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Abstract

Goldbach's conjecture is one of the most di�cult unsolved problems in
mathematics. This states that every even natural number greater than
2 is the sum of two prime numbers. The Goldbach's conjecture has been
veri�ed for every even number N ≤ 4 · 1018. In this note, we prove
that for every even number N ≥ 4 · 1018, if there is a prime p and
a natural number m such that n < p < N − 1, p + m = N ,

N
σ(m)

+n0.889+1+m−1
2

≥ n and p is coprime withm, thenm is neces-

sarily a prime number when N = 2 ·n and σ(m) is the sum-of-divisors
function of m. The previous inequality N

σ(m)
+n0.889 +1+ m−1

2
≥ n

holds whenever N
eγ ·m·log log m

+n0.889 +1+ m−1
2

≥ n also holds and
m ≥ 11 is an odd number, where γ ≈ 0.57721 is the Euler-Mascheroni
constant and log is the natural logarithm. We use the Lean Program-
ming Language to show that this inequality always holds for some natural
number m ≥ 11 and every even number N > 4 · 1018. In this
way, we prove that the Goldbach's conjecture is true using the arti�cial
intelligence tools of the math library of Lean 4 as a proof assistant.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. De�ne s(n) as σ(n)
n . In number

theory, the p-adic order of an integer n is the exponent of the highest power of
the prime number p that divides n. It is denoted νp(n). Equivalently, νp(n) is
the exponent to which p appears in the prime factorization of n. We can state
the sum-of-divisors function of n as

σ(n) =
∏
p|n

pνp(n)+1 − 1

p− 1

with the product extending over all prime numbers p which divide n. In
addition, the well-known Euler's totient function φ(n) can be formulated as

φ(n) = n ·
∏
p|n

(
1− 1

p

)
.

The Goldbach's conjecture has been veri�ed for every even number N ≤ 4 ·
1018 [1]. In mathematics, two integers a and b are coprime, if the only positive
integer that is a divisor of both of them is 1. Putting all together yields the
proof of the main theorem.

Theorem 1 For every even number N ≥ 4 ·1018, if there is a prime p and a natural

number m such that n < p < N−1, p+m = N , N
σ(m)

+n0.889+1+m−1
2 ≥ n and p is

coprime with m, then m is necessarily a prime number when N = 2 ·n. The previous

inequality N
σ(m)

+n0.889 +1+ m−1
2 ≥ n holds whenever N

eγ ·m·log logm +n0.889 +1+
m−1
2 ≥ n also holds and m ≥ 11 is an odd number, where γ ≈ 0.57721 is the Euler-

Mascheroni constant and log is the natural logarithm. Using this last inequality and

the arti�cial intelligence tools of the math library of Lean 4 as a proof assistant, we

prove that the Goldbach's conjecture is true.

2 Proof of Theorem 1

Proof Suppose that there is an even number N ≥ 4 · 1018 which is not a sum of two
distinct prime numbers. We consider all the pairs of positive integers (n− k, n+ k)
where n = N

2 , k < n− 1 is a natural number, n+ k and n− k are coprime integers
and n+ k is prime. By de�nition of the functions σ(x) and φ(x), we know that

2 ·N = σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

when n− k is also prime. We notice that

2 ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))
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when n − k is not a prime. Certainly, we see that (n − k) + (n + k) = N and thus,
the inequality

2 · ((n− k) + (n+ k)) + φ((n− k) · (n+ k)) < σ((n− k) · (n+ k))

holds when n− k is not a prime. That is equivalent to

2 · ((n− k) + (n+ k)) + φ(n− k) · φ(n+ k) < σ(n− k) · σ(n+ k)

since the functions σ(x) and φ(x) are multiplicative. Let's divide both sides by (n−
k) · (n+ k) to obtain that

2 ·
(
(n− k) + (n+ k)

(n− k) · (n+ k)

)
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
< s(n− k) · s(n+ k).

We know that
s(n− k) · s(n+ k) > 1

since s(m) > 1 for every natural number m > 1 [2]. Moreover, we could see that

2 ·
(
(n− k) + (n+ k)

(n− k) · (n+ k)

)
=

2

n+ k
+

2

n− k

and therefore,

1 >
2

n+ k
+

2

n− k
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
.

It is enough to see that

1 >
2

2 · 1018
+

2

9
+

2

3
≥ 2

n+ k
+

2

n− k
+

φ(n− k)

n− k
· φ(n+ k)

n+ k

when n+ k is prime and n− k is composite for N ≥ 4 · 1018. Indeed, when n+ k is
prime and n− k is composite, then n+ k > 2 · 1018 and n− k ≥ 9 for N ≥ 4 · 1018.
Under our assumption, all these pairs of positive integers (n− k, n+ k) imply that

2 ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

holds whenever n = N
2 , k < n− 1 is a natural number, n+ k and n− k are coprime

integers and n+ k is prime. Hence, we have

N <
1

2
· (σ(n− k) · σ(n+ k)− φ(n− k) · φ(n+ k)) .

Since n+ k is prime, then

φ(n+ k)

1 + n0.889
=

n+ k − 1

1 + n0.889

≥ n

1 + n0.889

≥ 2 ·
(
eγ · log log(n− 1) +

2.5

log log(n− 1)

)2

≥ 2 ·
(
eγ · log log(n− k) +

2.5

log log(n− k)

)2

> 2 ·
(

n− k

φ(n− k)

)2

=
n− k

φ(n− k)
· 2 ·

∏
q|(n−k)

(
q

q − 1

)
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> s(n− k) · 2 ·
∏

q|(n−k)

(
q

q − 1

)

=
2 · σ(n− k)

(n− k) ·
∏

q|(n−k)

(
1− 1

q

)
=

2 · σ(n− k)

φ(n− k)

when we know that b
φ(b)

< eγ · log log(b) + 2.5
log log(b)

holds for every odd number

b ≥ 3 [3]. Moreover, we have

n

1 + n0.889
≥ 2 ·

(
eγ · log log(n− 1) +

2.5

log log(n− 1)

)2

for every natural number n ≥ 2 · 1018 under the supposition that N ≥ 4 · 1018.
Certainly, the function

f(x) =
x

1 + x0.889
− 2 ·

(
eγ · log log(x− 1) +

2.5

log log(x− 1)

)2

is strictly increasing and positive for every real number x ≥ 2 · 1018 because of its
derivative is greater than 0 for all x ≥ 2 ·1018 and it is positive in the value of 2 ·1018.
Furthermore, it is known that

∏
q|b

(
q

q−1

)
= b

φ(b)
> s(b) =

σ(b)
b for every natural

number b ≥ 2 [2]. Finally, we would have that

−1

2
· φ(n− k) · φ(n+ k) < −σ(n− k) · (1 + n0.889)

and so,

N <
1

2
· σ(n− k) · σ(n+ k)− σ(n− k) · (1 + n0.889).

We would have
N

σ(n− k)
+ n0.889 + 1 <

σ(n+ k)

2
which is

N

σ(n− k)
+ n0.889 + 1 +

n− k − 1

2
< n.

In this way, we obtain a contradiction when we assume that N
σ(n−k)

+ n0.889 + 1 +
n−k−1

2 ≥ n. By reductio ad absurdum, the natural number n − k is necessarily

prime when N
σ(n−k)

+ n0.889 + 1 + n−k−1
2 ≥ n. Moreover, we know that σ(b) <

eγ · b · log log b holds for every odd number b ≥ 11 [2]. Consequently, the inequality
N

σ(n−k)
+ n0.889 + 1 + n−k−1

2 ≥ n holds whenever N
eγ ·(n−k)·log log(n−k)

+ n0.889 +

1+ n−k−1
2 ≥ n also holds and (n− k) ≥ 11 is an odd number. We use the following

Lean Programming Language Code to show that this last inequality always holds
for some natural number m ≥ 11 and every even number N > 4 · 1018. Certainly,
we only need to check using the constant 2

eγ > 1.1229 and starting for the variable

bound = 2 · 1018 = 2000000000000000000 whether the proposition

∀n ∈ N, ∃k ∈ N : (n > bound) → (n− k ≥ 11 ∧H(n, k) >= 0 ∧ (n+ k) is Prime)

is true when

H(n, k) = 1.1229 · n

(n− k) · log log(n− k)
+ n0.889 + 1 +

n− k − 1

2
− n.

It is fact that if H(n, k) >= 0 holds and n + k is a prime, then we obtain that
necessarily n− k is also prime when n− k ≥ 11.
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import Mathlib.Data.Nat.Prime

import Mathlib.Data.Real.Basic

import Mathlib.Analysis.SpecialFunctions.Pow.Real

import Mathlib.Analysis.SpecialFunctions.Log.Basic

import Mathlib.Data.Bool.Basic

/-- Lean proof. -/

structure Proof (p : Prop) : Type where

proof : p

/-- Goldbach function. -/

noncomputable def H (n k : R): R :=

let m: R := n - k

let myexp: R := n^0.889

let myconst: R := 1.1229

let mylog: R := Real.log m

let myloglog: R := Real.log mylog

let mydivisor: R := myloglog/myconst

let myfraction: R := n/m

let value: R := myfraction/mydivisor + myexp + (m - 1)/2 + 1.0 - n

value

/-- Goldbach conjecture. -/

theorem Goldbach_Proof: Type :=

let bound: N := 2000000000000000000

Proof (∀ n: N, ∃ k: N, (n > bound) → (n - k >= 11 && (H n k) >= 0

&& Nat.Prime (n + k)))

#check Goldbach_Proof

In this way, we prove that the Goldbach's conjecture is true using the arti�cial
intelligence tools of the math library of Lean 4 as a proof assistant [4]. □
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