
EasyChair Preprint
№ 6346

Towards Flexible and Compiler-Friendly Layer
Fusion for CNNs on Multicore CPUs

Zhongyi Lin, Evangelos Georganas and John D. Owens

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 21, 2021



Towards Flexible and Compiler-Friendly Layer
Fusion for CNNs on Multicore CPUs?

Zhongyi Lin1[0000−0002−5992−3913], Evangelos Georganas2, and John D.
Owens1[0000−0001−6582−8237]

1 University of California, Davis, USA
2 Parallel Computing Lab, Intel Corporation

Abstract. In deep learning pipelines, we demonstrate the performance
benefits and tradeoffs of combining two convolution layers into a single
layer on multicore CPUs. We analyze when and why fusion may result
in runtime speedups, and study three types of layer fusion: (a) 3-by-3
depthwise convolution with 1-by-1 convolution, (b) 3-by-3 convolution
with 1-by-1 convolution, and (c) two 3-by-3 convolutions. We show that
whether fusion is beneficial is dependent on numerous factors, including
arithmetic intensity, machine balance, memory footprints, memory ac-
cess pattern, and the way the output tensor is tiled. We devise a schedule
for all these fusion types to automatically generate fused kernels for mul-
ticore CPUs through auto-tuning. With more than 30 layers extracted
from five CNNs, we achieve a 1.04x geomean with 1.44x max speedup
against separate kernels from MKLDNN, and a 1.24x geomean with 2.73x
max speed up against AutoTVM-tuned separate kernels in standalone
kernel benchmarks. We also show a 1.09x geomean with 1.29x max
speedup against TVM, and a 2.09x geomean with 3.35x max speedup
against MKLDNN-backed PyTorch, in end-to-end inference tests.

Keywords: Layer fusion · CNN · Multicore CPUs · Auto-tuning.

1 Introduction

Convolutional neural networks (CNNs) have played an increasingly important
role in research and industry for the past decade. CNNs are constructed with a
series of layers/operators (ops). In the vast majority of CNN implementations,
ops have a one-to-one correspondence with compute kernels. For reduced mem-
ory requirements and/or better producer-consumer locality, production CNNs
perform fusion for certain ops, i.e., combining two or more neighboring ops
into one and computing it with one single kernel. At its core, the fusion prob-
lem is a balancing problem between computation and communication, or be-
tween the communication of different memory hierarchies, with the hope that
reducing main-memory communication will result in only modest amounts of
extra computation or data movement in high-level memory and hence an overall

? Supported by Intel Labs.



2 Z. Lin, E. Georganas, and J. D. Owens

speedup. In particular, today’s deep learning (DL) frameworks and compilers
(e.g., TVM [5], Tensorflow [1], PyTorch [18], and MXNet [4]), and proprietary
kernel libraries like cuDNN [7] and MKLDNN often trivially fuse a convolution
layer with the following element-wise layers to save the cost of data movement.
Other fusion opportunities such as parallel convolution branch fusion for struc-
tures in models like Inception-V3 [22] can be realized by methods like relaxed
graph substitution, as proposed by Jia et al. [13].

More complex is the fusion of neighboring complex ops, e.g., convolution
(conv) and depthwise convolution (dw-conv). As these ops often appear as the
hotspot of CNNs, which are compute and/or memory bandwidth intensive, fus-
ing them is a potential way to further enhance compute performance. Showing
performance improvements for this fusion type is a significant challenge for three
reasons. First, unlike the aforementioned fusion types, simple techniques like in-
lining or data concatenation and split (to reuse existing proprietary libraries)
would not work due to the memory access pattern of these ops. Instead, new
compute kernels are necessary, and the optimization space of a fused op is so
complex, with so many parameters, that a straightforward search would be im-
practical. Second, the standalone kernels used as a performance baseline are
already highly optimized. Finally, integrating a fused kernel into current DL
frameworks is also difficult, as modern frameworks are primarily designed at the
granularity of one-op that maps typically to one-kernel.

In this paper, we focus on three opportunities for the fusion of two consec-
utive complex ops: (1) 3-by-3 dw-conv with 1-by-1 conv, (2) 3-by-3 conv with
1-by-1 conv, and (3) two 3-by-3 convs, all of which are commonly seen in CNNs.
The challenge we address in this paper is to show not just where we can show
performance improvements from complex op fusion but also why. We first pro-
pose a set of tiling and scheduling principles to intelligently reduce the otherwise
intractable parameter space and search for the combination that leads to the best
performance. These principles can also be extended to problems with complex
loop structures, including other fusion types. Based on these principles, we de-
vise a schedule template for auto-tuning these fused kernels on multicore CPUs,
and propose an approach of integrating the fused kernels/ops into DL compiler
pipelines. Both of these ideas can be adopted by production DL compilers. We
implement the fused kernels by incorporating LIBXSMM’s [11] batch-reduce
GEMM [9] micro-kernels and extending AutoTVM, TVM’s auto-tuning tool, to
search for the best schedule. We also integrate these kernels into TVM’s compiler
infrastructure for end-to-end tests by creating a new fused op.

We make the following contributions:

– We analyze the fusion of two complex ops and answer the question when
and why such fusion is beneficial.

– We propose a methodology with tiling and scheduling principles of compos-
ing fused kernels for multicore CPUs, and implement kernels for three types
of two complex-op fusion.

– We achieve 1.24X and 1.04X geomean speedup in a standalone kernel-level
benchmark against TVM and MKLDNN respectively, and 1.09X and 2.09X



Towards . . . Layer Fusion for CNNs on Multicore CPUs 3

geomean speedup in end-to-end tests, by testing with more than 30 workloads
extracted from five real CNN models on three multicore CPU platforms.

2 Related Work

Kernel Optimizations and Auto Tuning Convolutions are the ops that take the
largest runtime in current CNNs. They can be implemented in many styles,
e.g., direct convolution, im2col + GEMM [7], FFT-based [16], and Winograd-
based [14], etc, on different types of compute devices. For direct convolution
on CPUs, Georganas et al. [8,9] proposed batch-reduce GEMM (BRGEMM) as
a basic building block for tensor contractions and convolution and claimed to
achieve better runtime performance than MKLDNN (now renamed to oneDNN).
In our work, we adopt the BRGEMM micro-kernel implementation provided in
the LIBXSMM [11] library as a building block for our fused kernels.

Autotuning is a common approach for optimizing kernel implementations
and has benefited from continuous development through the years. Autotuning
can be employed together with the idea of decoupling compute and schedule
central to Ragan-Kelley et al. [19, 20] and developed by Mullapudi et al. [17]
in Halide as well as Chen et al. [5, 6] in TVM, easing the process of develop-
ing high-performance implementations for DL workloads. Recently, the idea of
autoscheduling [2, 26] breaks through auto-tuning’s limit of relying on a well-
composed schedule template by automatically searching for schedules. In this
research we adopt AutoTVM as our tool for auto-tuning; in future work, we
plan to also port our approach to autoscheduling tools.

Layer Fusion The fusion of multiple consecutive convolutions first appears in
Alwani et al. [3]. Their kernel implementation is completely hand-tuned on FP-
GAs and the fusion space is explored with a dynamic programming approach.
Wang el al. [24] improved inference time on GPUs using a designated subset of
fused convolutional layers. However, these works neither explore the large space
of code optimization nor show a clear way how the fused kernels can be handily
integrated into production end-to-end tests. Our work is the first that focuses
on multicore CPUs and addresses the above issues.

3 Principles of Effective Layer Fusion

Consider a CNN model that runs on a multicore system, e.g., a multicore CPU.
A well-optimized single-op kernel on this system will take advantage of all cores.
Typically such a kernel will output a tensor and that tensor is divided into
multi-dimensional tiles, with an equal number of tiles computed on each core in
parallel. This tiling may be a spatial tiling (e.g., across one or more axes among
N , H, W in a typical 4D activation tensor) and/or a tiling across channels (e.g.,
the C axis). At the end of the kernel, all data is written back to memory before
the next kernel begins. The next kernel will then read its input from memory
assuming the input is large enough and does not to fit in any level of cache.



4 Z. Lin, E. Georganas, and J. D. Owens

Performance

AI

optimal

Performance

AI

(a) Roofline model examples. Dotted
lines are theoretical fused kernel AI. Or-
ange triangles are empirical fused AI
(efAI) derived from separate kernel stats.
Fusion is likely: (left) beneficial, as efAI
is not close to optimal; or (right) not
beneficial as efAI is very close to optimal.

Layer 1 Layer 2

H
W

C

(b) Tiling across the channel axis (C) of
the second layer results in recomputation
on different cores: the blue and red tensors
reside on different cores, while both cores
need to compute the green tensor.

Fig. 1

In this paper, we show performance gains from fusing kernels of two complex
ops. The important contribution of this paper, however, is not the performance
gains but instead why and how we achieve these performance gains. What kind
of kernels should be fused, and how should we fuse them?

One of our key tools for analysis and verification is the roofline model [25],
with which we can determine if a kernel’s performance is bound by memory
or compute. We characterize the combination of the two separate kernels in the
roofline model, with the total compute equal to the sum of the compute in the two
kernels, and the memory requirements equal to the sum of the reads and writes
for both kernels. If the fused-kernel result is memory-bound, the two kernels are
usually good candidates for fusion, because fusion’s primary benefit is saving the
memory writes and reads between the two kernels, with the hope to replace slow
(main memory) accesses with fast (cache) accesses. However, this is trickier in
practice, since many successful fusions we perform tend to be compute-bound.
We also see successful fusion for two compute-bound kernels (as we show in a
later example) as well as failure for fusion involving extremely memory-bound
kernels like 5-by-5 dw-conv. Nevertheless, the results from the roofline model
are generally predictive. We can also refer to the empirical results of proprietary
separate kernels to select workloads that might benefit from fusion. As shown in
Figure 1a, fusion is likely beneficial if the derived empirical fused roofline is not
too close to the peak throughput at the theoretical fused AI, as fusion moves
the roofline towards the upper right if it speeds up. In contrast, fusion is likely
not beneficial if the derived empirical fused roofline is almost optimal.

We begin by looking at the per-core output of the first kernel and the per-core
input of the second kernel. For some pairs of kernels, these are identical, and we
can simply concatenate these into one kernel in a straightforward fashion. More
often, though, these two do not match. In these cases, writing to memory at the
end of the first kernel serves two purposes. The first is to allow a reshuffling of
data through the memory system (essentially, a permutation of the intermediate
output tensor, distributed across cores). The second is to allow a broadcast so
that the output of one core in the first kernel can serve as the input for multiple
cores in the second kernel. If we implement a fused kernel, our implementation
must either perform a significant amount of intra-core communication for data
reuse or perform redundant recompute. Notice that the memory footprint of



Towards . . . Layer Fusion for CNNs on Multicore CPUs 5

fused workloads might fit in any level of cache or none of them. For the extreme
case that the footprint fits in L1, there is no data movement cost of the inter-
mediate output to reduce, as it always stays in this fastest cache. We discover
that this almost never happens with real CNN workloads, and therefore, from
this point of view, fusion is always worth trying.

We employ tiling and scheduling to find the balance between fusion and
speedup. Tiling expresses the subdivision of tensor input/intermediate/output
data in a way that allows effective and scalable parallel execution. The computa-
tion of each part of the output tensor is typically expressed as a series of nested
loops, and we also have the freedom to schedule (i.e., reorder, split, merge, par-
allelize, etc.) these loops to optimize for locality and execution. Because the two
unfused kernels are almost certainly highly optimized for the target architecture
when using proprietary libraries, we must make near-optimal decisions for tiling
and scheduling to achieve competitive performance with our fused kernel.

Tiling Principles One of the most important decisions in tiling is choosing along
which axis to tile. In our fastest kernels on CPUs, we prefer tiling the second
layer along spatial axes to tiling along channel axes, because the latter requires
(redundant) recomputation of layer-one entries that are inputs to multiple dif-
ferent tiles along layer-two’s channel axis, as shown in Figure 1b. This rules out
some compute-heavy kernels like the last few layers of ResNets (i.e., res 4x/5x
as examples), which typically tile along a (relatively long) channel axis.

The spatial axes of the second layer also need to offer sufficient parallelism
for a full tiling; without enough parallelism here, fusion does not make sense.
In general, CNN kernel implementations on CPUs tend to pack tensors so that
the channel axis is packed as vectors in the last dimension, so CPUs with longer
vector length, e.g., AVX-512, are better candidates for fusion, since they exploit
the parallelism along the channel axis and compensate for our reluctance to
tile/parallelize that axis across cores. Also, more cores make fusion more attrac-
tive if batch size goes up and/or the spatial dimension is large, since either of
these cases expose more potential parallelism.

Finally, for effective fusion, the tiles for the first and second kernels in the
separate case should be comparable in size. Given a fixed-size cache, a significant
mismatch in size between the two tiles reduces the opportunity for capturing
producer-consumer locality, as it leverages the cache poorly. The mnb1 workloads
shown later in Table 2 are examples of such a failure.

Scheduling Principles Once we have determined our tiling, we turn to the prob-
lem of scheduling. A typical fused kernel in our pipelines of interest has on the
order of a dozen loops as well as the option to split these loops. Any sort of
exhaustive search over valid reorderings of these loops is virtually intractable.
Yet our experience is that some search is necessary; the performance landscape
of the many possible implementations is complex enough that auto-tuning is
necessary to find the fastest fused kernel.

Our approach is to restrict the search space down to a manageable level by
only searching over a subset of the loops. In particular, we do not attempt to



6 Z. Lin, E. Georganas, and J. D. Owens

change the order of the outermost and innermost loops as they either do not
affect data locality or are fixed for optimal register usage within a micro-kernel.
In contrast, we do search the remaining loops, whose reordering can have a
significant impact on data locality. This will be discussed in the next section.

4 Implementation

We mainly focus on three types of 2-layer fusion: (1) 3-by-3 depthwise convolu-
tion (dw-conv) followed by 1-by-1 convolution (conv); (2) 3-by-3 conv followed
by 1-by-1 conv; (3) two 3-by-3 convs. The first type occurs commonly in compu-
tationally lightweight CNN models, e.g., MobileNet-V1 [12], MobileNet-V2 [21],
MNasNet-A1 [23], etc. The second and third types occur in computationally
heavyweight CNN models like ResNets [10], etc. In this section, we first in-
troduce how we compose schedules to generate kernels for these fusion types,
followed by how these kernels are integrated into the TVM inference pipeline.

Kernel-level optimization Often a part of a domain-specific compiler, modern
autotuners usually input the schedule that we described above, which describes
how the mathematical expression of an op is mapped to the hardware (e.g., loop
orderings and manipulations, as well as the search for the split loop lengths and
ordering combinations that lead to the best performance) to tune the kernel.
This may result in many possible mappings and hence a large search space. For
example, two axes of length 4 being split and reordered has a search space size
of 3 (split of first axis) × 3 (split of second axis) × 2 (reordering) = 18. If two
layers are naively fused, the search space size grows exponentially and becomes
intractable, even without considering the extra possibility of loop unrolling in
the innermost loops. As an aside, though they do not affect the search space, an
autotuned fuser must also efficiently integrate element-wise post ops like batch-
normalization, ReLU, etc. that follow all complex ops except for the last one.

Our goal is to achieve high performance on the fused kernel and meanwhile
limit the search space to make searching tractable. We accomplish this by classi-
fying loops into three categories: parallel loops, micro-kernel loops, and tunable
loops. We determined robust, fixed strategies for the first two categories and
thus reduce our search space to only searching for the optimal configuration of
the third.

We choose to fix the ordering of the first two categories of loops, because
reordering parallel loops is trivial for batch size 1, while micro-kernel loops are
mapped to ready-to-use micro-kernels with fixed loop order. In our schedules,
we place the parallel loops at the outermost location, micro-kernel loops at the
innermost location, and tunable loops in between. The skeleton of our implemen-
tation structure is shown in Algorithm 1 and Fig 2. We implement our kernel
with the BRGEMM micro-kernels from LIBXSMM. Instead of using the com-
mon NCHW or NHWC formats for convolution, we use a packed format, e.g.,
NCHW [x]c for feature maps, and (OC)(IC)HfWf [x]ic[y]oc for weights, where
x, y = 8, 16, 32, 64 . . ., for better data locality on CPUs [9]. At line 3 to 5 of the



Towards . . . Layer Fusion for CNNs on Multicore CPUs 7

Algorithm 1 Fused kernel schedule template with BRGEMM micro-kernels.

1: Inputs: input ∈ RN×IC1×IH×IW×ic1 , weights1 ∈ ROC1×IC1×FH1×FW1×ic1×oc1 ,
weights2 ∈ ROC2×IC2×FH2×FW2×ic2×oc2 , optional post ops parameters, e.g.,
bias1 ∈ ROC1×oc1 , bias2 ∈ ROC2×oc2

2: Outputs: output ∈ RN×OC2×OH×OW×oc2

3: Split OH into Ht, Ho, and H
4: Split OW into Wt, Wo, and W
5: Split IC2 into ICo and ICi

6: for fused(n = 0 . . . N − 1, ht = 0 . . . Ht − 1, wt = 0 . . .Wt − 1) do
7: Exhaustively search the order of OC2, ICo, Ho, and Wo, and mark them as

loop 1, 2, 3, 4, and the parallel loop as loop 0 {e.g., ICo is loop 2.}
8: Arbitrarily pick a loop x from loop 0, 1, 2, 3, 4 {e.g., x is 3.}
9: for loop 1 do

10: for loop 2 do
11: for loop 3 do {Sub-tensors compute here.}
12: for loop 4 do
13: BRGEMM micro-kernel for layer 1 sub-tensor
14: end for
15: Compute post ops of layer 1 if necessary
16: for loop 4 do
17: BRGEMM micro-kernel for layer 2 sub-tensor
18: end for
19: end for
20: end for {ICo finishes.}
21: Compute post ops of layer 2 if necessary
22: end for
23: end for

algorithm, OH, OW , and the reduce loop IC2 of the output tensor are split into
10 loops including the unsplit N . Each loop is split so that the lengths of each
sub-loop are factors of its length. We do not split OC2 as tiling across it brings
recomputation as we discuss above. The parallel loops, i.e., N , Ht, and Wt, are
fused and parallelized across multiple CPU cores at line 7. Loops H, W , and
oc1/2 and reduce loops, including FH, FW , ICi, and ic1/2, are all micro-kernel
loops expressed within BRGEMM micro-kernels. The remaining four loops, i.e.
OC2, ICo, Ho, and Wo, are left as the tunable loops to be searched by the
auto-tuner.

In our implementation, we exhaustively search for all the orderings of these
four loops and at which loop layer we place the computation, i.e., compute at.
The sub-tensors of both layers are computed at a loop that is picked among any
of these four loops or the fused parallel loop. From a cache point of view, the
input feature map sub-tensor of layer one is distributed to different cores on the
CPUs, while the weights of each layer are streamed to cache. The sub-tensor
output of layer one is computed with vanilla loop ordering if layer one is a dw-
conv, or by calling the BRGEMM micro-kernel if layer one is a conv. Its size is
inferred by the compiler given the output size of its consumer, i.e., (H,W, oc2)
is known. This sub-tensor is always complete, i.e., all its reduce loops are fully
contracted, before it is consumed by layer two, because otherwise it incurs extra



8 Z. Lin, E. Georganas, and J. D. Owens

Layer 2

OC2 × ic2

Ht

Wt

IC1 × ic1 Layer 1

OC1 × oc1

N = 1 Execution on one single coreic1

Layer 1

oc1/ic2

ICi

ICi

ICo

Layer 2

FH
FW

Ho

Wo

H
W

oc2

oc2

OC2

Fig. 2: Algorithm visualization. (Left) Tensors are tiled for parallel multicore
execution. (Right) A light blue (incomplete, as loop ICo is not fully contracted)
sub-tensor of size (H,W, oc2) is computed from all blue (complete) sub-tensors.
Red/green/orange mark the parallel/tunable/micro-kernel loops, respectively.

computation for each of the incomplete slices. Therefore, it is safe to insert any
post ops computation directly after it. Subsequently, this sub-tensor always stays
in cache and is consumed by layer two to produce a slice with size (H,W, oc2).
This slice is not necessarily complete as the loop x it computes could be inside
the outermost reduce loop of all, ICo. We insert the post ops right after ICo

because they can only be computed when ICo is fully contracted. Therefore, the
sub-tensor of layer two always stays in cache for proper tiling factors until it is
complete and no longer needs access.

We found that grouping the loops in this way greatly limits the search space,
making auto-tuning feasible, but still results in high-performance fusion. It can
also be extended more generally to polyhedral problems including fusing other
types of layers. In this case, a performant micro-kernel is necessary to serve as
the core of the output schedule.

AutoTVM implementation of fused kernel We realize this implementation as an
AutoTVM schedule. We first define TE compute functions for the fused layer
workloads, then we create AutoTVM tuning tasks with these compute functions
and schedules so that AutoTVM can auto-tune them using the XGBoost algo-
rithm. For fast convergence, the schedule is tuned without post ops being added
since they do not affect the results, while when the tuning config is produced,
we apply it to a new inference schedule where post ops are added as necessary.
The methodology can be handily extended to multiple layers with the (straight-
forward) addition of compiler support, as we can simply follow the same rule
by only blocking the last layer being fused and stacking all previous layers at
loop x. In fact, this methodology resembles the (manual) ‘pyramid’ method pro-
posed by Alwani et al. [3], but we generate the fused kernel code automatically
via auto-tuning. We also notice that at the cost of searching a much bigger
space by further splitting the second loop group into eight loops and reordering
them, higher fused kernel performance could potentially be achieved with better
cache blocking options. However, the advantage of this schedule against ours
is marginal, which also requires both smartly designed heuristics and a more
powerful autotuner. Hence, we leave the exploration of this idea as future work.



Towards . . . Layer Fusion for CNNs on Multicore CPUs 9

Relay graph
optimization

passes

Lowering
and code

generation
passes

Module
generation

for inference

Relay graph
optimization

passes up
to FuseOps

Fuse
complex ops

Rest of
Relay graph
optimization

passes

Lowering
and code

generation
passes

Module
generation

for inference

Fig. 3: Top: TVM pipeline without complex-op fusion; Bottom: TVM pipeline
with complex-op fusion.

Compiler integration of fusion for end-to-end test To integrate the fused kernel
into end-to-end (full-CNN) tests, we need (1) a new op that defines the com-
pute of the fused conv layers in a compute graph and (2) a compiler pass that
is inserted into the pipeline to rewrite the graph for fusion. Both of these are
missing in all DL frameworks. Also, post ops like batch-normalization (BN) of
the layers being fused need to be properly handled. Since BN ops are usually
simplified to bias-adds with parameters such as mean and gamma folded into
weights for inference, we do not keep them in the compute function for our
fused-conv2D op. We simply keep the bias tensors of each layer together with
the input and weights as the inputs to the fused-conv2D op, such that the new
op is equivalent to a sub-graph of two fused layers and their post ops, e.g., dw-
conv/conv+bias-add+relu+conv+bias-add+relu. As currently most DL frame-
works fuse only element-wise ops, we must ensure that the complex-op-fusion
pass is inserted after inference simplification where ops like BN are simplified,
and before element-wise op fusion where all element-wise ops are fused.

Figure 3 presents how we leverage TVM’s existing compiler pipeline to inte-
grate our design into it. Following the above principles, we create a new Relay
op for the fused conv layers, as well as a new compiler pass to detect the fusable
patterns and rewrite them with the fused-conv2D ops. In the TVM pipeline, a
Relay compute graph is passed through passes that optimize the graph struc-
ture, and then passes for code generation, and finally module generation. We
insert the new fuse-conv pass right before the fuse-ops pass such that post ops
like bias-add ops are properly handled for the fused-conv2D, while post ops are
still normally handled for other unfused complex ops in the following fuse-ops
pass. Our fused-conv2D op is also compatible with TVM’s graph tuning [15] for
layout optimization for CPU inference.

5 Results and Analysis

We extract 33 eligible layers with batch size 1 from five CNN models, including
MobileNet-V1, MobileNet-V2, MNasNet-A1, ResNet-18, and ResNet-50. The full
list of layers can be found in Table 2. We auto-tune each kernel for 4000 iterations
using AutoTVM with XGBoost as the searching algorithm. We conduct both
throughput and roofline analysis on these workloads, and integrate them into the



10 Z. Lin, E. Georganas, and J. D. Owens

mv1
_1
mv1

_2
mv1

_3
mv1

_4
mv1

_5
mv1

_6

mv1
_7-

11

mv1
_12

mv1
_13
mv2

_1

mv2
_2_

1

mv2
_2_

2

mv2
_3_

1

mv2
_3_

2

mv2
_4_

1

mv2
_4_

2

mv2
_5_

1

mv2
_5_

2

mv2
_6_

1

mv2
_6_

2
mv2

_7

mna
1_1

mna
1_2

_1

mna
1_2

_2

mna
1_4

_1

mna
1_4

_2

mna
1_7
res

_2x
res

_3x

res
_2x

_s2

res
_3x

_s2

res
_2x

_b_
2

res
_3x

_b_
2

0.2

0.4

0.6

0.8

1.0

1.2

1.4 TVM fused
TVM separate
MKLDNN

mv1
_1
mv1

_2
mv1

_3
mv1

_4
mv1

_5
mv1

_6

mv1
_7-

11

mv1
_12

mv1
_13
mv2

_1

mv2
_2_

1

mv2
_2_

2

mv2
_3_

1

mv2
_3_

2

mv2
_4_

1

mv2
_4_

2

mv2
_5_

1

mv2
_5_

2

mv2
_6_

1

mv2
_6_

2
mv2

_7

mna
1_1

mna
1_2

_1

mna
1_2

_2

mna
1_4

_1

mna
1_4

_2

mna
1_7
res

_2x
res

_3x

res
_2x

_s2

res
_3x

_s2

res
_2x

_b_
2

res
_3x

_b_
2

0.2

0.4

0.6

0.8

1.0

1.2

1.4 TVM fused
TVM separate
MKLDNN

mv1
_1
mv1

_2
mv1

_3
mv1

_4
mv1

_5
mv1

_6

mv1
_7-

11

mv1
_12

mv1
_13
mv2

_1

mv2
_2_

1

mv2
_2_

2

mv2
_3_

1

mv2
_3_

2

mv2
_4_

1

mv2
_4_

2

mv2
_5_

1

mv2
_5_

2

mv2
_6_

1

mv2
_6_

2
mv2

_7

mna
1_1

mna
1_2

_1

mna
1_2

_2

mna
1_4

_1

mna
1_4

_2

mna
1_7
res

_2x
res

_3x

res
_2x

_s2

res
_3x

_s2

res
_2x

_b_
2

res
_3x

_b_
2

0.2

0.4

0.6

0.8

1.0

1.2

1.4 TVM fused
TVM separate
MKLDNN

Fig. 4: Throughput comparison between fused and separate kernels without post
ops, normalized with respect to MKLDNN. A “TVM fused” result of greater
than one indicates our fusion delivers better performance than MKLDNN. Top:
Intel i7 7700K (511 GFLOPS); middle: GCP Intel (711 GFLOPS); bottom:
GCP AMD (413 GFLOPS).

end-to-end tests of the five models. The experiments are conducted on one Intel
Core(TM) i7 7700K CPU @ 4.2 GHz, one Intel Xeon quad-core Google Cloud
Platform (GCP) server (unknown model with Cascade Lake microarchitecture)
@ 3.1 GHz, and one AMD EPYC 7B12 quad-core GCP server @ 2.25GHz, all
with Linux Ubuntu 18.04, Python 3.8, and PyTorch 1.8.1. We run our kernel-level
experiments for fused kernels against separate kernels shipped by MKLDNN and
those generated by AutoTVM as baselines, and model-level experiments against
the baselines of AutoTVM + graph tuner as well as MKLDNN-backed PyTorch.
For roofline analysis, we measure the DRAM bytes with PCM, and measure the
cache bytes and FLOP counts of the kernels with SDE.

Kernel-level Experiments In Figure 4, we show the throughput of all the kernels
on three platforms normalized with respect to MKLDNN in the standalone kernel
benchmark. Overall, we achieve {geomean, maximum, and minimum} speed-ups
of fused-kernel against MKLDNN-separate-kernels of {1.04X, 1.44X, and 0.53X},
and against TVM-separate-kernels of {1.24X, 2.73X, and 0.63X}. As expected,
we see that workloads with big activations in their first layer such as mv1 1,
mv2 1, mv2 2 1, etc. have higher speed-ups. Comparing all the MobileNet-V1



Towards . . . Layer Fusion for CNNs on Multicore CPUs 11

and MobileNet-V2 workloads, i.e., mv1 x and mv2 x, we can see that although
the spatial size of the activation changes almost the same way throughout the
model, e.g., 112 → 56 → 28 → 14 → 7, we see a higher overall fusion speed-
up on mv2 x than on mv1 x. This is because mv2 x tends to scale down the
channel axis between its fused layers, e.g., mv2 1 has 32 channels for its 3-by-3
dw-conv and only 16 channels for its 1-by-1 conv, while mv1 x tends to scale
up. Therefore, generally mv2 x is less compute-bound than mv1 x and in these
cases, closer to the machine balance, as we will show later. We can thus suggest
to model designers that without sacrificing accuracy, models can benefit more
from fusion if the sizes of adjacent layers are designed to have more balanced
AI. In addition, we still see a few examples where considerably compute-bound
ResNet workloads are sped up by fusion, which suggests that even compute-
bound kernels could also benefit from our methods.

Across platforms we observe that GCP Intel, the only AVX-512 CPU with the
highest peak throughput in our evaluation, achieves the highest geomean speed-
up (1.13X) on fused kernels against MKLDNN, versus (1.01X) and (0.99X) on
the other two platforms. This implies the fact that fusion works better on plat-
forms with higher peak throughput (making workloads ‘less compute-bound’).

We also plot the roofline model of all the fused and separate kernels we
test on the i7 7700K CPU in Figure 5. We treat each pair of TVM separate
kernels and MKLDNN kernels as one standalone kernel and derive its AI as
AIs = (flop1 + flop2)/(bytes1 + bytes2), where bytes1 and bytes2 are measured
memory traffic for either DRAM or cache. We observe a trend that the roofline
of the fused kernel gets closer and closer to that of the separate kernels for both
DRAM and L2, especially in workloads from mv1 1 to mv1 13 in MobileNet-
V1. This again verifies that fusion tends to get less benefit at later layers than
earlier ones. Typically, for workloads in MobileNet-V2 and MNasNet-A1 such
as mv2 2 1, mv2 3 1, etc, the fused kernels have a smaller advantage on AI
compared to their predecessor or successor workloads that have either similar
input or output feature sizes. This is because the bottleneck of these workloads
is the stride-2 access of their input feature maps that reduces the data reuse; this
bottleneck is not relieved by fusion. We also verify that overall the theoretical
peaks DRAM AI for mv2 x tend to be closer to the machine balance than mv1 x
so that they benefit more from fusion. We see that most of the fused kernels still
do not reach the theoretical peak DRAM AI and incur extra DRAM accesses,
which means there is still room for optimization by extending the schedule’s
search space. Notice that in all cases the L2 AI moves to the right, indicating
that fusion increases data reuse in L2 cache. For workloads being sped up, the
L2 AI moves towards the upper-right, which matches our expectation. Among
those not sped up, the rooflines of ResNet workloads are very close to the peak
throughput and theoretical peak fused AI intersection, matching our previous
synthetic examples that project such workloads are less likely to benefit from
fusion.

End-to-End Experiments We present the results of the end-to-end inference tests
for the five models on three CPU platforms in Table 1. For each model, we tune



12 Z. Lin, E. Georganas, and J. D. Owens

100 101 102

102

mv1_1
100 101 102

102

mv1_2
100 101 102

102

mv1_3
100 101 102

102

mv1_4
100 101 102

102

mv1_5

100 101 102

102

mv1_6
100 101 102

102

mv1_7-11
100 101 102

102

mv1_12
100 101 102

102

mv1_13
100 101 102

102

mv2_1

100 101 102

102

mv2_2_1
100 101 102

102

mv2_2_2
100 101 102

102

mv2_3_1
100 101 102

102

mv2_3_2
100 101 102

102

mv2_4_1

100 101 102

102

mv2_4_2
100 101 102

102

mv2_5_1
100 101 102

102

mv2_5_2
100 101 102

102

mv2_6_1
100 101 102

102

mv2_6_2

100 101 102

102

mv2_7
100 101 102

102

mna1_1
100 101 102

102

mna1_2_1
100 101 102

102

mna1_2_2
100 101 102

102

mna1_4_1

100 101 102

102

mna1_4_2
100 101 102

102

mna1_7
100 101 102

102

res_2x
100 101 102

102

res_3x
100 101 102

102

res_2x_s2

100 101 102

102

res_3x_s2
100 101 102

102

res_2x_b_2
100 101 102

102

res_3x_b_2

Arithmetic Intensity [FLOPs/Byte]

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

TVM fused (DRAM)
TVM separate (DRAM)
MKLDNN (DRAM)
TVM fused (L2)
TVM separate (L2)
MKLDNN (L2)

Fig. 5: Standalone kernel rooflines of all the fused and separate kernels without
post ops on the Intel i7 7700K CPU. In most cases, both DRAM and L2 AI of the
fused kernel moves towards the upper-right as fusion delivers better performance.
The left and right slopes represent the L2 bandwidth (198.9 GB/s) and DRAM
bandwidth (34.7 GB/s). The vertical blue dotted line represents the theoretical
peak DRAM AI for the fused kernel. The red and grey background mark layers
in which our fused kernel beats both and at least one, respectively.

variants of the compute graph that use a fused form of kernel pairs where we
have seen a kernel-level advantage, and for layers that fusion does not have an
advantage, e.g., mv2 7, mna1 7, etc., both fused and not fused, as the fused
version might still perform better if layout transformations are needed for the
unfused versions. Then we select the instance with the shortest inference time.
In practice, we see only a few variants per model and this tuning step is short.

In all test cases except for ResNet-18 on i7 7700K and GCP AMD, fusion
speeds up inference, with up to 3.35X against PyTorch for MobileNet-V2 on GCP
Intel and 1.29X against TVM-separate for MobileNet-V2 on GCP AMD. We
observe that the end-to-end speed-up is not exactly aligned with the aggregation
of individual kernel speed-ups. In the standalone kernel benchmark, the cache
is flushed for each iteration and the input data of layer one is always read from
DRAM. But in end-to-end tests, the output data of a layer stays in cache and



Towards . . . Layer Fusion for CNNs on Multicore CPUs 13

Table 1: End-to-end inference time (in millisecond) of five models on three CPUs.
Shortest inference time across tools are shown in bold. Fusion doesn’t apply to
ResNet-18 on GCP AMD, since the fusion performance of two 3-by-3 convs is
inferior to that of both TVM separate and MKLDNN.

CPU types Models TVM fused TVM separate PyTorch

Intel i7 7700K

MobileNet-V1 3.38 3.58 6.11
MobileNet-V2 2.44 2.92 7.28
MNasNet-A1 3.31 3.73 6.53

ResNet-18 9.69 9.35 10.58
ResNet-50 20.42 20.66 26.80

GCP Intel

MobileNet-V1 2.77 3.00 5.97
MobileNet-V2 2.35 2.89 7.88
MNasNet-A1 3.42 3.66 7.62

ResNet-18 7.17 7.24 9.79
ResNet-50 16.18 16.19 24.96

GCP AMD

MobileNet-V1 7.72 8.42 8.83
MobileNet-V2 4.65 6.01 10.23
MNasNet-A1 6.79 7.35 9.83

ResNet-18 - 15.38 15.47
ResNet-50 38.86 39.82 39.60

may allow the next layer to benefit from producer-consumer locality. Also, the
framework itself might also affect the end-to-end results.

We see that the speedups of ResNets are marginal (up to 1.02X) on all three
CPU platforms, matching our expectation that fusion for compute-bound layers
has limited benefit. We only fuse res 2x for ResNet-18, and res 2x and/or res 3x
for ResNet-50, while it is the number of res 4x that primarily drives the depth
of ResNets; thus we expect to see marginal benefit from kernel fusion on ResNets
that have more than 50 layers.

6 Conclusion and Future Works

Individual kernels, such as those inside MKLDNN or NVIDIA’s cuDNN, are
highly optimized. They set a high bar for the implementation of fused kernels.
One conclusion we draw is that the benefits of fusion are dependent on both
the characteristics of the workloads and the CPU on which they are run, and
the benefits of fusion are difficult to predict and, at this point, require actually
implementing and running the kernels.

In future work, we hope to integrate the idea of fusion with TVM’s autosched-
uler [26] so as to leverage its power to search for high-performance schedules for
fused layers. Next, we plan to target the compiler level to enable intermediate
padding so that fusion can be extended to more layer types. Finally, we would
also like to study fusion for the cases when batch size is greater than 1.



14 Z. Lin, E. Georganas, and J. D. Owens

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R.,
Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden,
P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system for large-scale ma-
chine learning. In: Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation. p. 265–283. OSDI’16, USA (2016).
https://doi.org/10.5555/3026877.3026899

2. Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.M., Gharbi, M., Steiner, B.,
Johnson, S., Fatahalian, K., Durand, F., et al.: Learning to optimize Halide with
tree search and random programs. ACM Transactions on Graphics 38(4), 1–12
(Jul 2019). https://doi.org/10.1145/3306346.3322967

3. Alwani, M., Chen, H., Ferdman, M., Milder, P.: Fused-layer CNN accelerators.
In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO) (Oct 2016). https://doi.org/10.1109/micro.2016.7783725

4. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang,
C., Zhang, Z.: MXNet: A flexible and efficient machine learning library for hetero-
geneous distributed systems. CoRR abs/1512.01274 (Dec 2015)

5. Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E.Q., Wang, L., Hu, Y., Ceze, L.,
Guestrin, C., Krishnamurthy, A.: TVM: end-to-end optimization stack for deep
learning. CoRR abs/1802.04799 (Feb 2018)

6. Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L., Guestrin, C., Krish-
namurthy, A.: Learning to optimize tensor programs. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. p. 3393–3404.
NIPS’18, Red Hook, NY, USA (2018). https://doi.org/10.5555/3327144.3327258

7. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catan-
zaro, B., Shelhamer, E.: cuDNN: Efficient primitives for deep learning. CoRR
abs/1410.0759 (Oct 2014)

8. Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D., Henry, G., Pabst,
H., Heinecke, A.: Anatomy of high-performance deep learning convolutions
on simd architectures. In: SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 830–841 (Nov 2018).
https://doi.org/10.1109/sc.2018.00069

9. Georganas, E., Banerjee, K., Kalamkar, D., Avancha, S., Venkat, A., Anderson, M.,
Henry, G., Pabst, H., Heinecke, A.: Harnessing deep learning via a single building
block. In: 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). pp. 222–233 (2020). https://doi.org/10.1109/IPDPS47924.2020.00032

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

11. Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: Accelerating small
matrix multiplications by runtime code generation. In: SC16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 981–991 (2016). https://doi.org/10.1109/SC.2016.83

12. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR abs/1704.04861 (Apr 2017)

13. Jia, Z., Thomas, J., Warszawski, T., Gao, M., Zaharia, M., Aiken, A.: Optimizing
DNN computation with relaxed graph substitutions. In: Talwalkar, A., Smith, V.,
Zaharia, M. (eds.) Proceedings of Machine Learning and Systems. pp. 27–39 (2019)



Towards . . . Layer Fusion for CNNs on Multicore CPUs 15

14. Lavin, A.: Fast algorithms for convolutional neural networks. CoRR
abs/1509.09308 (Sep 2015)

15. Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., Wang, Y.: Optimizing CNN
model inference on CPUs. p. 1025–1040. USENIX ATC ’19, USA (2019).
https://doi.org/10.5555/3358807.3358895

16. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through ffts. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings (2014)

17. Mullapudi, R.T., Adams, A., Sharlet, D., Ragan-Kelley, J., Fatahalian, K.:
Automatically scheduling halide image processing pipelines 35(4) (Jul 2016).
https://doi.org/10.1145/2897824.2925952

18. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32, pp. 8024–8035 (2019)

19. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand,
F.: Decoupling algorithms from schedules for easy optimization of image pro-
cessing pipelines. ACM Transactions on Graphics 31(4), 32:1–32:12 (Jul 2012).
https://doi.org/10.1145/2185520.2185528

20. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: A language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 519–530.
PLDI ’13 (Jun 2013). https://doi.org/10.1145/2491956.2462176

21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018).
https://doi.org/10.1109/CVPR.2018.00474

22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethink-
ing the Inception architecture for computer vision. In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (Jun 2016).
https://doi.org/10.1109/cvpr.2016.308

23. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,
Le, Q.V.: Mnasnet: Platform-aware neural architecture search for mobile.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 2815–2823. Los Alamitos, CA, USA (Jun 2019).
https://doi.org/10.1109/CVPR.2019.00293

24. Wang, X., Li, G., Dong, X., Li, J., Liu, L., Feng, X.: Accelerating deep learning
inference with cross-layer data reuse on GPUs. In: Euro-Par 2020: Parallel Pro-
cessing. pp. 219–233 (2020). https://doi.org/10.1007/978-3-030-57675-2 14

25. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52, 65–76 (Apr 2009).
https://doi.org/10.1145/1498765.1498785

26. Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C.H., Haj-Ali, A., Wang, Y., Yang, J.,
Zhuo, D., Sen, K., Gonzalez, J.E., Stoica, I.: Ansor: Generating high-performance
tensor programs for deep learning. In: 14th USENIX Symposium on Operating
Systems Design and Implementation. pp. 863–879. OSDI 2020 (Nov 2020)



16 Z. Lin, E. Georganas, and J. D. Owens

Table 2: Layer table. Input sizes are in (N,H,W,C) format, while layer configs
are (filter HW, output channel or multiplier, stride HW, layer type, post op).
Layers that do not benefit from fusion are crossed out and not shown in the
result section.

Models name input layer 1 layer 2

MobileNet-V1

mv1 1 (1, 112, 112, 32) (3, 1, 1, dw-conv, relu) (1, 64, 1, conv, relu)
mv1 2 (1, 112, 112, 64) (3, 1, 2, dw-conv, relu) (1, 128, 1, conv, relu)
mv1 3 (1, 56, 56, 128) (3, 1, 1, dw-conv, relu) (1, 128, 1, conv, relu)
mv1 4 (1, 56, 56, 128) (3, 1, 2, dw-conv, relu) (1, 256, 1, conv, relu)
mv1 5 (1, 28, 28, 256) (3, 1, 1, dw-conv, relu) (1, 256, 1, conv, relu)
mv1 6 (1, 28, 28, 256) (3, 1, 2, dw-conv, relu) (1, 512, 1, conv, relu)

mv1 7-11 (1, 14, 14, 512) (3, 1, 1, dw-conv, relu) (1, 512, 1, conv, relu)
mv1 12 (1, 14, 14, 512) (3, 1, 2, dw-conv, relu) (1, 1024, 1, conv, relu)
mv1 13 (1, 7, 7, 1024) (3, 1, 1, dw-conv, relu) (1, 1024, 1, conv, relu)

MobileNet-V2

mv1 1 (1, 112, 112, 32) (3, 1, 1, dw-conv, relu6) (1, 16, 1, conv, bias)
mv2 2 1 (1, 112, 112, 96) (3, 1, 2, dw-conv, relu6) (1, 24, 1, conv, bias)
mv2 2 2 (1, 56, 56, 144) (3, 1, 1, dw-conv, relu6) (1, 24, 1, conv, bias)
mv2 3 1 (1, 56, 56, 144) (3, 1, 2, dw-conv, relu6) (1, 32, 1, conv, bias)
mv2 3 2 (1, 28, 28, 192) (3, 1, 1, dw-conv, relu6) (1, 32, 1, conv, bias)
mv2 4 1 (1, 28, 28, 192) (3, 1, 2, dw-conv, relu6) (1, 64, 1, conv, bias)
mv2 4 2 (1, 14, 14, 384) (3, 1, 1, dw-conv, relu6) (1, 64, 1, conv, bias)
mv2 5 1 (1, 14, 14, 384) (3, 1, 1, dw-conv, relu6) (1, 96, 1, conv, bias)
mv2 5 2 (1, 14, 14, 576) (3, 1, 1, dw-conv, relu6) (1, 96, 1, conv, bias)
mv2 6 1 (1, 14, 14, 576) (3, 1, 2, dw-conv, relu6) (1, 160, 1, conv, bias)
mv2 6 2 (1, 7, 7, 960) (3, 1, 1, dw-conv, relu6) (1, 160, 1, conv, bias)
mv2 7 (1, 7, 7, 960) (3, 1, 1, dw-conv, relu6) (1, 320, 1, conv, bias)

MNasNet-A1

mna1 1 (1, 112, 112, 32) (3, 1, 1, dw-conv, relu) (1, 16, 1, conv, bias)
mna1 2 1 (1, 112, 112, 96) (3, 1, 2, dw-conv, relu) (1, 24, 1, conv, bias)
mna1 2 2 (1, 56, 56, 144) (3, 1, 1, dw-conv, relu) (1, 24, 1, conv, bias)
mna1 4 1 (1, 28, 28, 240) (3, 1, 2, dw-conv, relu) (1, 80, 1, conv, bias)
mna1 4 2 (1, 14, 14, 480) (3, 1, 1, dw-conv, relu) (1, 80, 1, conv, bias)
mna1 7 (1, 7, 7, 960) (3, 1, 1, dw-conv, relu) (1, 320, 1, conv, bias)

MNasNet-B1

mnb1 3 1 (1, 56, 56, 72) (5, 1, 2, conv, relu) (1, 40, 1, conv, bias)
mnb1 3 2 (1, 28, 28, 240) (5, 1, 1, conv, relu) (1, 40, 1, conv, bias)
mnb1 5 1 (1, 14, 14, 480) (3, 1, 1, conv, relu) (1, 112, 1, conv, bias)
mnb1 5 2 (1, 14, 14, 672) (3, 1, 1, conv, relu) (1, 112, 1, conv, bias)
mnb1 6 1 (1, 14, 14, 672) (5, 1, 2, conv, relu) (1, 160, 1, conv, bias)
mnb1 6 2 (1, 7, 7, 960) (5, 1, 1, conv, relu) (1, 160, 1, conv, bias)

ResNet-18

res 2x (1, 56, 56, 64) (3, 64, 1, conv, relu) (3, 64, 1, conv, bias)
res 3x (1, 28, 28, 128) (3, 128, 1, conv, relu) (3, 128, 1, conv, bias)
res 4x (1, 14, 14, 256) (3, 256, 1, conv, relu) (3, 256, 1, conv, bias)
res 5x (1, 7, 7, 512) (3, 512, 1, conv, relu) (3, 512, 1, conv, bias)

res 2x s2 (1, 56, 56, 64) (3, 64, 2, conv, relu) (3, 64, 1, conv, bias)
res 3x s2 (1, 28, 28, 128) (3, 128, 2, conv, relu) (3, 128, 1, conv, bias)
res 4x s2 (1, 14, 14, 256) (3, 256, 2, conv, relu) (3, 256, 1, conv, bias)
res 5x s2 (1, 7, 7, 512) (3, 512, 2, conv, relu) (3, 512, 1, conv, bias)

ResNet-50

res 2x b 2 (1, 56, 56, 64) (3, 64, 1, conv, relu) (1, 256, 1, conv, relu)
res 3x b 2 (1, 28, 28, 128) (3, 128, 1, conv, relu) (1, 512, 1, conv, relu)
res 4x b 2 (1, 14, 14, 256) (3, 256, 1, conv, relu) (1, 1024, 1, conv, relu)
res 5x b 2 (1, 7, 7, 512) (3, 512, 1, conv, relu) (1, 2048, 1, conv, relu)


