
EasyChair Preprint
№ 13570

UARC:Unsupervised Anomalous Traffic Detection
with Improved U-Shaped Autoencoder and RetNet
Based Multi-Clustering

Yunyang Xie, Kai Chen, Shenghui Li, Bingqian Li and Ning Zhang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 6, 2024

UARC:Unsupervised Anomalous Traffic
Detection with Improved U-shaped Autoencoder

and RetNet based Multi-Clustering

Yunyang Xie1, Kai Chen2 ⋆, Shenghui Li3, Bingqian Li4, and Ning Zhang5

Hubei Key Laboratory of Distributed System Security, Hubei Engin eering Research
Center on Big Data, Security School of Cyber Science and Engineering, Huazhong

University Technology,Wuhan,430074, China
{xieyunyang,kchen,lishenghui,libq2022,zn_hust}@hust.edu.cn

Abstract. With the ongoing advancement of deep learning, modern net-
work intrusion detection systems increasingly favor utilizing deep learn-
ing networks to improve their ability to learn traffic characteristics. To
address the challenge of obtaining a substantial amount of labeled train-
ing data, many intrusion detection systems now focus on unsupervised
anomaly detection methods. Despite this shift, researchers still face the
daunting task of distinguishing a significant volume of anomalous traf-
fic and dealing with data imbalance. To address these real-world chal-
lenges, we introduce UARC, a system capable of achieving unsupervised
anomaly traffic detection through multi-clustering. UARC utilizes an
enhanced U-shaped autoencoder and a feature fusion method incorpo-
rating Masked Retnet to effectively extract spatiotemporal features from
network traffic. It combines these techniques with the HDBSCAN algo-
rithm for multi-clustering of traffic, providing a form of reverse guidance
for network learning. Experimental results on multiple datasets demon-
strate that UARC can cluster various types of traffic with an impressive
accuracy rate of up to 97.96%, while achieving a 99.70% AUC value for
anomaly detection.

Keywords: Network intrusion detection · Unsupervised learning ·
Multi-Clustering · Auto-encoder · RetNet.

1 Introduction

As computer network technology continues to advance, the network traffic in our
surroundings is experiencing exponential growth. Since the onset of COVID-19,
scenarios involving remote work and communication have become unavoidable
for people. According to a 2020 survey conducted by the Canadian Internet
Registration Authority (CIRA), approximately two-thirds of IT professionals
found themselves compelled to work from home due to COVID-19, resulting in
a substantial surge in network traffic[37]. This surge has engendered increas-
ingly severe network security predicaments. In the year 2021 alone, there were
⋆ Corresponding author

2 Yunyang Xie et al.

over 66 instances of zero-day vulnerabilities being exploited in network attacks,
nearly twice the count observed in 2020[35]. In the year 2022, losses attributable
to network security issues soared to an alarming $4.35 million and exhibited a
sustained upward trajectory[33]. The scope of network attacks is consistently
broadening, marked by the continual emergence of various novel attack method-
ologies. This dynamic landscape has elevated intrusion detection technology to
a pivotal research focus within the realm of network security.

Due to the demonstrated effectiveness of deep neural networks in learn-
ing concealed data features, the adoption of deep learning techniques has un-
equivocally become a prevailing trend in contemporary intrusion detection[26].
Nonetheless, the significant challenge in training neural networks lies in the req-
uisite large-scale annotated data corpus[18]. Consequently, a substantial body
of research has concentrated on unsupervised intrusion detection methodologies.

However, the majority of these endeavors primarily dichotomize samples into
benign and anomalous traffic patterns based solely on reconstruction loss met-
rics[10]. This approach, nevertheless, presents several inherent predicaments:
(i)Network attacks are typically mixed, and selecting specific attacks from dif-
ferent types of traffic for analysis is a challenging and costly task[3]; (ii)network
attacks require multiple flows to complete, meaning that attack behaviors are
highly coupled with temporal sequences.

Consider a DDOS attack as an illustration—it incessantly dispatches an ex-
tensive volume of data to the target, aiming to incapacitate its services. When
scrutinizing its individual flow, it appears nearly indistinguishable from benign
traffic[11]. Temporal features play a pivotal role in discriminating between vari-
ous types of DDOS attack traffic.

Network intrusion detection also contends with challenges stemming from
the issue of imbalanced data[16]. Current intrusion detection datasets commonly
suffer from substantial class imbalance issues, with only a limited representation
of high-risk attack traffic. This inherent imbalance poses a challenge for models
to effectively capture and learn the distinctive features associated with high-
risk attacks. Addressing such challenges often resorts to post-attack resampling
strategies[8], but this approach is neither efficient nor devoid of risks.

In this paper, we introduce a feature fusion method that relies on an improved
U-shaped network and the RetNet network. We employ clustering results to
guide the feature extraction network, thereby facilitating improved separability
in the network. Furthermore, we devise techniques to enrich the features, en-
hancing the discriminative power of coarse-grained information within the data,
such as port numbers[22]. We evaluated our model on the CIC-IDS2017[24], CIC-
IDS2018[29], and UNSW-NB15[23] datasets. The contributions of this paper are
outlined as follows:

• We propose an improved U-shaped auto-encoder that effectively confines
feature extraction to a Euclidean space, yielding well-separated features for
the data.

Title Suppressed Due to Excessive Length 3

• We firstly pioneer the application of RetNet in the field of network traf-
fic intrusion detection, achieving superior results compared to Transformer
models.

• We took into account all attack categories within the dataset without merg-
ing or altering them. The model ultimately yielded robust clustering results,
demonstrating its capability to identify highly uncommon class attacks.

The paper is organized as follows: Section 2 presents an overview of related
work; Section 3 provides detailed insights into the data, processing methods, and
the architectural details of the model; Section 4 presents experimental results
along with comparative analyses; and finally, Section 5 serves as the conclusion.

2 Related Works

2.1 Unsupervised anomaly detection

Unsupervised anomaly detection refers to a method used to identify anomalies or
outliers within data without the reliance on labeled data[1]. This approach has
gained prominence in the field of intrusion detection due to its ability to detect
novel attack patterns. Unsupervised methods can be broadly categorized into
two main classes: reconstruction-based methods and clustering-based methods.

Reconstruction-based methods PCA(Principal Component Analysis) is one
of the most popular detection methods. However, PCA’s feature transformation
is confined to linear spaces and cannot capture nonlinear relationships among
features, rendering it progressively less suited for increasingly intricate anomaly
detection tasks[14].

As deep learning advances, reconstruction-based methods gain prominence in
unsupervised anomaly detection. This approach involves employing autoencoder
network architectures for feature extraction and identifying anomalies through
disparities in reconstruction loss. In recent years, numerous methods, including
AVAE introduced by An.J[5], which combines the probability distribution of
variable variation with the variational auto-encoder, using reconstruction prob-
ability as an anomaly indicator.

Aytekin introduced CAE-l2[7], which incorporates a normalized layer with
l2 constraints into CAE to enforce hypersphere constraints on the data. An-
dresini[6] employed multiple auto-encoders to learn both positive and negative
samples of multi-channel data, integrating them with convolutional neural net-
works for anomaly detection. Shan Ali[4] fused the MKL(Multiple Kernel Learn-
ing) framework with multiple diverse deep auto-encoders to learn distinct feature
combinations for DDoS attack detection .

These methodologies heavily rely on auto-encoders’ data reconstruction ca-
pability. Nevertheless, deeper reconstruction networks may entail data compres-
sion, potentially causing data distortion and the subsequent loss of critical infor-
mation. Furthermore, reconstruction methods are limited to distinguishing be-
tween normal and abnormal data, posing challenges in discerning various attack

4 Yunyang Xie et al.

types. This deficiency becomes apparent in the face of the escalating complexity
of network attacks.

Clustering-based methods Cluster-based methods emphasize the spatial dis-
tribution characteristics of data and subsequently aggregate the data accord-
ingly.

Ling Lai[17] introduced an improvement to the K-Means algorithm by uti-
lizing sample path length as an anomaly score . However, this algorithm faces
challenges when dealing with non-convex data clusters.

LinHua Gao[13] employed PCA for data dimensionality reduction and similarity-
based partitioning, incorporating them into the spectral clustering algorithm for
anomaly detection. However, the results of spectral clustering are highly depen-
dent on the quality of the similarity matrix.

Huanhuan Zhang[39] applied the Fuzzy C-Means clustering algorithm for
sample group partitioning, but it is highly sensitive to initialization, and different
random centroid selections can lead to significantly different results.

Clustering-based methods typically focus on utilizing statistical features of
data but overlook the time-series features of network traffic, which can result in
suboptimal detection accuracy.

2.2 Time series anomaly detection

In recent years, researchers have increasingly recognized the significance of time-
series information within network traffic data. Long Short-Term Memory net-
works (LSTM), recognized as a superior recurrent network in comparison to
Recurrent Neural Network (RNN), excel in memory capabilities and are more
adept at representing extensive sequential information[19, 15].

Ashish[32] introduced the Transformer model based on the attention mecha-
nism for handling contextual information in sequential data. The model adopts
an encoder-decoder architecture, leveraging a parallel computing design to en-
hance computational speed. The incorporation of multiple self-attention heads
augments the network’s prowess in feature extraction.

Wang Wei[34] introduced a self-supervised anomaly detection model based
on the Transformer architecture, enhancing its capacity for extracting temporal
features using a set of adaptable transformations, yielding promising results
across multiple datasets.

Despite the impressive performance demonstrated by the Transformer, its
parallel structure is accompanied by a reduction in performance when applied to
recursive reasoning tasks.This issue was considered unsolvable until 2023 when
Sun[31] introduced the RetNet model, which seamlessly combines parallelized
training with efficient handling of recursive inference tasks. This breakthrough
provides RetNet with outstanding capabilities in sequence feature extraction and
processing.

Title Suppressed Due to Excessive Length 5

2.3 Imbalanced cybersecurity data

The CIC-IDS2017 & 2018 datasets have long been staples in the field of net-
work intrusion detection research. Nevertheless, the datasets’ inherent chal-
lenges, characterized by severe class imbalance has been persistent concerns.
A commonly adopted approach to mitigate these challenges involves collapsing
the anomaly classes and subsampling to create a balanced dataset[24].

YuHua Yin[38] crafted an IDS system employing Birch and K-means cluster-
ing alongside an MLP classifier. Regrettably, within its test set, the proportion of
normal data to abnormal data is closely balanced. Additionally, they consolidate
various types of DDOS traffic and web attack traffic into a single category.

Alam.S[2] employed a residual CAE network augmented with L2 constraints
to detect anomalous network traffic. Although their research employed the PVAMU-
DDoS2020 dataset, they exclusively selected DDOS traffic and benign traffic for
the composition of their training and testing sets.

While these approaches enhance the quality of results, they can introduce
a disparity between experimental outcomes and test results in a real network
environment. Thus, we opt to maintain the original categories of abnormal sam-
ples in our study and intentionally introduce challenges related to imbalance
and extremely rare classes to validate the authentic effectiveness of our model.

W

W

W

Fig. 1. The overview of UARC.

3 Proposed method

In this section, we delve into the specific intricacies of the UARC-based model.
This model is crafted to tackle the challenges posed by vast amounts of un-
labeled traffic and exceedingly rare novel attacks. By employing an enhanced
U-shaped AutoEncoder network, our model endeavors to learn the projection
representation of traffic data in a linearly separable space, thereby optimiz-
ing the utilization of Euclidean distance for clustering different types of traffic.
Additionally, the model incorporates a RetNet featuring a masked context re-
construction module, facilitating the learning of time-based features in traffic.

6 Yunyang Xie et al.

The cross-fusion of these features contributes to an augmented clustering perfor-
mance. Finally, we introduce an anomaly score designed to evaluate the anomaly
level of traffic clusters.

Fig. 1 delineates the architecture of UARC, comprising four integral com-
ponents: the data preprocessing module, statistical feature extraction module,
time series feature extraction module, and clustering detection module. Notably,
the input data representing network traffic is conventionally presented as fea-
tures extracted from flows rather than raw packet data, stored in a .csv format.
Data undergoes processing within a statistical feature extraction network to
uncover the implicit relationships between diverse features. To more authenti-
cally simulate and extract time series information, we partition the continuous
data into Contexts of size N. Prior to the extraction of time series features, we
introduce random ”dropouts” and ”duplications” to mimic real-world network
environments. In the context of time series feature extraction, we opt for the
RetNet network architecture as a substitute for the Transformer. Experimental
results substantiate that this choice indeed enhances the model’s performance
and efficiency.

Subsequently, we employ HDBSCAN for clustering, particularly when the
number of target clusters is unknown. This serves as a guiding mechanism for the
network to acquire improved clustering representations. Ultimately, the model
generates an anomaly score, providing insight into the extent of anomaly within
the clustering results.

3.1 Data processing

Our model functions exclusively within an unsupervised context, as delineated
in Fig. 1. The learning process, depicted in the figure, initiates with inputs
that include both a training set and a test set. The training set exclusively
comprises normal network traffic, whereas the test set encompasses a diverse
array of network attack traffics, with a minute proportion representing novel
attack types. Following preprocessing by the preprocessing module, these data
serve as inputs for the subsequent modules. The Data Preprocessing Module
encompasses three key components: feature scaling, soft one-hot encoding, and
feature enrichment.

Feature scaling involves normalizing input features to the [0,1] range through
a max-min scaling strategy.

The soft one-hot encoding component adopts a more nuanced approach to
one-hot encode input features. We have observed that when other input features
are normalized to the [0,1] range, the abundance of zeros in the one-hot encoding
can impede the network’s ability to effectively learn the represented features.
Hence, a minute value ε is introduced to alter the one-hot encoding values,
as depicted in Eq.1, where K signifies the total number of categories for the
encoding target.

x =

{
1− ε if x = 1

ε
K−1 if x = 0

(1)

Title Suppressed Due to Excessive Length 7

In the context of network traffic analysis, features like protocol type and
port number often serve as vital discriminative factors for identifying malicious
attacks. Hence, through the feature enrichment component, we carefully select
these features and subject them to a series of transformations to derive new fea-
ture representations. This set of transformations may involve a combination of
multiple distinguishable nonlinear functions. To elaborate further, we define this
process as the transformation of the original feature xi through a set of trans-
formations Ti into {x1, x2, ..., xn}. The functions composing Ti can encompass
operations such as |sin(x)|, x2

√
x, log(x+ 1), and so on.

3.2 Improved U-shaped autoencoder

We represent the auto-encoder with input I as D(E(I)), where E(I) serves as
the input to the decoder. For each layer of the encoder, we employ fi to denote
the combination of its linear layer and the GeLU activation function, as outlined
in Eq.(2).

fi(x) = GeLU(xWf + bf) (2)

Consequently, the representation of the n-layer encoder is articulated in
Eq.(3).

E(I) = fn(fn−1(...f1(I))) (3)

We maintain a record of the output from each layer within the encoder, de-
noted as LE{ln, ln−1, ..., l1}, for the purpose of data reconstruction. In this con-
text, ln represents the output of the encoder E(I), which functions as the input
for the decoder. As for the other li layers within the decoder, they are subject to
multiplication by A collection of trainable weight matrices Wu and added to the
output of the preceding layer. Subsequently, after undergoing L2 normalization,
these values are employed as input for the subsequent layer. The incorporation of
L2 normalization serves to introduce Euclidean space constraints onto the data.

We use gi to represent the combination of the linear layer and activation
function within the decoder, as exemplified in Eq.(4).

gi(x) = GeLU(
x√
xTx

Wg + bg)) (4)

The linear layers in the decoder decrease in the reverse order as compared to
the encoder. The interplay between the shapes and sizes of the input data for fi
and gi should align with the conditions outlined in Eq.(5).

Input_shape : Ifi = Ign−i+1
i ∈ [1, n] (5)

We compute the MSE loss between the input I and the reconstructed output
IR as the loss function for the entire auto-encoder network, with the goal to
minimizing the value of Eq.(6). K represents the index set of the input I.

Lrec =

∑
k∈K(Ik − IRk)2

|K|
(6)

8 Yunyang Xie et al.

To ensure the stability of the forward input distribution for the subsequent
modules, we introduce layer normalization to the output ln of the hidden layer.
The resultant dimensionality reduction representation is represented as Lsta.
Consequently, the output of the entire auto-encoder is illustrated in Eq.(7),where
γ and β are derived through network computations.

Lsta =
ln − ln√
l̂n + ε

γ + β (7)

3.3 Retnet based context reconstruction
To better capture the time-series features of network traffic, we have introduced
a masking module to RetNet, thereby augmenting the ”complexity” associated
with reconstructing traffic patterns. N represents the set of input data, which
we partition into m = ⌊ |N |

c ⌋ temporal sequence blocks of size c, denoted as
C{c1, c2, ..., cm}. For each data point ci{x1, x2,, xj} ∈ C Eq.(8), we introduce
random transformations: with a 10% probability, we set it to zero, simulating
packet loss events in network transmission; with a 10% probability, we replace
it with another data point from ci, mimicking replay events; and with a 80%
probability, we retain the original data.

xj =

0 10% of the time

xk 10% of the time

xj 80% of the time

xj , xk ∈ ci , j ̸= k (8)

The preprocessed data LM is employed as the input for the RetNet network,
which focuses on learning temporal features by reconstructing the replaced seg-
ments of data. RetNet maintains a constant latent dimension. In our approach,
we employ the ParallelRetention structure within RetNet as the training net-
work, and the final reconstructed output is derived through the RecurrentRe-
tention, aiming to maximize the reconstruction loss for anomalous traffic.

ParallelRetention consists of sub-modules, including MSR (Multi-Scale Re-
tention) and FFN (Feed-Forward Network), which are stacked in parallel,as out-
lined in Eq.(9). The core objective of ParallelRetention is to expedite feature
learning through parallel computations.

Hl = MSR(LayerNorm(LM
l)) + LM

l

LM
l+1 = FFN(LayerNorm(Hl)) +Hl

(9)

The multi-head attention mechanism of MSR is implemented by multiple
retention heads. For each retention head, we apply trainable transformations
denoted as W to the input C , resulting to generate Q,W, V . To capture the
relative contextual relationships within the Context, we employ rotary position
embedding on Q and W , as demonstrated in Eq.(10) and Eq.(11).

Qn = CWQ,Kn = CWK , V = CWV (10)
Q = Qne

inθ,K = Kn(e
inθ)† (11)

Title Suppressed Due to Excessive Length 9

We compute the inner product of Q and KT , which is subsequently adjusted
by the scaling matrix D ∈ R|C|×|C| (Eq.(12)). This scaling operation is instru-
mental in causal blocking and constraining the network’s acquisition of relative
positional information, thereby augmenting the learning weights for data points
that are in closer temporal proximity. This encourages the network to place
greater emphasis on temporally adjacent traffic.

D =

{
γn−m, n ≥ m

0, n < m
(12)

Therefore, we can formulate the complete structure of the retention head, as
expressed in Eq.(13).

RetentionHead(C) = GroupNorm((QKT ⊙D)V) (13)

During the reconstruction of the test dataset, we utilize RecurrentRetention
instead of ParallelRetention, as depicted in Fig. 2. Notably, WQ, WK , and WV

retain the same definitions as outlined in Eq.(10) and Eq.(11). It is noteworthy
that due to the prior learning of WQ, WK , and WV in ParallelRetention, recursive
reconstruction can be efficiently accomplished within O(n) time. During the

Fig. 2. The structure of RecurrentRetention.

training of the RetNet network, we employ cosine similarity as a guiding metric
for the network’s learning process. Herein, we denote the input data for the
masked reconstruction network as L, the reconstructed data as LR, leading to
the formulation of the loss function as detailed in Eq.(14).

LTrec = 1− L · LR

||L|| ||LR||
(14)

We reintegrate statistical features with temporal features to further enhance
the fusion’s efficacy. The ultimate reduced-dimensional representation produced
by the comprehensive feature fusion network is presented in Eq.(15). Notably, λ
serves as a weighting factor, allowing for the adjustment of the reintegration’s
relative influence.

LR = λ× Lsta + (1− λ)× LR (15)

The loss function for the complete feature fusion network is represented by
Eq.(15). Notably, the scaler serves as a scaling factor to fine-tune the weighting

10 Yunyang Xie et al.

of the RetNet network’s influence within the broader network learning process.

LFE = Lrec + scaler × LTrec (16)

3.4 Multi-Cluster Network
The distribution density of network traffic data exhibits non-uniformity. Hence,
we employ the HDBSCAN algorithm. The model utilizes the mutual reachability
distance in lieu of the direct distance between two samples(Eq.(17)), thereby
bolstering robustness to uniformly distributed samples.

corek(x) = d(x,Nk(x))

dmreach−k(a, b) = max{corek(a), corek(b), d(a, b)}
(17)

HDBSCAN [21] algorithm does not require prior knowledge of the number
of clusters. Following L2 normalization, the squared Euclidean distance of the
extracted features becomes equivalent to the cosine distance. Hence,for the noise
points identified after clustering, marked as -1, we calculate their cosine simi-
larity with each cluster center and compare it with a threshold. Data within
the threshold will be merged into the cluster with the highest similarity without
recalculating the cluster center. Points outside the threshold form new clusters.
The threshold is determined by the average inter-cluster distance.

During the training process, we use the CH-score as the loss function for
the clustering phase, guiding the network to learn better clustering shapes. In
Eq.(18), we denote the total data points as N , the total number of clusters
obtained as S, ce represents the samples of cluster centers, nq represents the
total number of samples within cluster q, and cq represents the sample set of
cluster q.

Lcluster =

∑k
q=1 nq(cq − ce)(cq − ce)

T∑k
q=1

∑
x∈cq

(x− cq)(x− cq)T
· (N − S)
(S − 1)

(18)

The entire network’s loss function is defined as:

L = LFE + Lcluster +
1

S
(19)

where, 1
S is a penalty term to prevent the network from learning too few clusters.

During the detection phase, we calculate the average reconstruction loss
within each cluster obtained after clustering, along with the cluster’s standard
deviation, to compute the anomaly score(Eq.(21)). Due to the potential disparity
in scale between the cluster’s standard deviation and the average reconstruction
loss, we need to apply an amplification factor to the average reconstruction loss.
We sort the resulting clusters by their anomaly scores in ascending order, and
any cluster with a score higher than that obtained from normal traffic will be
considered as an anomaly.

Score =

√
1

|S|
∑
xi∈cq

(xi − x)2 + β ·
∑

xi∈cq
LFE

|S|
(21)

Title Suppressed Due to Excessive Length 11

4 Experiments

This section will provide an overview of the experimental setup and results
analysis. Experimental setup includes datasets used and comparison methods.
To demonstrate the effectiveness of our model, we conducted tests and cross-
dataset evaluations on three datasets, comparing them with common unsuper-
vised anomaly detection methods. Additionally, we will perform ablation experi-
ments to validate our contributions. Finally, sensitivity tests on hyperparameters
of the spatiotemporal feature fusion network will be conducted to observe their
impact on network learning.

4.1 Datasets

We used the commonly used datasets: CIC-IDS2017 [24], CIC-IDS2018 [29] and
UNSW-NB15 [23]. These datasets are derived from real traffic, providing statisti-
cal features and timestamps. Additionally, they contain a very small proportion
of attack types. To simulate complex network traffic scenarios, we continuously
selected a portion of traffic from different dates within each dataset and com-
bined them to create the test sets, with 30% of normal traffic used for the training
sets. Below, we will show the proportions and quantities of each class of traffic
in these representative datasets.

CIC-IDS2017 & CIC-IDS2018:The CIC-IDS2017&2018 datasets were
created and released by the Canadian Institute for Cybersecurity. They are
constructed by capturing real network traffic to reflect various network traffic
patterns and attacks encountered in real-world networks. These datasets con-
tain data from different categories of network traffic, including normal traffic
and various types of network attacks such as DoS (Denial of Service) attacks,
DDoS (Distributed Denial of Service) attacks, malware, and scans, among oth-
ers. The datasets provide a wide range of statistical features, including features
based on communication protocols, packet sizes, duration, source and destina-
tion IP addresses, and more. The detailed information about the proportions of
different types of traffic in their representative datasets is shown in Table 1.

UNSW-NB15:The UNSW-NB15 dataset, formulated by Moustafa and Slay
(2015) at the Network Security Lab of the Australian Centre for Cyber Security,
employing the IXIA PerfectStorm tool, encompasses 9 distinct attack categories.
It boasts a comprehensive array of 49 features associated with each traffic record.
Detailed statistics concerning the distribution of various traffic types within this
representative dataset are elucidated in Table 1.
4.2 Comparison Methods

We will concurrently employ both traditional methodologies and deep learning
techniques to conduct a comparative analysis within the domain of anomaly
detection. Furthermore, we will juxtapose these approaches with the method-
ologies commonly utilized in multi-class classification tasks for comprehensive
assessment.

12 Yunyang Xie et al.

Table 1. Structure representative dataset.

CIC-IDS2017 CIC-IDS2018 UNSW-NB15
Class Instances Percentage Class Instances Percentage Class Instances Percentage
Benign 15,000 73.14 Benign 15,000 89.37 Benign 13,800 78.41
DoS Hulk 2,000 9.75 FTP-BruteForce 2,000 14.89 Fuzzers 1,487 8.45
DoS GoldenEye 2,000 9.75 SSH-Bruteforce 2,000 14.89 Exploits 1,311 7.45
DoS slowloris 2,000 9.75 DoS attacks-GoldenEye 2,000 14.89 Reconnaissance 477 2.71
DoS Slowhttptest 2,000 9.75 DDOS attack-HOIC 1,000 7.45 DoS 226 1.28
PortScan 1,500 7.31 Brute Force -Web 611 4.55 Generic 189 1.07
FTP-Patator 1,000 4.88 DoS attacks-Slowloris 500 3.72 Shellcode 64 0.36
SSH-Patator 1,000 4.88 Brute Force -XSS 230 1.71 Worms 25 0.14
Heartbleed 10 0.05 SQL Injection 87 0.65 Backdoors 21 0.12

Toatl 20,510 Toatl 13,428 Toatl 17,600

• IF:The Isolation Forest algorithm defines anomalies as data points that are
easily isolated, meaning they are distant from densely populated clusters and
exhibit sparse distributions. It performs anomaly detection by recursively
partitioning the dataset until all sample points are isolated, thus identifying
outliers with shorter paths [20].

• DAGMM:DAGMM seamlessly integrates the dimensionality reduction and
density estimation processes, facilitating an end-to-end joint training ap-
proach [40].

• DEEP-SVDD:This method leverages neural networks for the extraction
of data features and confines the normal samples within a hypersphere.
Anomalous samples are distanced from this hypersphere, residing outside
of its boundaries[28].

• CAE-l2:CAE-l2 involves replacing the intermediate layer of the autoencoder
with an L2 normalization layer, which enhances the compatibility of feature
extraction with the Euclidean distance metric. As a result, it leads to im-
proved clustering accuracy when applying k-means clustering for graphical
representation [7].

• GOAD: GOAD projects data onto distinct regions through geometric trans-
formations and maps these transformed data into a new sample space. Under
the concept of single-class classification, each geometric transformation sub-
space is mapped into a sphere [9].

• THOC:THOC employs an extended recurrent neural network with skip con-
nections and integrates it hierarchically with a clustering network to capture
temporal dynamic features across multiple scales [30].

• Whipser:Whipser utilizes the ordered information represented by frequency
domain features to achieve bounded information loss, ensuring high detection
accuracy, while also constraining the feature dimension, thus achieving high
detection throughput [12].

• CRMC: CRMC utilizes a comparative learning approach based on residual
autoencoders to extract statistical features and employs GRU to extract
time series features. It also develops a clustering tree structure based on
the DBSCAN algorithm, which determines abnormal data based on the tree
height [27].

Among the baseline methods mentioned above, Isolation Forest represents a
traditional machine learning algorithm, whereas the other methods are rooted

Title Suppressed Due to Excessive Length 13

in deep learning techniques. Notably, CAE-l2 and Multiple-clustering support
multi-clustering testing. To facilitate a more robust comparison of model effec-
tiveness, a same data preprocessing pipeline was applied across all experiments.
Notably, the input dimensions for both the CIC-IDS2017 and CIC-IDS2018
datasets amount to 90 dimensions, while the UNSW-NB15 dataset comprises
55 dimensions. DEEP-SVVD employs data compression into a spherical space,
where the compression space is configured to be 20 dimensions. Conversely, the
GOAD algorithm leverages a one-dimensional convolutional neural network for
data transformation, with a mapping space dimensionality of 40. In contrast, the
other methods operate within a 10-dimensional compression space. Each method
was executed 10 times on each dataset, spanning 500 epochs per run, and the
final experimental results were computed as the arithmetic mean of these trials.

4.3 Experiments results

(a) distance matrix for classical AE (b) distribution for classical AE

(c) distance matrix for improved U-AE (d) distribution for improved U-AE

Fig. 3. Experimental results on clustering separability.

Multi-clustering To demonstrate the effectiveness of the feature fusion net-
work, we computed the Euclidean distance matrix of extracted features and the
distribution of clustered samples (Fig. 3). In Fig. 3(a) and Fig. 3(b), the classical
autoencoder architecture was employed, whereas in Fig. 3(c) and Fig. 3(d), we
utilized the improved U-shaped autoencoder structure that we introduced. It is

14 Yunyang Xie et al.

evident that in Fig. 3(c), UARC has introduced conspicuous patterns of prox-
imity and sparsity among the samples, signifying strong separation capabilities.
This assertion is reinforced in Fig. 3(d) as well.

In the experiments for clustering accuracy, we extended the commonly used
dimensionality reduction algorithms in combination with the HDBSCAN algo-
rithm on top of the baseline methods that support multi-clustering. Furthermore,
to highlight the superiority of the RetNet network in our model compared to the
Transformer, we incorporated the comparison with Transformer in this section.

Considering the uncertainty in the number of clusters generated by the HDB-
SCAN algorithm and the fact that we cannot pre-determine the number of traffic
types in a real network, we introduce a metric(Eq.(20)) to simultaneously rep-
resent traffic detection rate and accuracy in clustering traffic of the same type.
We use Ss1, s2, ..., si to represent the predicted cluster set, where ei represents
the most prevalent traffic type within each cluster, pei denotes its prevalence,
nei signifies the number of instances in that cluster, and NE is the total count
of traffic of type E. δ(ei, E) = nei if ei = E (otherwise, it is 0).

RecallAccE =
∑
si∈S

pei × δ(ei, E)

NE
(20)

However, since we know the number of traffic types in the dataset, we further
perform secondary clustering on the cluster centers of S using the Agglomera-
tiveClustering algorithm. We evaluate Eq.(21) using the standard unsupervised
clustering ACC [36]. In this equation, li represents the true cluster labels, pi
stands for the predicted cluster labels, Map() denotes the best mapping func-
tion to arrange predicted labels for the optimal alignment with true labels, and
θ(x, y) = 1 if x = y (otherwise, it’s 0).

Acc = max
Map

∑|I|
i=1 θ(li,Map(pi))

|I|
(21)

Fig. 4(a) shows the RecallAcc performance of UARC compared to other mod-
els facing different types of traffic, while Fig. 4(b) illustrates the variance distri-
bution of sub-classes in the clustering results of different models. Table 2 provides
the comparison results for standard ACC, with bold sections representing the
best results.It is evident that UARC demonstrates more accurate clustering ac-
curacy on each class of traffic group and has smaller inter-class variance. This
demonstrates that UARC can more accurately differentiate between different
types of traffic in a more compact manner. Additionally, we have replaced some
structures in UARC for comparison, which also proves the effectiveness of the
proposed improvements.

The performance decrease on the standard ACC is attributed to the con-
straint on the number of clusters. We believe that loosening the requirement
on the number of clusters appropriately can help improve the accuracy of each
subclass.

Our model showcases exceptional performance in the unsupervised clustering
of unknown anomalous traffic. Even the non-top results are closely aligned with

Title Suppressed Due to Excessive Length 15

(a) The multi-clustering result of RecallAcc. (b) Inter-class variance of each
model

Fig. 4. Clustering results presentation of each model

the top results. These anomalous traffic types often exhibit more pronounced
differences compared to benign traffic, such as the repetitive packet lengths in
DDoS attacks. UARC excels in handling extremely rare classes, providing ev-
idence of the effectiveness and superiority of RetNet in the realm of network
traffic anomaly detection. It’s worth highlighting that UARC using Transformer
exhibits noticeable differences in results compared to the UARC employing Ret-
Net. This discrepancy can be attributed to challenges related to the depth of
temporal networks. In order to improve UARC’s detection efficiency, we adopted
a smaller hidden layer size (64 dimensions) and a shallower network depth (4 lay-
ers) in the temporal feature extraction network. In such a scenario, where feature
extraction capabilities are relatively weaker, RetNet, with its robust inference
capabilities, clearly demonstrates its strengths.

Table 2. The result of standard ACC with baseline methods.

Method CIC-IDS2017 CIC-IDS2018 UNSW-NB15
CAE-l2 0.6537 0.6672 0.5987
CRMC 0.6254 0.6437 0.3749
PCA+HDBSCAN 0.4563 0.4798 0.2375
AE+HDBSCAN 0.5712 0.5968 0.3357
UARC(Transformer) 0.6489 0.6823 0.5991
UARC(RetNet) 0.7102 0.7266 0.6096

The experimental results indicate that researchers can use our model to clus-
ter unknown traffic sets and quickly identify specific traffic types through simple
analysis of the clustering results. Moreover, our model can also identify a small
number of attack traffic instances within traffic sets and cluster them separately,
facilitating rapid detection of new attack samples for research. In cross-dataset
experiments, we trained our model on the IDS2018 dataset and applied it to the
IDS2017 dataset. The results show that its effectiveness decreases only slightly,

16 Yunyang Xie et al.

underscoring the usability and versatility of our model in real-world scenar-
ios.The optimal mapping can be determined using the Kuhn-Munkres algorithm
[25].

Abnormal detection Table.3 presents a comparative analysis of the perfor-
mance between our model and other methods in the context of anomaly detec-
tion, incorporating metrics such as AUC and F1 scores. The most notable results
are highlighted in bold. In our experimental setup, we categorize data from nor-
mal traffic clusters with a detection rate below 90% as anomalies, ensuring a
rigorous approach to anomaly detection. Despite this stringent criterion, our
model consistently outperforms the comparison methods across various metrics.
Notably, when compared to the IDS2017 and IDS2018 datasets, the test re-
sults on the UNSW-NB15 dataset exhibit a noticeable decrease in performance.
This can be attributed to two key factors: (i) UNSW-NB15 contains a relatively
smaller proportion of anomalous data, making it an ”almost normal” dataset; (ii)
the UNSW-NB15 dataset offers fewer statistical features, and although we have
enriched its feature set, it still falls short in terms of expressive power compared
to the IDS2017 and 2018 datasets.

Table 3. The anomaly detection result with baseline methods.

CIC-IDS2017 CIC-IDS2018 2018cross2017 UNSW-NB15
Method AUC Recall F1 AUC Recall F1 AUC Recall F1 AUC Recall F1
IF 0.5339 0.8241 0.7889 0.5104 0.9017 0.7439 0.4339 0.8241 0.6889 0.5127 0.8933 0.7307
CRMC 0.8776 0.9094 0.2987 0.8294 0.8392 0.3833 0.6430 0.9562 0.2064 0.8135 0.7468 0.7310
THOC 0.8032 0.8707 0.8856 0.8987 0.8611 0.9058 0.7521 0.7336 0.7195 0.7400 0.7907 0.7834
Whipser 0.6694 0.9157 0.2561 0.7852 0.7364 0.3506 0.5002 0.5409 0.1564 0.6074 0.8737 0.2999
CAE-l2 0.9716 0.9367 0.9045 0.9170 0.9697 0.9590 0.8846 0.7273 0.7123 0.8846 0.8507 0.8511
DEEP-SVDD 0.6803 0.7016 0.6930 0.7297 0.5556 0.6890 0.6108 0.6212 0.6151 0.7170 0.6850 0.6743
DAGMM 0.9298 0.9445 0.9371 0.9296 0.9451 0.9373 0.9300 0.9453 0.9376 0.9301 0.9442 0.9371
GOAD 0.9216 1.0000 0.9020 0.9712 0.8238 0.7967 0.8125 0.8364 0.8596 0.8876 0.9013 0.8901
UARC(Transformer) 0.8547 0.8431 0.8559 0.8589 0.8546 0.8182 0.8547 0.8431 0.8759 0.8621 0.8570 0.8971
UARC(RetNet) 0.9944 0.9970 0.9970 0.9902 1.0000 0.9933 0.9462 1.0000 0.9892 0.9451 0.9502 0.9430

We also delved into the performance of various methods when confronted
with imbalanced datasets. We conducted experiments by selecting benign sam-
ples from the representative CIC-IDS2018 dataset and combining them with
anomalous samples in proportions ranging from 1%, 10%, 20%, to 100%. For
each well-trained baseline method, we ran experiments on the test set five times
and calculated the average results. Fig. 5 illustrates that, in general, most meth-
ods exhibit superior performance under balanced data conditions compared to
imbalanced ones. Notably, DEEP-SVDD and DAGMM demonstrate favorable
experimental results only when the benign and anomalous sample quantities are
approximately equal.

Our experiments have affirmed that our method consistently maintains ex-
ceptional performance when dealing with imbalanced data. This can be at-
tributed to the guidance provided by the clustering network to the feature learn-
ing network, enabling even benign traffic to exhibit variations due to diverse
communication scenarios. In essence, UARC utilizes clustering to segment the
imbalanced sample population into balanced groups comprising numerous small

Title Suppressed Due to Excessive Length 17

Fig. 5. Performance of different methods on imbalanced datasets.

clusters. Despite the considerable macro-level imbalance between benign and
anomalous samples, at a finer-grained communication partitioning level, they
achieve balance.

Parameter sensitivity test In Eq.(15) and Eq.(16), we have discussed the fac-
tors that influence the final dimensionality reduction and the weight of network
learning: λ and scaler. It is evident that when λ = 1, the model’s dimensional-
ity reduction reduces to just the output of the U-shaped auto-encoder, whereas
when λ = 0, the dimensionality reduction comprises solely the output of RetNet.
Regarding scaler, when it equals 0, RetNet no longer guides network learning.
We conducted parameter tests within the range of [0, 1], with the fixed value
of the other parameter determined by optimizing for the best results(Fig. 6).
Our evaluation metrics encompass AUC, F1-score, and RecallAcc. It is notable
that, when λ and scaler assume extreme values, the model fails to demonstrate
significant performance improvements. In our experiments, we segment contin-

(a) The influence of λ. (b) The influence of scaler.

Fig. 6. The influence of parameters λ and scaler on UARC.

uous traffic into contexts for processing. Recognizing that the choice of context
size can impact the extent of contextual information learned by the model, we
conducted experiments to evaluate the influence of context size on model per-
formance, as illustrated in Fig. 7. We utilized the CIC-IDS2018 representative

18 Yunyang Xie et al.

dataset and examined a range of context sizes from 10 to 100. The experimental
findings reveal that larger context sizes result in a performance decline. Our anal-
ysis of the clusters responsible for increased misclassifications with larger context
sizes unveiled a primary reason: larger contexts lead to benign and anomalous
samples being included in each other’s contexts, prompting the temporal model
to acquire inappropriate temporal relationships. Hence, practical usage should
prioritize the maintenance of a smaller context size, typically within the range
of 10-30.

Fig. 7. Performance of different context sizes on UARC.

5 Conclusion and future work

Intrusion detection plays a crucial role in ensuring network security. Unsuper-
vised intrusion detection methods offer a solution to the challenges posed by
high annotation costs and imbalanced data. In this study, we implemented a
deep learning model that integrates temporal and spatial features through clus-
tering to enhance feature extraction and cluster separation. Experimental tests
demonstrate our model’s proficiency in clustering different types of attack traffic
and identifying rare attack types. Furthermore, our work highlights the potential
application prospects of RetNet and robust inference capabilities in the field of
intrusion detection.

However, our model did not provide interpretable reasons for these results.
Robust interpretability provides credible support for intrusion detection systems.
As a prospect for future research, we intend to further enhance the interpretabil-
ity of our model.
References

1. Agarwal, S.: Data mining: Data mining concepts and techniques. In: 2013 interna-
tional conference on machine intelligence and research advancement. pp. 203–207.
IEEE (2013)

2. Alam, S., Alam, Y., Cui, S., Akujuobi, C.M.: Unsupervised network intrusion de-
tection using convolutional neural networks. In: 2023 IEEE 13th Annual Comput-
ing and Communication Workshop and Conference (CCWC). pp. 0712–0717. IEEE
(2023)

3. AlEroud, A., Karabatis, G.: Using contextual information to identify cyber-attacks.
Information fusion for cyber-security analytics pp. 1–16 (2017)

4. Ali, S., Li, Y.: Learning multilevel auto-encoders for ddos attack de-
tection in smart grid network. IEEE Access 7, 108647–108659 (2019).
https://doi.org/10.1109/ACCESS.2019.2933304

Title Suppressed Due to Excessive Length 19

5. An, J., Cho, S.: Variational autoencoder based anomaly detection using recon-
struction probability. Special lecture on IE 2(1), 1–18 (2015)

6. Andresini, G., Appice, A., Mauro, N.D., Loglisci, C., Malerba, D.: Multi-channel
deep feature learning for intrusion detection. IEEE Access 8, 53346–53359 (2020).
https://doi.org/10.1109/ACCESS.2020.2980937

7. Aytekin, C., Ni, X., Cricri, F., Aksu, E.: Clustering and unsupervised anomaly
detection with l 2 normalized deep auto-encoder representations. In: 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN). pp. 1–6. IEEE (2018)

8. Bagui, S., Li, K.: Resampling imbalanced data for network intrusion detection
datasets. Journal of Big Data 8(1), 1–41 (2021)

9. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data.
arXiv preprint arXiv:2005.02359 (2020)

10. Cotroneo, D., Paudice, A., Pecchia, A.: Empirical analysis and validation of se-
curity alerts filtering techniques. IEEE Transactions on Dependable and Secure
Computing 16(5), 856–870 (2017)

11. Devi, R.S., Bharathi, R., Kumar, P.K.: Investigation on efficient machine learn-
ing algorithm for ddos attack detection. In: 2023 International Conference on
Computer, Electrical & Communication Engineering (ICCECE). pp. 1–5 (2023).
https://doi.org/10.1109/ICCECE51049.2023.10085248

12. Fu, C., Li, Q., Shen, M., Xu, K.: Realtime robust malicious traffic detection via
frequency domain analysis. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. pp. 3431–3446 (2021)

13. Gao, L., Chen, H.: Abnormal detection of blast furnace condition us-
ing pca similarity and spectral clustering. In: 2018 13th IEEE Conference
on Industrial Electronics and Applications (ICIEA). pp. 2198–2203 (2018).
https://doi.org/10.1109/ICIEA.2018.8398075

14. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly de-
tection algorithms for multivariate data. PloS one 11(4), e0152173 (2016)

15. Graves, A., Graves, A.: Long short-term memory. Supervised sequence labelling
with recurrent neural networks pp. 37–45 (2012)

16. Gupta, N., Jindal, V., Bedi, P.: Cse-ids: Using cost-sensitive deep learning and
ensemble algorithms to handle class imbalance in network-based intrusion detection
systems. Computers & Security 112, 102499 (2022)

17. Lai, L.: Abnormal data detection method of web database based on improved
k-means algorithm. In: 2022 Global Reliability and Prognostics and Health
Management (PHM-Yantai). pp. 1–7 (2022). https://doi.org/10.1109/PHM-
Yantai55411.2022.9942021

18. Lai, Y., Ping, G., Wu, Y., Lu, C., Ye, X.: Opensmax: Unknown domain generation
algorithm detection. In: ECAI 2020, pp. 1850–1857. IOS Press (2020)

19. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural net-
works for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

20. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 eighth ieee interna-
tional conference on data mining. pp. 413–422. IEEE (2008)

21. McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering.
J. Open Source Softw. 2(11), 205 (2017)

22. Milosevic, M.S., Ciric, V.M.: Extreme minority class detection in imbalanced data
for network intrusion. Computers & Security 123, 102940 (2022)

23. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set). In: 2015 military communications
and information systems conference (MilCIS). pp. 1–6. IEEE (2015)

20 Yunyang Xie et al.

24. Panigrahi, R., Borah, S.: A detailed analysis of cicids2017 dataset for designing
intrusion detection systems. International Journal of Engineering & Technology
7(3.24), 479–482 (2018)

25. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and
complexity. Courier Corporation (1998)

26. Phung, D., Webb, G.I., Sammut, C.: Encyclopedia of Machine Learning and Data
Science. Springer US (2020)

27. Ping, G., Feng, S., Li, Y., Ye, X.: Unsupervised anomalous traffic detection based
on cascading representation and multiple-clustering. In: 2022 IEEE 8th Inter-
national Conference on Computer and Communications (ICCC). pp. 2303–2307.
IEEE (2022)

28. Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A.,
Müller, E., Kloft, M.: Deep one-class classification. In: International conference on
machine learning. pp. 4393–4402. PMLR (2018)

29. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSp 1, 108–116 (2018)

30. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems 33,
13016–13026 (2020)

31. Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., Wang, J., Wei, F.: Retentive
network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621 (2023)

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

33. Vitorino, J., Praça, I., Maia, E.: Sok: Realistic adversarial attacks and defenses for
intelligent network intrusion detection. Computers & Security p. 103433 (2023)

34. Wang, W., Jian, S., Tan, Y., Wu, Q., Huang, C.: Robust unsupervised network
intrusion detection with self-supervised masked context reconstruction. Computers
& Security 128, 103131 (2023)

35. Yang, J., Li, H., Shao, S., Zou, F., Wu, Y.: Fs-ids: A framework for intrusion
detection based on few-shot learning. Computers & Security 122, 102899 (2022)

36. Yang, Y., Xu, D., Nie, F., Yan, S., Zhuang, Y.: Image clustering using local dis-
criminant models and global integration. IEEE Transactions on Image Processing
19(10), 2761–2773 (2010)

37. Yang, Z., Liu, X., Li, T., Wu, D., Wang, J., Zhao, Y., Han, H.: A systematic
literature review of methods and datasets for anomaly-based network intrusion
detection. Computers & Security 116, 102675 (2022)

38. Yin, Y., Jang-Jaccard, J., Sabrina, F., Kwak, J.: Improving multilayer-
perceptron(mlp)-based network anomaly detection with birch clustering on
cicids-2017 dataset. In: 2023 26th International Conference on Computer
Supported Cooperative Work in Design (CSCWD). pp. 423–431 (2023).
https://doi.org/10.1109/CSCWD57460.2023.10152640

39. Zhang, H., Zhang, X., Xie, J., Wang, Y.: Group abnormal behavior detection based
on fuzzy clustering. In: 2020 3rd International Conference on Unmanned Systems
(ICUS). pp. 245–250 (2020). https://doi.org/10.1109/ICUS50048.2020.9274820

40. Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.:
Deep autoencoding gaussian mixture model for unsupervised anomaly detection.
In: International conference on learning representations (2018)

