
Φ(t, τ)dt

and from [15] we can show that (11) can be written as

∂

∂λ
J
∣∣∣
t=τ

= ρ(τ)> (f2 − f1)

where

ρ̇ = −

(
∂`

∂x
+
∂µ

∂x

> ∂`

∂u
− η

Tr

∑
i

p(si)

q(si)

(
∂g

∂x
+
∂µ

∂x

> ∂g

∂u

))
−
(
∂f

∂x
+
∂f

∂u

∂µ

∂x

)>
ρ.

subject to the terminal condition ρ(ti + T ) = ∂
∂xm(x(ti + T )). ut
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The sensitivity ∂
∂λJ is known as the mode insertion gradient [15]. We can

directly compute the mode insertion gradient for any control µ? that we choose.
However, our goal is to find one such control µ? that reduces the objective (5)
but still maintains its value near the equilibrium policy µ(x). To solve for this
control, we formulate the following objective function

J2 =

∫ ti+T

ti

∂

∂λ
J
∣∣∣
t=τ

+
1

2
‖µ?(t)− µ(x(t))‖2R (12)

where R ∈ Rm×m is a positive definite matrix that penalizes the deviation from
the policy µ(x).

Proposition 2. The control vector that minimizes J2 is given by

µ?(t) = −R−1h(x(t))>ρ(t) + µ(x(t)). (13)

Proof. Taking the derivative of (12) with respect to µ? gives

∂

∂µ?
J2 =

∫ ti+T

ti

∂

∂µ?

(
ρ(t)>(f2 − f1)

)
+R(µ?(t)− µ(x(t)))dt

=

∫ ti+T

ti

h(x(t))>ρ(t) +R(µ?(t)− µ(x(t)))dt. (14)

Since J2 is convex in µ?, we set the expression in (14) to zero and solve for µ?
which gives us

µ?(t) = −R−1h(x(t))>ρ(t) + µ(x(t))

which is a schedule of control values that reduce the objective for time t ∈
[ti, ti + T ]. ut

This controller reduces (5) for λ > 0 that is sufficiently small. The reduction in
(5), ∆J , by applying µ?(τ) can be approximated as ∆J ≈ ∂

∂λJλ |t=τ . Ensuring

that ∂
∂λJ < 0 is an indicator that the robot is always actively pursuing data and

reducing the objective (5).

Corollary 1. Let us assume that ∂
∂µH 6= 0 ∀t ∈ [ti, ti + T ], where H is the

control Hamiltonian. Then ∂
∂λJ < 0 ∀µ?(t) ∈ U where U is the control space.

Proof. Inserting (13) into (6) gives

∂

∂λ
J = ρ(t)> (f2 − f1) (15)

= ρ(t)> (g(x(t)) + h(x(t))µ?(t)− g(x(t))− h(x(t))µ(x(t))) .

Because of the manner in which we chose to solve for µ?(t), g(x) and µ(x(t))
cancel out in (15). In addition, ∂

∂µH 6= 0 implies that ∂
∂λJ 6= 0 and the policy

µ(x(t)) is not an optimizer of (5). As a result, we can further analyze ∂
∂λJ without

the need to consider the policy µ(x). This gives us the following expression

∂

∂λ
J = −ρ(t)>h(x(t))R−1h(x(t))>ρ(t)
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which we can rewrite as

∂

∂λ
J = −‖h(x(t))>ρ‖2R−1 < 0. (16)

Thus, (16) shows us that ∂
∂λJ is always negative subject to the schedule of control

vectors (13) and the objective is being reduced when µ?(t) is applied. ut

We automate the switching between µ(x(t)) and µ?(t) by choosing a τ and
λ such that ∂

∂λJ is most negative and ∆J < 0. This is done through the combi-
nation of choosing τ with a 1-dimensional optimization and solving for λ using
a line search until ∆J < 0 [16, 17]. By choosing λ < T we can place a bound
on how much our algorithm excites the dynamical system through Lyapunov
analysis (Theorem 1).

Theorem 1. Assume there exists a Lyapunov function V (x) for (1) such that
under the policy µ(x), x(t) is asymptotically stable. That is, V̇ (x) < 0 ∀µ(x), x ∈
B where B = {x ∈ Rn|‖x‖ < r} for r > 0. Then, given the schedule of
control vectors (13) µ?(t) ∀t ∈ [τ, τ + λ], V (x(t)) − V (x(t), µ(x(t))) ≤ λβ,
where V (x(t), µ(x(t))) is the Lyapunov function subject to the policy µ(x), and
β = supt∈[τ,τ+λ]−∂V∂x h(x(t))R−1h(x(t))>ρ(t).

Proof. Writing the integral form of the Lyapunov function switching between
µ(x(t)) and µ?(t) at time τ for a duration of time λ starting at x(0) gives

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(s), µ(x(s)))ds

= V (x(0)) +

∫ τ

0

V̇ (x(s), µ(x(s)))ds (17)

+

∫ τ+λ

τ

V̇ (x(s), µ?(s))ds+

∫ t

τ+λ

V̇ (x(s), µ(x(s)))ds,

where we explicitly write the dependency on µ(x(t)) in V̇ . Using chain rule, we
can write

V̇ (x, u) =
∂V

∂x
f(x, u) =

∂V

∂x
g(x) +

∂V

∂x
h(x)u. (18)

By inserting (13) in (18) we can show the following identity:

V̇ (x, µ?) =
∂V

∂x
g(x) +

∂V

∂x
h(x)µ?

=
∂V

∂x
g(x) +

∂V

∂x
h(x)

(
−R−1h(x)>ρ+ µ(x)

)
= V̇ (x, µ(x))− ∂V

∂x
h(x)R−1h(x)>ρ. (19)

Using (19) in (17), we can show that

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(s), µ(x(s)))ds−
∫ τ+λ

τ

∂V

∂x
h(x(s))R−1h(x(s))>ρ(s)ds

= V (x(t), µ(x(t)))−
∫ τ+λ

τ

∂V

∂x
h(x(s))R−1h(x(s))>ρ(s)ds (20)
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where V (x(t), µ(x(t))) = V (x(0)) +
∫ t

0
V̇ (x(s), µ(x(s)))ds.

Letting the largest value of ∂V
∂x h(x(s))R−1h(x(s))>ρ(s) be given by β =

supt∈[τ,τ+λ]−∂V∂x h(x(t))R−1h(x(t))>ρ(t) > 0, we can approximate (20) as

V (x(t)) = V (x(t), µ(x(t))−
∫ τ+λ

τ

∂V

∂x
h(x(s))R−1h(x(s))>ρ(s)ds (21)

≤ V (x(t), µ(x(t))) + βλ. (22)

Subtracting both side by V (x(t), µ(x(t))) gives the upper bound on instability

V (x(t))− V (x(t), µ(x(t))) ≤ βλ (23)

for the active data collection process. ut

By fixing the maximum value of λ, we can provide an upper bound to the change
of the Lyapunov function during active data acquisition. Moreover, we can tune
our control vector µ?(t) using the regularization value R such that as ‖R‖ → ∞,
β → 0 and µ?(t) → µ(x(t)). With this bound, we can guarantee Lyapunov
attractiveness [18], where the system (1) is not Lyapunov stable, but rather
there exists a time t such that the system (1) is guaranteed to return to a region
of attraction where the system can be guided towards a stable equilibrium state
x0. This property will play an important role in examples in Section 5.

Definition 2. A dynamical system (1) is Lyapunov attractive if at some time
t, the trajectory of the system x(t) ∈ C(t) ⊂ B where C(t) = {x(t) ∈ Rn|V (x) ≤
c, V̇ (x(t)) < 0} and limt→∞ x(t)→ x0 such that x0 is an equilibrium state.

Theorem 2. Given the schedule of control vectors (13) µ?(t) ∀t ∈ [τ, τ + λ],
the robotic system governed by the dynamics in (1) is Lyapunov attractive such
that limt→∞ x(t, τ, λ)→ x0, where

x(t, τ, λ) = x(0)+

∫ τ

0

f(x(s), µ(x(s))ds+

∫ τ+λ

τ

f(x(s), µ?(s)ds+

∫ t

τ+λ

f(x(s), µ(x(s))ds,

is the solution to switching between stable and exploratory motions for duration
λ starting at time τ .

Proof. Assume there exists a Lyapunov function such that V̇ (x) < 0 under the
policy µ(x). Moreover, assume that subject to the control vector µ?(t), the trajec-
tory x(τ+λ) ∈ C(τ+λ) ⊂ B where C(t) = {x(t) ∈ Rn|V (x) ≤ c, V̇ (x(t), µ(x(t)) <
0} where c > 0. Using Theorem 1, the integral form of the Lyapunov function
(17), and the identity (19), we can write

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(s), µ(x(s)))ds

−
∫ τ+λ

τ

∂V

∂x
h(x(s))R−1h(x(s))>ρ(s)ds ≤ V (x(0))− γt+ βλ, (24)



10 Abraham et al.

where −γ = sups∈[0,t] V̇ (x(s), µ(x(s))) < 0. Since λ is fixed and β can be
tuned by the matrix weight R, we can choose a t such that γt � βλ. Thus,
limt→∞ V (x(t)) → V (x0) and limt→∞ x(t, τ, λ) → x0, implying Lyapunov at-
tractiveness, where V (x0) is the minimum of the Lyapunov function at the equi-
librium state x0. ut

Asymptotic attractiveness shows us that the robot will return to a region where
V (x) will return to a minimum under policy µ(x), allowing the robot to actively
explore and collect data safely. Moreover, we can choose the value of λ and µ?
in automating the active data acquisition such that attractiveness always holds,
giving us an algorithm that is safe for active data collection.

All that is left is to define a spatial distribution that actively selects which
measurements are more informative to the learning task.

Measure of Data Importance for Model Learning Our goal is to provide
a method that is general to any form of learning that requires a robot to ac-
tively seek out measurements through action. This may include area mapping or
learning the dynamics of the robot. Thus, we use measures that allow the robot
to quantify where in the search domain there exists useful data that needs to
be collected. While there exists many measures that can select important data
subject to a learning task, we use a measure of linear independence [7, 19, 20].
This measure is often used in sparse Gaussian processes [7, 20] where a data
set D = {xi, yi}Mi=1 is comprised of M input measurements xi ∈ Rv and M
output measurements yi ∈ Rc such that each data point maximizes the measure
of linear independence. We use this measure of independence, also known as a
measure of importance, to create a distribution for which the robot will provide
area coverage in the search domain for active data collection.

As illustrated in [7], this is done by evaluating a new measurement xM+1, yM+1

against the existing data points in D given the structure of the model that is
being learned.

Definition 3. The importance measure δ ∈ R+ for a new measurement pair
{xM+1, yM+1} is given by

δ = k(xm+1, xm+1)− k>a (25)

which is the solution to δ = ‖
∑M
i=1 aiφ(xi) − φ(xM+1)‖2, where φ(x) are the

basis functions (also known as feature vectors) 1, ai is the coefficient of linear
dependence, the matrix K ∈ RM×M is known as the kernel matrix with ele-
ments Ki,j = k(xi, xj) such that k : Rv×v → R is the kernel function given by
the inner product k(xi, xj) = 〈φ(xi), φ(xj)〉, k = [k(x1, xm+1), k(x2, xm+1), . . . ,
k(xm, xm+1)]>, and a = K−1k.

1 This feature vector can be anything from a Fourier set of basis functions or a neural
network. In addition, we can parameterize the functions φ(x) = φ(x, θ) and have the
functions change over time.
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The value δ provides a measure of how well the point xM+1 can be repre-
sented given the existing data set and structure of the model being learned. Note
that this measure will be computationally intractable for very large M . Instead,
other measures like the expected information density derived from the Fisher
information matrix [12, 21] can be used if the learning task has a model that is
parameterized by a set of parameters θ. Since δ > 0, we define an importance
distribution for which the robot will use generate area coverage.

Definition 4. The importance distribution is

p(s) =
1

η

(
k(s, s)− k(s)>a(s)

)
(26)

where η =
∫
Xv k(s, s)− k(s)>a(s)ds, and k, a are functions of points s ∈ X v.

Note that p(s) will change as D is augmented or pruned. If at any time δ > δi
for i = [1, . . . ,M ], we remove the ith point with the lowest δ value and add in
the new data point.

We provide an outline of our method in Algorithm 1 for online data acquisi-
tion. The following section evaluates our method on various simulated environ-
ments.

Algorithm 1 Active Data Acquisition from Equilibrium

1: initialize: local dynamics model, initial condition x(t0), initial equilibrium policy
µ(x), learning task model structure φ(x).

2: for i = 0, . . . ,∞ do
3: simulate x(t) with µ(x(t)) from x(ti) using dynamics model f(x, u)
4: calculate ρ(t) and ∂

∂λ
J

5: compute control µ?(t) for t ∈ [ti, ti + T ]
6: choose τ, λ that minimizes ∂

∂λ
J

7: apply µ?(τ) if t ∈ [τ, τ + λ] else apply µ(x(t)) to robot
8: sample state x(ti+1) and measurement y(ti+1)
9: verify importance δ and update p(s) if δ > δi∀i ∈ [1, . . . ,M ]

10: end for

5 Simulated Examples

In this section, we illustrate examples of Algorithm 1 for different examples that
may be encountered in robotics. Figure 1 depicts three robotic systems on which
we base our examples. In the first example, we use a cart double pendulum for
use in area coverage for shape estimation. In the second and third example, we
use a 22 dimensional quadrotor [22] and a 26 dimensional half-cheetah model
from Roboschool [23] for learning a dynamics model of the robotic systems by
exploring in the state-space. For implementation details, including parameters
used, we refer the reader to the appendix.
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(a) Cart Double Pendulum (b) Quadrotor (c) Half-Cheetah

Fig. 1: Simulated experimental environments (a) cart double pendulum and (b) quad-
copter, and (c) half-cheetah. The results for each system may be seen in the accompa-
nying multimedia supplement.

Shape Estimation while Stabilizing Cart Double Pendulum Our first
example demonstrates the functionality of our algorithm for estimating a si-
nusoidal shape while simultaneously balancing a cart double pendulum in its
upright position. The purpose of this example is to show that our method can
synthesize actions that ensures the cart double pendulum is maintained upright
while actively collecting data for estimating the shape. This example also serves
the purpose of illustrating that our method can safely automate choosing when
to stabilize and when to explore for data using approximate linear models of the
robot dynamics and stabilizing policies derived from the approximate models.
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Fig. 2: Time series snap-shots of cart double pendulum actively sampling and estimating
the shape underneath. The uncertainty (dashed gray lines) calculated from the collected
data set drives the exploratory motion of the cart double pendulum while our method
ensures that the cart double pendulum is maintained in its upright equilibrium state.

The measurements of the height of the sinusoidal shape are collected through
x position of the cart (illustrated in Fig. 2 as the magenta crosshair underneath
the cart). A Gaussian process with an radial basis function (RBF) kernel [7] is
then used to estimate the function and provide the distribution used for explo-
ration. The underlying importance distribution (26) is updated as the data set
is pruned to include new informative measurements.
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Fig. 3: Lyapunov function for the
cart double pendulum with upright
equilibrium. The red line indi-
cates when the active exploration
control is applied. Lyapunov at-
tractiveness property is illustrated
through automatic switching of the
exploration process.

As a result of Algorithm 1, the robot will
spend time where there is a high probability
of acquiring informative data. This results is
the shape reconstruction shown in Fig. 2 using
a limited fixed set of data (M = 50).

We analyze our algorithm by observing a
candidate Lyapunov function (energy). Fig-
ure 3 depicts the value of the Lyapunov func-
tion over the time window of the cart dou-
ble pendulum collecting data for estimating
shape. The control vector µ?(t) over the ap-
plication time t ∈ [τ, τ + λ] increases the over-
all energy in the system (due to exploration).
Since we include a regularization term R that
ensures µ? does not deviate too far from the
equilibrium policy µ(x), the cart double pen-
dulum is able to stabilize itself, eventually re-
turning to an equilibrium state and ensuring
stability, illustrating the Lyapunov attractive-
ness property proven in Theorem 2.

Learning Dynamics of Quadrotor Our
next example illustrates active data acquisi-
tion in the state-space of a 22 degree of free-
dom quadrotor vehicle shown in Fig. 1a. The
results are averaged across 30 trials with ran-
dom initial conditions sampled uniformly in
the body angular and linear velocities ω, v ∼
U [−0.01, 0.01] where U is a uniform distribution.

The goal for this quadrotor is to maintain hovering height while collecting
data in order to learn the dynamics model f(x, u). In this example, a linear
approximation of the dynamics centered at the hovering height is used as the
local dynamics approximation on which Algorithm 1 is based. We then generate a
LQR controller with the approximate dynamics which we use as the equilibrium
policy, The input data we collect is the state x(ti) = xi and control u(ti) = ui
and the output data is (xi+1 − xi)/(ti+1 − ti) which approximates the function
∆x
∆t ≈ ẋ = f(x, u) [24]. An incremental sparse Gaussian process [7] with a radial
basis function kernel is used to generate a learned model of the dynamics using
a data set of M = 80 and to specify the importance measure (3).

Figure 4 (a) and Figure 4 (b) illustrates the modeling error and the minimum
importance value within the data set using our method and the equilibrium pol-
icy with uniformly added added noise at 33% of the saturation limit. Our method
sequences and automates the process of choosing when it is best to explore and
to stabilize by taking into account the approximate dynamics and the equilib-
rium policy. As a result, a robot is capable of acquiring informative data that
improves the prediction of the nonlinear dynamic model of the quadrotor. In
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Fig. 4: (a) Average L2 error of the learned dynamics model evaluated on 10 uniformly
distributed random samples between [−1, 1] in the state and action space. (b) Minimum
importance measure from the collected data set using our method compared against
injected noise. (c) Minimum value of the mode insertion gradient evaluated at the
chosen µ?(τ) value. (d) Calculated duration time of control µ?(τ).

contrast, adding noise to the control input (often referred to as “motor bab-
ble” [24]) does not have temporal dependencies. That is, each new sample does
not have information from the previous samples and cannot effectively explore
the state-space.

As the robot continues to explore, the value of the mode insertion gradient
(6) decreases as does the duration time λ as shown in Fig. 4 (c) and (d). This
implies that the robot is sufficiently reducing the objective for area coverage and
the equilibrium policy begins to take over to stabilize the robot. This is a result
of taking into account the local stability of the robotic system while generating
exploratory actions.

Fig. 5: (a) Comparison of the minimum importance
measure of the the data set for the half-cheetah
example from a stable standing policy with added
20% saturation limit noise and our approach for ac-
tive data acquisition. (b) Integrated forward veloc-
ity values from using the learned half-cheetah dy-
namics model in a model-predictive control setting
with standard deviation illustrated for 5 trials. Our
method is shown to collect data which provides a
better dynamic model and a positive net forward
velocity with reduced variance.

Learning to Gallop In this
last example, we consider ap-
plications of Algorithm 1 for
systems with dynamic mod-
els and policies that are
learned. We use the half-
cheetah from the roboschool
environment [23] for the task
of learning a dynamics model
in order to control the robot
to gallop forward.

We first learn a simple
standing upright policy using
the augmented random search
(ARS) method [25]. In that
process, we collect the state
and action data to compute
a linear approximation using
least-squares for the local dynamics. Then Algorithm 1 is applied using an in-
cremental sparse Gaussian process using an RBF kernel to generate a dynam-
ics model from data as well as provide the importance measure using a set of
M = 40 data points. The input-output data structure maps input (x(ti), u(ti))
to the change in state ∆x

∆t . Our running cost `(x, u) is set to maintain the half-
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cheetah upright. After the Gaussian process model is learned, we use the gener-
ated model in the prediction of the forward dynamics as a replacement for the
initial dynamics model.

As shown in Fig. 5, our method collects informative data while respecting the
standing upright policy when compared to noisy inputs. We compared the two
learned models using our controller with DKL = 0 and the running cost `(x, u)
set to maximize the forward velocity of the half-cheetah. We show those results
in Fig. 5 over 5 runs of our algorithm at different initial states. Our method
provides a learned model that has overall positive integrated velocity (forward
movement). While our method is more complex than simply adding noise, it
provides stability guarantees based on known policies in order to explore and
collect data.

6 Conclusion

Algorithm 1 enables robots to actively seek out informative data based on the
learning task while maintaining stability using equilibrium policies. Our method
generates area coverage using a KL-divergence measure in order to enable robots
to actively seek out informative data. Moreover, by using a hybrid systems theory
approach to generating area coverage, we were able to incorporate equilibrium
policies in order to provide stability guarantees even with the model of the
robot dynamics only locally known. Last, we provide examples that illustrate
the benefits of our approach for active data acquisition for learning tasks.
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