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Abstract. The advancement of deep learning has signi�cantly increased
the e�ciency of picture dehazing techniques. Convolutional neural net-
works can't, however, be implemented on portable FPGA devices be-
cause to their high computing, storage, and energy needs. In this paper,
we propose a generic solution for image dehazing from CNN models to
mobile FPGAs. The proposed solution designs lightweight network using
depth-wise separable convolution and channel attention mechanism, and
uses an accelerator to increase the system's processing e�ciency. We
implemented the entire system on a custom and low-cost FPGA SOC
platform (Xilinx Inc. ZYNQTM XC7Z035). Experiments can conclude
that our approach has compatible performance to GPU-based methods
with much lower resource usage.

Keywords: FPGA-based Dehazing · Lightweight Network.

1 Introduction

Images captured by cameras can have poor visibility due to the loss of saturation
and contrast caused by the presence of cloudy media such as water vapour, mist,
dust and smoke in the atmosphere. With these hazy images as input, autonomous
systems such as self-driving cars, intelligent tra�c surveillance and unmanned
aerial vehicles face degraded performance or severe failures. In addition these
systems are used in scenarios where e�ciency and low power consumption are
sought. Therefore, a dedicated dehazing hardware solution is required to meet
these limitations.

Early hardware systems for image dehazing were only designed to speed
up software algorithms. Lu et al.[1] combines dark channel prior algorithm to
implement an improved fast image dehazing system on a DSP embedded plat-
form. In particular, the system's computing e�ort is drastically lowered while
yet maintaining the highest possible image quality. However, as camera technol-
ogy continues to evolve and the resolution of images becomes higher and higher,
DSP-based hardware systems struggle to keep up with the speed of image pro-
cessing. To enhance the apparent size of various objects in a depth picture,
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Kasauka[2] installs a multi-scale retinex approach using an FPGA. However,
when the haze concentration is not uniformly distributed, the image dehazing
e�ect will be unsatisfactory. With the low-power �exibility of FPGAs, Ju et al.[3]
successfully dehaze photos using the dark channel prior approach, but processes
low-resolution images and still lacks the ability to process high-de�nition images.

In all, FPGA-based image dehazing system promises for a universal solution
to FPGAs with high image de�ntion. The hardware implementation of deep
learning based image dehazing algorithms is constrained by the on-chip mem-
ory. Both the image frames and the hardware resources required to implement
the dehazing logic need to be stored in on-chip memory. When implementing
image dehazing algorithms in hardware, it is a challenging task to perform com-
plex mathematical operations with minimal logic resources without compromis-
ing the quality of the output image. In this study, we implemented a convolu-
tional accelerator and a lightweight end-to-end neural network for the FPGA.
The processing speed of the system is increased while ensuring the dehazing ef-
fect.Lightweight networks can utilise fewer hardware resources. It also requires
less consideration when deploying on hardware and enables faster deployment
on the hardware side.

2 Related Work

The primary available approaches may be roughly categorized as prior-based
and deep learning-based methods, with the goal of single picture dehazing
being to restore a hazy image to a clear one.

The prior-based technique uses a physical scattering model to produce crisp
pictures, but it also needs a natural prior to calculate the transmission map
and atmospheric light. He et al.[4] discovered that the majority of partially clear
pictures included at least one color channel with multiple extremely low intensity
pixels and suggested the Dark Channel Prior (DCP) technique of dehazing.

A non-local prior dehazing technique was suggested by Berman et al.[5] when
they noticed that the colors of a clear image can closely resemble hundreds of
other colors that group together in small groups in the RGB color space. In order
to perform picture dehazing, Zhu et al.[6] suggest using a color attenuation prior
approach to learn the scene depth of a hazy image using supervised learning.
This method then calculates the transmission and recovers the scene radiance.
Prior-based methods only work well when the assumed prior is appropriate, and
results are often poor when the prior is not satis�ed.

Researchers have started to recognize deep learning-based picture dehazing
solutions more and more recently. Although some methods[7�10] have been pro-
posed with high dehazing e�ect, these models have high model complexity, com-
plex computation and huge storage requirements, which make them di�cult to
deploy in resource-limited platforms. Ren et al.[11] learn to anticipate the scene
transmission map using a coarse-scale neural network, then learn local infor-
mation that used a �ne-scale neural network, and lastly recover a clean picture
that use the output of both scales of the network. By learning to derive the



Lightweight Separable Convolutional Dehazing Network to Mobile FPGA 3

Fig. 1. An overview of the development of the mentioned FPGA-based CNN acceler-
ator for image dehazing.

con�dence map of the input, Ren et al.[12] developed a multi-scale gated fusion
network based on an encoder decoder network to tackle the single-image dehaz-
ing problem. A generative adversarial network (GAN) and an enhancer make up
the image dehazing network (DCPDN) that Zhang et al.[13] suggested. The en-
hancer creates high-quality images after the discriminator directs the generator
to create images at a coarse scale.

Although the above mentioned methods are e�ective in image dehazing, their
high number of parameters and high computational e�ort hinder their deploy-
ment on resource-limited platforms. Cai et al.[14] propose the DehazeNet deep
learning neural network for estimating media transmission map. The network
receives a bad photo as input and then waits for the image to be recovered using
its transmission map and atmospheric light. By integrating an atmospheric scat-
tering model into the network and fusing the two variables in the model into a
single K parameter, Li et al.[15] design a lightweight trainable end-to-end image
dehazing network (AOD-Net) in order to minimize errors. However, the qual-
ity of these lightweight networks is not high enough for high resolution image
recovery while few people deploy them to hardware platforms, such as FPGAs.

3 Approach

Fig. 1 shows the process of implementing an FPGA-based image dehazing sys-
tem. First, an embedded-friendly lightweight dehazing deep learning network is
designed and trained. Then, a CNN accelerator is designed using the HLS com-
piler. Finally, a device driver is created using a standard C++ compiler. The
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designed and developed accelerator and device driver will control and accelerate
the model inference on the hardware platform.

3.1 Network Structure

In this research, we build an encoder-decoder structure-based residual attention-
based picture dehazing system. The multi-scale feature extraction blocks, gated
fusion sub-network, channel attention block, and encoder-decoder block are the
four modules that make up this algorithm's network model. The overall network
structure proposed in this paper is shown in Fig. 2. We apply depthwise sepa-
rable convolution to decrease the total amount of parameters and constructed a
lightweight network framework to enable deployment on devices with restricted
resources.

Fig. 2. The overall of our proposed encoder-decoder network.The network contains a
feature extraction block, a gated fusion sub-network and a channel attention unit.

Encoder-Decoder Block The input hazy image is �rst put into the encoder
module as a feature map, and the encoder part uses three convolutional layers to
learn the haze image, with the last convolutional layer downsampling the feature
map by a factor of 1/2. On the contrary, the decoder module contains a transpose
convolution to upsample the feature map to it's own original resolution. The next
two convolutional layers then nonlinearly map the upsampled feature to produce
the desired �nal hazy residual map.

Feature Extraction Block Spatially separable convolution was used to
improve computational e�ciency as early as 2012[16]. Sooner or later, a depth-
wise version of AlexNet[17] has been added in order to increase accuracy, speed
up convergence, and compact the model. Recently, several light-weight network
architectures with accuracy, MobileNet[18] and Shu�eNet[19], have been devel-
oped for edge devices. Due to the limited computational resources of the FPGA
platform, it was found from these research concepts that depth-wise separa-
ble convolution could be less complex in terms of computational resources and
we introduced it as the base module for feature extraction. Although minimal
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parameters are used, the quality of image dehairing is still guaranteed. Each
feature extraction block (FEBi, i = 1, 2, 3) contains two depth-wise separable
convolution(DSConv) and two relu layers(ReLU). The feature extraction module
FEBi(x) is represented as

FEBi(x) = ReLUi2(DSCi2(ReLUi1(DSCi1(Fi−1(x)))) (1)

where Fi−1(x) denotes the current input feature andDSCi(x) denotes the depth-
wise separable convolution.

Gated Fusion Sub-network Based on Chen's[20] research, we fuse the
characteristics among several layers using a gated fusion sub-network. In order
to fuse the feature maps, F0, F1 and F2 are �rst extracted from the feature
extraction block and then linked in series by channel. The fused feature maps
are then sent into the gated fusion sub-network. The weights of the preceding
three related feature maps (W0, W1 and W2) are the output of the gated fusion
sub-network. The last step is to multiply the three relevant feature maps F0, F1

and F2 by the appropriate weight layers. As shown, the gated fusion sub-network
is as follows:

(W0,W1,W2) = Gat (F0, F1, F2)
Fo =W0 ⊗ F0 +W1 ⊗ F1 +W2 ⊗ F2

(2)

The CAU receives additional input from the combined feature map Fo. The
gated fusion sub-network in this study has three output channels and one kernel
size 3x3 convolutional layer with a cascade of F0, F1 and F2 inputs.

Channel Attention Unit Inspired by PCNet[21] with high e�ective chan-
nel attention units, we use the CAU as our basic block in the proposed network.
Depth-wise separable convolution, which performs similarly to regular convo-
lution while being more computationally more e�cient, is employed to design
CAU in order to further minimize the number of parameters. The depth-wise
separable convolution is immediately followed by a global average pooling with-
out changing the dimensionality. Then two convolutional layers of 1× 1 size for
cross-channel information interaction. The weights are then used to adjust the
input feature map to produce the output feature map after the feature map has
been through the Sigmoid function to obtain the weight values. By weighing
and �ltering out the prominent characteristics at the present scale instead of
the original features for backward propagation, an e�cient channel attention
is employed to increase the network's e�ciency and performance. The e�cient
channel attention mechanism CAUi(x) is expressed as

DSCi(x) = DSConv2i(ReLU(DSConv1i(Fi−1))
CAUi(x) = σ(Conv2i(Conv1i(g(DSCi(x)))))⊗DSCi(x)

(3)

where DSConv(x) denotes the depth-wise separable convolution, σ denotes the
Sigmoid function and g(x) denotes the global average pooling function. By dy-
namically adjusting the feature map channel weights to reduce redundancy and
learning rich contextual information to enhance the network's ability to extract
haze density images, the e�ective Channel Attention Unit (CAU), when used
after the gated fusion sub-network, enables a more detailed dehazing.
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Fig. 3. Hardware architecture of the proposed CNN accelerator for image dehazing.

3.2 Hardware Optimizations

The most frequent and largest operation in the network is convolution opera-
tion, because convolution operation requires a lot of multiplication and addition
operations, and a large number of access operations on parameters during the
operation also consumes a lot of time. The hardware architecture of the dehaz-
ing network is designed around the convolution operations and access features
in the network layer, so we need to design a convolution accelerator to ensure
the speed of convolutional operations while balancing the relationship between
hardware resources and memory bandwidth.

Huge data must be stored on o�-chip resources due to the FPGA's restricted
on-chip capacity. Nevertheless, data from the o�-chip memory must �rst be
transmitted through AXI to the on-chip memory within the FPGA before the
device can run a parallel on-chip program. Every time the FPGA runs a task,
it will have to read data from o�-chip memory, which will take a lot of time
and cause performance to su�er. We store as much data as we can in FPGA
on-chip memory on our limited on-chip resources to prevent constantly reading
and writing data from o�-chip memory. In designing the memory access section,
we used a cyclic partitioning approach. Suppose the size of input feature map
In is N ×Hin ×Win, the weight is M ×N ×K ×K, the size of output feature
map Out isM×Hout×Wout, and the input channel, output channel and output
feature map height and width of the partitioning factor are Tn, Tm, Tr and Tc
respectively. During each calculation, we load Tn× (Tr+K−P )× (Tc+K−P )
size of the input feature block, Tm× Tn×K ×K weights, and then perform a
convolution calculation to obtain an output feature block of size Tm× Tr× Tc.
Once the computation is complete, we will read the input features and weights for
the next block and continue the computation until the convolution is complete.
As shown in the Fig. 3, we store the intermediate output of each operation on
a feature bu�er in on-chip memory. This saves a lot of time by reading the data
directly from the on-chip each time a new convolution calculation is performed.

The computation of the convolutional layers is that of a multi-layer loop
nested, which means that the computation of the convolution is very slow. The
PIPELINE command, which de�nes the loop to be enlarged and informs the
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compiler how many times the loop needs to be expanded, is used to optimize
the program's parallel execution speed. By running computations in parallel
and quickening the system's inference, PIPELINE takes use of the parallelism
between the convolution kernels to maximize the usage of processing resources.

4 Results and Analysis

4.1 Experimental setup and data set

We refer to the work of [20] for network architecture design and training. An
Intel(R) Xeon(R) Processor E5-2620 v3 @ 2.40GHz processor, 16.0GB of Mem-
ory, and two NVIDIA Titan Xp graphics cards made up the experimental setup.
The network was created using the Pytorch framework, with a training batch
size of 16. The learning rate started out at 0.01 and declined to 0.1 times ev-
ery 40 iterations for a total of 100. We used the Indoor Training Set (ITS),
a subset of the publicly accessible image dehazing RESIDE[22] dataset, as the
training dataset. Using a special development board made by Xillinx Inc., the
suggested image dehazing technology is put into practice. It was made up of an
XC7Z035 FPGA and a dual-core ARM Cortex-A9 CPU.Prior to deployment,
we performed a tuning optimization of the network. There are a large number
of convolutional and batch normalisation layer structures in the network. Due
to their computational properties, we can reduce the model inference time by
merging the batch normalization layers into the convolutional layers.

4.2 Comparisons with state-of-arts

Compare with Other GPU-Based Methods Table 1 gives the results
of this experiment tested on synthetic datasets and compared quantitatively
and qualitatively with recent methods, including AODNet[15], DehazeNet[14],
DCPDN[13] and GCANet[20]. Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) index measurements were also used for quantitative eval-
uation, with higher values indicating greater dehazing. Our approach gives a
competitive performance to GPU-based methods with a relative small parame-
ter size, which is around 0.1 million. For visual comparsions on the SOTS test
set, hazy pictures of various intensities were also chosen for the evaluation of sub-
jective quality. Fig. 4 displays the dehazing impacts of each approach together
with the related peak signal-to-noise ratios. The photos that were recovered
using AODNet techniques had dark colors and insu�cient dehazing. Neverthe-
less, when eliminating intense haze, the pictures recovered by DehazeNet and
DCPDN approaches are prone to insu�cient dehazing. Our approach shows a
better dehazing e�ect, no obvious color distortion, more complete dehazing of
dense hazy images, and the recovered image details and colors are closer to the
original clear image. Although the dehazing e�ect of GCANet is slightly bet-
ter than the method in this paper, the model size of GCANet is about 7 times
larger than ours.And when processing some photographs with sections of sky,
GCANet warps the colors. By contrast, our method does a good job of restoring
the original colours.
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Fig. 4. Qualitative comparison of di�erent image dehazing methods on the SOTS
dataset.

Compare with Other Traditional Methods As for the evaluation dataset,
as deep learning based methods are mostly trained on the RESIDE dataset,
their performance on this dataset is better than other datasets. For the sake of
fairness, when comparing with traditional methods, we employ FRIDA2[24], D-
HAZY[25], O-HAZE[26], I-HAZE[27], and Dense-Haze[28]. Moreover, we employ
Mean Square Error (MSE) and Structural Similarity (SSIM), two full-reference
criteria, to quantitatively assess the dehazing performance. The results of this
experiment tested on the �ve datasets mentioned previously and compared with
conventional FPGA-based dehazing methods, those proposed by He et al.[4] ,
Zhu et al.[6] , Berman et al.[5] , and Cho et al.[23], are given in the Table 2.
The traditional methods cannot e�ectively handle the sky region leading to their
poor performance on FRIDA2. On the contrary, our approach ranks �rst in the
overall SSIM evaluation, which is the primary indicator for visble edges, on �ve
databases from di�erent conditions.
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Table 1. Quantitative comparisons of image dehazing on the SOTS indoor dataset
from RESIDE.

Methods PSNR SSIM Par. (Million)

AODNet[15] 19.06 0.85 0.002
DehazeNet[14] 21.14 0.84 0.0802
DCPDN[13] 15.85 0.82 66.89
GCANET[20] 30.06 0.96 0.7028
Ours 27.26 0.93 0.1297

Table 2. Scores for structural similarity, peak signal to noise ratio (PSNR), and mean
squared error (MSE) on various datasets. The best result is shown in red.

He et al.[4] Zhu et al.[6] Berman et al.[5] Cho et al.[23] Our
DATASET MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM

FRIDA2 0.0744 0.5969 0.0744 0.5473 0.0705 0.6603 0.1559 0.5517 0.0642 0.6687
D-HAZY 0.0309 0.8348 0.0483 0.7984 0.0492 0.7473 0.0606 0.7212 0.0458 0.7629
O-HAZE 0.0200 0.7709 0.0226 0.6647 0.0255 0.8024 0.0196 0.7745 0.0197 0.6319
I-HAZE 0.0535 0.6580 0.0362 0.6864 0.0275 0.7959 0.0344 0.7693 0.0308 0.7169
Dense-Haze 0.0549 0.4662 0.0646 0.4171 0.0597 0.5225 0.0549 0.5254 0.0613 0.4174
Total 0.0467 0.6653 0.0492 0.6227 0.0464 0.7056 0.0650 0.6684 0.0444 0.6396

4.3 Ablation Study

We combine the depth-wise separable convolution, channel attention unit, and
gated fusion sub-networks into our suggested model, as was already indicated.
To con�rm the contribution of each component to the �nal dehazing perfor-
mance, we conduct ablation experiments on the SOTS dataset.Instead of using
depth-wise separable convolution, we use conventional convolution instead, and
we change the number of convolutions to roughly equalize the size of the network
overall.As demonstrated in the Table 3, the introduction of the channel attention
module signi�cantly improves the model's performance, demonstrating the e�-
cacy of CAU. Subsequently, the performance of the model is somewhat improved
by the addition of deep separable convolution and gated sub-networks. Eventu-
ally, including all three modules into the model yields the optimal outcome.

4.4 Hardware Evaluation

In this subsection, we �rst provide the resource utilization rate. Then, we com-
pared the software implementation (on CPU and GPU) with our accelerator on
FPGA. Placement and wiring are done through the Vivado toolset. After the
collection is completed, the resource utilization rate we achieved is reported, as
shown in the Table 4. We can see that our CNN accelerator requires very lit-
tle FPGA hardware resources.We compared our method on FPGA with other
platforms. We selected NVIDIA Titan-Xp GPU and Intel i7-8700 CPU for com-
parison. We tested the power consumption of the FPGA end, and the power



10 X. Ju et al.

Table 3. Ablation study on SOTS dataset.

Depth-Wise Convolution X X
Gated Fusion X X

CAU X X
PSNR 22.93 24.24 23.43 26.44 27.26

Par. (Million) 0.1288 0.1250 0.1309 0.1336 0.1297

Table 4. Convolutional Accelerator Resource utilization.

Resource DSP48E BRAM_18K LUT FF

Used 213 161 60803 58930

Available 900 1000 171900 343800

Utilization 23 16 35 17

consumption of the GPU and CPU came from the user manual. From the Table
5, it can be concluded that our method is suitable for edge platforms with low
power consumption and few resources.

Table 5. Comparison with other platforms.

Platform GPU CPU FPGA

Device Titan Xp i7-8700 XC7Z035

Power(Watt) 250 85 4.2

Performance(FPS) 394 1.5 8.3

Energy e�ciency(FPS/W) 1.57 0.017 1.97

5 Conclusion

In this research, we provide a lightweight FPGA-based deep learning-based ap-
proach for image dehazing. A CNN network based on depth-wise separable con-
volution and channel attention to limit the network size is suggested in order
to lower the storage and computing requirements.Then, using our suggested ac-
celerated design strategy, we deploy the entire algorithm on a low-cost custom
FPGA development board from Xilinx Inc. Therefore, our method is an universal
solution to image dehazing on FPGAs.
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