
EasyChair Preprint
№ 5511

0-1 Knapsack Problem Using Genetic Algorithm

Aashutosh Bansal, Himanshu Gadia, Sanivarapu Dhanusha and
Anil Pandey

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 13, 2021

Solving 0-1 Knapsack Problem using Genetic

Algorithm

Aashutosh Bansal1, Himanshu Gadia1, S. Dhanusha1, Anil Pandey1

1Department of Information Technology, National Institute of Technology Raipur India

Abstract- This paper alludes to taking care of 0-1

knapsack issue utilizing genetic algorithms (GA).

Knapsack algorithm is a NP (Non-deterministic

Polynomial) issue. By utilizing GA streamlining is

performed. This paper contains three areas. In the

principal area a short portrayal of GAs and a portion of

its nuts and bolts. In the following segment execution of

the knapsack issue is finished by utilizing genetic

algorithms. The essential motivation behind this

examination paper is to carry out 0-1 knapsack issues

dependent on genetic algorithms. In the forthcoming

piece of paper fitness function is utilized to decide the

fitness and incentive for the succeeding populaces with

the simple desire to track down the most right

arrangement and the results were noticed.

Keywords- Genetic Algorithm, knapsack problem,

Selection operators, nondeterministic polynomial

I. INTRODUCTION

 A bunch of things is given with each having its own

value and weight. This algorithm decides the quantity of

everything we can incorporate with the goal that the absolute

weight should be not exactly or equivalent to the limit of

knapsack and augmentation of all out value. As this

technique is 0-1 knapsack so dissimilar to partial knapsack

no things will come in division. Either a thing will

incorporate or not. That is the reason the name 0-1 knapsack.

This paper utilizes the genetic algorithm for

addressing 0-1 knapsack algorithm to expand the absolute

value and lessening the all-out weight so it should be not

exactly the limit of knapsack. Anyway Knapsack issue is a

contributor to NP issue which alludes to time complexity

since more the absolute amount of things will be the time

taken. As we probably are aware this issue can't be tackled

in direct time anyway the arrangement of this issue can be

confirmed in straight time. The ordinarily utilized

methodologies utilized for tackling these issues are

Dynamic Programming (DP), Greedy technique and so forth

however as we probably are aware they are not productive.

The Dynamic methodology has a complexity of O (n3) while

the Greedy strategy doesn't meet an ideal arrangement.

 So by using genetic algorithms may have an edge

over these above mentioned traditional topics and may lead

to more efficient and optimum solutions.

II. LITERATURE REVIEW

S. o.S. No. S.

No

Title of the paper Publisher Methods used Result

1 Arish Pitchai et al., 2015 IEEE Quantum walk genetic

algorithm(QWGA), Greedy
genetic algorithm (GGA)

QWGA is better than GGA.

2 Ravneil Nand et al., 2019 IEEE Firefly Algorithm(FA) + Genetic
Algorithm(GA)

The FAGA model worked
quite well on

multidimensional knapsack

problems.

3 Indresh Kumar Gupta, 2018 IEEE Genetic algorithm(GA) ,

gravitational search
algorithm(GSA)

Hybrid model of GSA-GA is

used for solving
multidimensional knapsack

problems.

4 Mojtaba Montazeri et al., 2017 IEEE GA + restart genetic

algorithm(RGA)

Proposed GA has enhanced

speed and performance.

5 Vikas Thada et al., 2014 Stochastic Uniform, Remainder,

Roulette, Tournament, Uniform

Selections

Roulette Selection has least

performance.

6 Rattan Preet Singh et al., 2011 IEEE Stochastic, Roulette wheel,
Tournament, Selections

Solved knapsack problem in
linear amount of time.

7 Tribikram Pradhan et al., 2014 IEEE Genetic Algorithm, Rough Set
Theory Hybrid Algorithm

The hybrid rough set theory
has better performance than

GA.

8 Abdellah Rezoug et al., 2017 IEEE Genetic algorithm guided by

Pretreatment information(GAGP)

GAGP is an Improved model

for GA.

9 Frumen Olivas et al., 2020 IEEE Fuzzy- based selection hyper-

heuristic approach

Proposed method obtained

better result than low-level

and traditional selection

hyper-heuristics.

III. THEORY

A. The Basic Structure of a Genetic Algorithm

1) [Start] Generate random population of n chromosomes

(suitable solutions for the problem

2) [Fitness] Evaluate the fitness f(x) of each chromosome

x in the population

3) [Test] If the end condition is satisfied, stop and return

the population. If not, generate a new population.

4) [New population] Create a new population by

repeating following steps until the new population is

complete:

i. [Selection] Select two parent chromosomes from

a population according to their fitness (the better

fitness, the bigger chance to be selected)

ii. [Crossover] With a crossover probability cross

over the parents to form a new offspring

(children). If no crossover was performed,

offspring is an exact copy of parents.

iii. [Mutation] With a mutation probability mutates

new offspring at each locus (position in

chromosome).

iv. [Accepting] Place new offspring in a new

population

5) [Replace] Use new generated population for a further

run of algorithm

6) [Loop] Go to the Fitness step

B. Chromosomes

Chromosomes express an expected testament through

an encoding like double, values, or trees. For the 0-1

knapsack issue, we will utilize a double exhibit to

communicate which things of the knapsack will be added

(1's) and which will be excluded (0's).

1) Start

We produce an underlying population by making

irregular varieties of 1's and 0's. The population size is

determined by the client. A bigger population size will

hinder the algorithm however take into account more genetic

variety. Bigger populations, nonetheless, are typically

quicker at joining to an answer and less helpless to

neighborhood maximums. We picked a population size of

100 chromosomes after some experimentation [1]. As you

will find later, there is no basically "right" arrangement of

variables, for instance, population size, mutation rate, or

most prominent generations, just certain blends that achieve

better results.

2) Fitness

This movement evaluates how "fit" each chromosome is

tantamount to the specific issue. For the 0-1 knapsack, the

chromosomes are each situated by the total weight of the

knapsack. If the weight of a specific chromosome is higher

than the most limited weight, a discretionary 1-value is

changed and the chromosome is rethought until it doesn't

outperform the best. The fitness of each chromosome in the

population is taken care of in a show. An intriguing note is

that the fitness function abuses the NP-complete-ness of the

knapsack issue, that is, a confirmation is checkable in

polynomial time [1].

3) New Population

Another population (in like manner called a generation) is

made by "mating" the fittest chromosomes of the population.

i. Selection

The chromosomes are picked such that those with

a higher fitness will undoubtedly be picked as mates. Such a

selection that we did is called roulette-wheel selection,

anyway various techniques for selection like position

selection, pack selection, and predictable state selection

exist. Roulette-wheel selection picks a self-assertive number

among 0 and the measure of the finesses. By then,

underscoring through the fitness show, we deduct each

individual fitness from our sporadic number until the

number is more critical than or identical to nothing.

Whatever chromosome we stop on is picked to mate. Not at

all like nature, we can use a system called elitism, and copy

the fittest chromosome thus from the population to the new

generation. Elitism is a crucial practice to ensure that we join

in on an answer.

ii. Crossover

The crossover is analogous to biological “mating”

of species. Our virtual chromosomes, however, are not

double helices but a single strand of binary. The crossover

function takes two “parents” and creates a new chromosome

by splicing parts of one with parts of another. These are two

examples of crossovers.

We utilized single point crossover for our

execution. For each set of guardians an arbitrary rotate point

is picked and the pieces up to that turn point are traded,

making two new kid chromosomes. We additionally decided

to do 100% crossover for straightforwardness (beside the

world class chromosome). Some genetic algorithms with

85% crossover, for example, will copy 15% of the old

population to the new population [1].

iii. Mutation

The mutation function, like self-assertive

mutations in nature, keeps our populations genetically

various. In our algorithm, mutations keep our movement of

generations away from meeting at a neighborhood most

noteworthy. The mutation function goes through the entirety

of the new chromosomes and learns whether to flip the piece

subject to a little probability.

We picked a 1% probability for mutation reliant

upon experimentation. Having too immense a mutation

probability will cause the generations to be genetically

unstable, and it will take more effort to join on an answer.

(Recall that 100% mutation is essentially making an

unpredictable chromosome.) Too low of a mutation rate will

keep the population got in the genetic possibilities of the first

[2].

4) Test & Loop

In the wake of being created, the new population

replaces the old population. The fitness of the population is

determined at that point and tries to check whether an end

condition is fulfilled. In our algorithm we tried for a

combination factor of 90% or a most extreme number of

generations came to. We found that extending the most

extreme number of generations relating to different

occasions the data size helped scale the algorithm to greater

information sources [1]. If the end condition isn't reached,

the algorithm continues surrounding, creating another

population and testing again.

IV. COMPLEXITY

Since we decided the best number of generations, the

complexity of our program has a polynomial O(n) upper

bound. Making the fundamental population takes O(n). Both

the crossover and mutation functions underline over each

chromosome once, taking O(n) time copied by the

consistency of the population size. In this way the circle

takes O(n) time. This circle will run a limit of 10*n

occasions, making the all-out complexity of our algorithm

O(n2). This lines up with our experimentation on the running

time. We ran 10 preliminaries, with n = 10, 20, …,100.

Every preliminary comprised 10 arrangements of

haphazardly created contributions of size n, and information

was then tried multiple times. A normal of the running time

was assuming control over the 10 reiterations of the 10 sets

for every preliminary. The normal deviation and percent

deviation of the arrangements was additionally determined

for each set.

As should be obvious, the running time shows a

force bend. The best fit force bend ascertains a rough real

running season of n1.7 which is inside our O(n2) bound.

Degree of Approximation

Since our genetic 0-1 knapsack algorithm is an

assessment, something vital for note is the ordinary

deviation of the made plans at different data sizes.

We found that at whatever point the greatest weight

for the knapsack was minuscule (with an answer of generally

0's) the normal deviation could be up to 42%. This is

probably because of the manner in which all chromosomes

are adjusted so they fit under the most extreme weight before

the new population is produced. One possible approach to

handle this later on is to consider chromosomes with above-

most extreme weights to exist in the population, however

with simply a higher fitness punishment for surpassing the

breaking point. In the wake of eliminating the conspicuous

anomalies, our percent deviation is as per the following:

As should be obvious, the percent deviation of the

appropriate responses increments with the information size.

A potential method to battle this is to raise the greatest

number of generations, albeit this will expand the running

season of the algorithm.

V. CONCLUSIONS

Sometimes we needn't mess with the best game plan

yet a near best-course of action. Various NP-complete

issues, similar to 0-1 knapsack issues, can be approximated

by imitating the computational power of advancement in the

normal world. Genetic algorithms themselves are really

adaptable to the prerequisites of the customer, with various

elements, for instance, population size, association factor,

most limited generations, mutation rate, and crossover

extent that can be adjusted for better results. There are in like

manner different strategies for executing the essential

development of the algorithms, for instance, the

chromosome encoding or selection factor. Further

examinations could attempt to explore the different mixes of

such choices on the 0-1 knapsack or other NP-complete

issues.

REFERENCES

1. “Solving the 0-1 Knapsack Problem with Genetic

Algorithms” by Maya Hristakev and Dipti Shresth

(http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/

AG-knapsack.pdf)

2. A. Pitchai, A. V. Reddy and N. Savarimuthu, "Quantum

Walk based genetic algorithm for 0–1 quadratic

knapsack problem," 2015 International Conference on

Computing and Network Communications (CoCoNet),

Trivandrum, India, 2015, pp. 283-287, doi:

10.1109/CoCoNet.2015.7411199.

3. R. Nand and P. Sharma, "Iteration split with Firefly

Algorithm and Genetic Algorithm to Solve

Multidimensional Knapsack Problems," 2019 IEEE

Asia-Pacific Conference on Computer Science and

Data Engineering (CSDE), Melbourne, VIC, Australia,

2019, pp. 1-7, doi:

10.1109/CSDE48274.2019.9162422.

4. I. K. Gupta, "A hybrid GA-GSA algorithm to solve

multidimensional knapsack problem," 2018 4th

International Conference on Recent Advances in

Information Technology (RAIT), Dhanbad, India, 2018,

pp. 1-6, doi: 10.1109/RAIT.2018.8389069.

5. Lu, Fan & Liu, Dong & Liu, Yang & Li, Zhenwei &

Jiang, Qilong & Chen, Yuanlong. (2020). A Study on

Low-Temperature Model Parameter Identification of

LTO Battery by Cuckoo Search. 490-494.

10.1109/ICIEA48937.2020.9248168.

6. V Thada, S Dhaka - International Journal of Computer

Applications 2014

(https://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.679.466&rep=rep1&type=pdf)

7. R. P. Singh, "Solving 0–1 Knapsack problem using

Genetic Algorithms," 2011 IEEE 3rd International

Conference on Communication Software and Networks,

Xi'an, China, 2011, pp. 591-595, doi:

10.1109/ICCSN.2011.6013975.

http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/AG-knapsack.pdf
http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/AG-knapsack.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.466&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.466&rep=rep1&type=pdf

8. T. Pradhan, A. Israni and M. Sharma, "Solving the 0–1

Knapsack problem using Genetic Algorithm and Rough

Set Theory," 2014 IEEE International Conference on

Advanced Communications, Control and Computing

Technologies, Ramanathapuram, India, 2014, pp. 1120-

1125, doi: 10.1109/ICACCCT.2014.7019272.

9. A. Rezoug, M. Bader-El-Den and D. Boughaci,

"Knowledge-based Genetic Algorithm for the 0–1

Multidimensional Knapsack Problem," 2017 IEEE

Congress on Evolutionary Computation (CEC),

Donostia, Spain, 2017, pp. 2030-2037, doi:

10.1109/CEC.2017.7969550.

10. Olivas, Frumen & Amaya, Ivan & Ortiz-Bayliss, José

Carlos & Conant-Pablos, Santiago & Terashima-Marín,

Hugo. (2021). Enhancing Hyper-heuristics for the

Knapsack Problem through Fuzzy Logic.

Computational Intelligence and Neuroscience. 2021. 1-

17. 10.1155/2021/8834324.

