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Abstract. Machine learning compilers are large software containing
complex transformations for deep learning models, and any buggy trans-
formation may cause a crash or silently bring a regression to the pre-
diction accuracy and performance. This paper proposes an SMT-based
translation validation framework for Multi-Level IR (MLIR), a compiler
framework used by many deep learning compilers. It proposes an SMT
encoding tailored for translation validation that is an over-approximation
of the FP arithmetic and reduction operations. It performs abstraction
refinement if validation fails. We also propose a new approach for encod-
ing arithmetic properties of reductions in SMT.We found mismatches be-
tween the specification and implementation of MLIR, and validated high-
level transformations for SqueezeNet, MobileNet, and text_classification
with proper splitting.

1 Introduction

Machine learning compilers play a crucial role in the deep learning ecosystem.
Their primary goal is to lower high-level tensor operations into fast machine
instructions. To boost the speed of training and inference, they utilize several
optimizations. Tensors’ layouts may be changed for spatial locality, and loops
lowered from tensor operations may be fused and offloaded into GPUs if benefi-
cial. Any bug in the optimizations may cause a crash or silently bring a regression
to the prediction accuracy and performance.

However, verifying machine learning compilers is a challenging goal. Open-
source compilers like XLA, Glow, and MLIR are being updated daily. As their
intermediate representations (IRs) are for internal uses, they are sometimes un-
derspecified, making their formalization hard. Furthermore, programmers want
to boost the performance at the expense of precision by allowing unsafe arith-
metic properties such as associativity of addition.

Recently, SMT-based automatic translation validation has gained attention [33]
because it fits well with fast-moving industrial compilers. Translation validation
is an approach to checking whether a specific compilation is correct by inspecting
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the source (input) and target (output) programs. To cover a variety of compiler
optimizations, it uses an SMT solver which is an automatic theorem prover for
first-order logic. Using an SMT solver allows us to quickly explore possible se-
mantics for IRs by implementing them and validating compilations of various
programs.

A key challenge is how to make SMT solvers prove the verification condition
in a reasonable time. To use an SMT solver, the given problem must not be too
complex. Bit-vector and uninterpreted function (UF) theories are well-supported
by the majority of solvers, whereas floating-point numbers are not [14]. This
implies that finding an efficient encoding for tensors and their operations is
important for practical validation of machine learning compilers.

In this paper, we propose an SMT-based translation validation framework
for Multi-Level IR (MLIR). MLIR is a compiler framework for facilitating the
modular development of domain-specific compilers by sharing IRs and relevant
transformations. MLIR is primarily used by TensorFlow, TFLite, and IREE.
More deep learning frameworks like PyTorch are adding supports for MLIR.

Our goal is to validate high-level, target-independent intraprocedural trans-
formations in MLIR. These include lowering high-level tensor operations to loops,
bufferizing tensors, simplifying tensor/buffer operations, and simple loop opti-
mizations. Our tool does not receive hints about the ongoing transformation
from the compiler.

The list of contributions of our paper is as follows:

– The first SMT-based translation validation for MLIR (Section 3).
– An abstract representation of FP arithmetic for translation validation (Sec-

tion 4).
– An SMT encoding of tensor operations and loops as well as fast encoding of

arithmetic properties of reduction operations (Section 5).
– Validation of compilation of three deep learning models as well as hundreds

of unit tests in MLIR (Section 7).
– A discovery of several ambiguities in the semantics of MLIR (Section 7).

2 Multi-Level Intermediate Representation (MLIR)

The MLIR project is an open-source compiler infrastructure that facilitates the
modular development of domain-specific compilers by sharing reusable parts.
The reusable parts are dialects and relevant compiler transformations. A dialect
is a subset of a compiler’s intermediate representation language. An intermediate
representation (IR) program in MLIR is expressed using one or more dialects.
They are ultimately lowered into the input languages of low-level code generation
frameworks such as LLVM IR or SPIR-V through first-class dialects. We will
introduce several core dialects in MLIR, which are also our targets for validation.

Dialects for Tensors The tensor and tosa (Tensor Operator Set Architec-
ture) dialects define the tensor type and operations. Pre-trained machine learning
models can be lowered to them via importers.
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A tensor type consists of an element type and dimensions. The tensor di-
mensions can be dynamic, which are retrievable in runtime. Its elements can be
accessed through, e.g., tensor.extract with valid indices. Tensor registers do
not alias each other and are in the static single assignment (SSA) form. tosa
provides a set of operations commonly employed by deep neural networks, such
as a convolution or pooling.

// f32 is the float type in C
func @calc(%img : tensor<2x64x64x3xf32>,

%filter : tensor<16x3x6x3xf32>) {
%c0 = arith.constant -0.0 : f32
%bias = tensor.from_elements %c0, ... , %c0

: tensor<16xf32>
%res = tosa.conv2d(%img, %filter, %bias)

...->tensor<2x62x59x16xf32>
return %res : tensor<2x62x59x16xf32>
}

(a) A convolution operation.

#col_major = affine_map<(d0, d1)->(d1*3+d0)>
func @example(%arg0 : memref<2x3xf32>,

%arg1 : memref<2x3xf32, #col_major>) {
...
}

(b) Two memref arguments.

#map0 = affine_map<(d0, d1, d2)->(d0, d2)>
#map1 = affine_map<(d0, d1, d2)->(d2, d1)>
#map2 = affine_map<(d0, d1, d2)->(d0, d1)>
// i32 is the 32-bit int type in C
%output = linalg.generic {
// #map0, #map1: maps for %A, %B
// #map2: a map for %C
indexing_maps = [#map0, #map1, #map2],
iterator_types = ["parallel", "parallel",

"reduction"]}
ins(%A, %B : tensor<16x8xi32>,

tensor<8x32xi32>)
outs(%C : tensor<16x32xi32>) {
^bb0(%a: i32, %b: i32, %c: i32):

%ab = arith.muli %a, %b : i32
%res = arith.addi %c, %ab : i32
linalg.yield %res : i32

} -> tensor<16x32xi32>

(c) %C+%A×%B in linalg.

Fig. 1: Dialects for tensors and buffers in MLIR.

The @calc function in Figure 1(a) takes two tensor arguments, performs
convolution (tosa.conv2d), and returns the result. The input bias and output
tensor are stored at tensor-typed virtual registers %bias and %res. Note that
different dialects – tensor, tosa, and arith (dialect for simple arithmetic op-
erations) – can exist in one IR program.

MemRef Dialect The memref dialect has a type for memory references (which
is also called memref) and relevant operations. The memref type is similar to a
pointer type in C but has richer information than that. It has a layout map that
maps multidimensional, logical indices into a one-dimensional, physical address3.
It is used to create a view of a specific memory region in the form of a tensor. It
supports arbitrary access patterns such as strided accesses or a transposed view.
MLIR transformations assume that the layout map is injective.

Figure 1(b) shows two memref arguments with different layout maps. %arg0
has a default row-major layout map. On the other hand, %arg1 has a column-
major layout map meaning that %arg1[i][j] is located at offset (i + j × 3)
from the reference point. The values multiplied by offsets d0, d1 (1 and 3 in
#col_major) are called strides.

3 Its domain can also be multidimensional in general, but we do not support the case.
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Linalg Dialect The linalg dialect contains various loop-like operations on
tensors and buffers. linalg operations are more primitive than tosa’s and can
be performed on buffers.

In linalg, one can represent a generic loop in a structured form using the
linalg.generic operation. Each loop explicitly takes input tensors or buffers
as its operands. The loop’s indexing maps describe which elements are chosen
at each iteration. The elements chosen from the inputs at an iteration are rep-
resented as input arguments of the loop body region.

The loop body yields a value at each iteration, and the results constitute
the output elements. A loop that takes an output buffer writes the resulting
elements to the buffer. A loop that takes an output tensor stores the resulting
tensor in a new tensor register, which can later be used as another input tensor.

Figure 1(c) shows how to represent %C+%A×%B for three matrices %A, %B, and
%C in linalg.generic. %C and the resulting tensor (%output)’s shapes must be
the same. The linalg.generic is a triple nested loop that has three induction
variables d0, d1, d2. The indexing_maps describe which elements of the tensors
are retrieved in each iteration. The retrieved elements are assigned into block
arguments %a, %b, and %c of the loop body. The loop body performs integral
multiplication (arith.muli) followed by addition (arith.addi) and yields it to
the next iteration which again becomes %c. iterator_type shows that the third
(innermost) loop is a reduction loop because it is doing summation, whereas the
two outer loops can be parallelized.

linalg is the source and target dialect of several key transformations. First,
tosa’s operations can be lowered into the combination of linalg’s operations
on tensors. Second, bufferization on linalg’s operations changes their tensor
operands into buffers. Third, the linalg.generic loops can be optimized into
fused linalg.generic loops or simpler operations. Fourth, conversions from
linalg to lower level dialects yield for loops (affine, scf) or control-flow graphs
(standard).

Transformations in MLIR MLIR provides transformations that (1) convert
the input programs written in high-level dialects into the low-level ones, or (2)
optimize the input program into more efficient form. Except for those that in-
tentionally change the input program’s behavior, transformations must preserve
the behavior.

3 Overview

In this section, we introduce mlir-tv, a translation validation framework for
MLIR. Like other frameworks [22,33,36,41,42], mlir-tv takes two programs writ-
ten in the IR and checks whether the transformation is correct. Since mlir-tv
targets intraprocedural transformations, functions in the two programs with the
same signature are checked pairwisely. mlir-tv relies on an SMT solver to au-
tomatically prove that the transformation is correct or find a counterexample if
incorrect.
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mlir-tv symbolically encodes each MLIR instruction in a function and emits
its final state in a logical formula. After encoding the final states of the source
and target functions fsrc and ftgt, mlir-tv checks a refinement predicate using
an SMT solver. The predicate states that for any input state I consisting of
an initial memory and argument values, fsrc(I) w ftgt(I) must hold where w is
a refinement relation between two final states (Section 6.3). If the SMT solver
finds an input that breaks the refinement, mlir-tv concludes that the compiler
transformation is incorrect. If the SMT solver proves that such input does not
exist, the transformation is correct.

3.1 Abstraction for Floating-Point Arithmetic

For practical validation of tensor transformations, it is crucial to efficiently rep-
resent floating-point (FP) arithmetic in SMT. SMT-LIB 2 formally supports
IEEE-754 [10] under the name of the FPA theory [37]. SMT solvers support-
ing the FPA theory typically simulate the hardware implementation of the FP
arithmetic by representing their bits as boolean variables and converting FP
operations into boolean expressions (called bit-blasting) [13]. Then, the formula
can be efficiently solved using their highly optimized SAT solvers.

However, there are two challenges in using the FPA theory to prove transfor-
mations on tensors. First, encoding FP arithmetic in SMT is expensive because
solvers internally yield large expressions. Also, a significant portion of tensor
transformations does not require such precise encoding. For example, bufferiza-
tion is agnostic to the representation of the underlying values because its goal
is moving the virtual registers to memory buffers correctly. Second, machine
learning compilers want to support transformations that are incorrect under
IEEE-754 for performance. We cannot simply rely on FPA in this case because
it will invalidate the transformations.

To address these concerns, mlir-tv abstractly encodes the FP operations
(Section 4). We find an abstract domain for FP numbers that is specific to the
transformation to validate. It uses over-approximations meaning that a successful
validation implies the correctness of the transformation. If it is not validated,
mlir-tv refines the abstraction and try validation again (Section 6.3).

3.2 The Formal Semantics of Dialects

Since there is no official formal semantics for MLIR dialects yet, we read the
textual specification of MLIR dialects and represented them in the encoding
function. The function returns the final state in SMT expressions. Therefore, it
implicitly defines the big-step formal semantics of the dialects in MLIR. Also, the
function contains encoding rules for each instruction, which implicitly represent
its small-step semantics.

Note that we are not proposing new formal semantics for unsafe FP arith-
metic. We assume that there exists a valid FP semantics that satisfies certain
arithmetic properties. The concrete semantics of FP operations is hidden under
the uninterpreted functions used for the abstract encoding. The semantics of
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unsafe FP arithmetic is often explained using nondeterministic execution [11]
and encoding it in SMT requires universal quantification which is expensive.

4 Encoding Floating-Point Numbers and Tensors

To overcome the challenges described in Section 3.1, we devise an abstract encod-
ing of FP arithmetic tailored for translation validation. In this abstract encoding,
an FP number is represented as a bit-vector that is typically smaller than its
original bit width. The operations on FP numbers are represented as UFs satis-
fying arithmetic properties like commutativity. Our encoding does not miss bugs
because it is an over-approximation of the FP arithmetic. On the other hand,
validation failure does not always mean that the transformation is wrong.

4.1 Abstract Domain of Floating-Point Numbers

We begin with defining an abstract domain for FP numbers that is specific to
the transformation to validate. We count the number of distinct FP numbers
that are required to express at least one counterexample if the transformation is
incorrect. As a result, if it is possible to prove that no counterexample is found
in this abstract domain, no concrete counterexample can exist.

// The source function
func @f(%a: f32, %b: f32) {

%c_src = addf %a, %b: f32
return %c_src: f32

}

// The target function
func @f(%a: f32, %b: f32) {

%c_tgt = addf %b, %a: f32
return %c_tgt: f32

}

Consider a transformation that swaps the
two operands of FP addition. An invocation of
the source function (top) can observe at most
three distinct FP numbers because it has three
FP registers %a, %b, and %c_src. Similarly, the
target function (below) can observe at most
three different numbers. The number of distinct
FP numbers required to validate the transfor-
mation is not greater than 4 = 3 + 3 − 2 since
two of those are shared as arguments.

After counting the number, we abstractly
represent the values of FP registers and con-
stants using bit-vectors. For the above example, 2 bits are enough in theory
because 4 ≤ 22. We will use notation J%aK to represent the abstract bit-vector
value of %a. In SMT, two bit-vector variables are declared for %a and %b because
they can be any value, and %c_src and %c_tgt are defined as expressions with
respect to the variables.

Defining Operations To abstractly define addf, we declare a UF for addition.
If the arithmetic properties of addition are ignored, Jaddf(%a, %b)K may be
defined as addfSMT(J%aK, J%bK) where the definition of UF addfSMT is arbitrarily
determined by the SMT solver. Since the solver’s goal is to find a counterexample,
it will try to find a definition of addfSMT that breaks the transformation. If the
solver couldn’t find one, the transformation is correct under any definition of FP
addition.
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Note that validating the above example requires encoding commutativity
‘addfSMT(J%aK, J%bK) = addfSMT(J%bK, J%aK)’. Instead of using an expensive uni-
versal quantification, we encode addition as ‘addf′SMT(x, y) & addf′SMT(y, x)’ where
& is the bitwise and operation and addf′SMT is another UF. Without loss of gen-
erality, it encodes all possible commutative functions4.

To encode the result of operations on ±0,±1,±fMAX (finite max),±∞ and
NaN, we use the ite (if-then-else) expression in SMT. For example, to encode
‘NaN + y = NaN’, the expression is wrapped with an ite that checks if one of
the inputs is NaN. Combined with the commutativity encoding, the expression
for x+ y becomes as follows. ‘x is NaN’ is the SMT formula checking x is NaN
by inspecting x’s abstract representation which will be described later.

ite(x is NaN ∨ y is NaN, NaN, addf′SMT(x, y) & addf′SMT(y, x))

Using UFs and ites, we abstractly encode +, −, ×, / and xy. Subtraction is
defined as an addition of the negated second operand. Division is not equivalent
to multiplication of the inversed operand due to the existence of subnormal
values. Therefore, it is encoded using a separate UF.

Comparisons, |x| and −x are precisely encoded because our bit-vector repre-
sentation natively supports them. Their representation will be described below.

Bit-vector Structure A bit-vector for FP consists of a sign bit (SB) at its
most significant bit and magnitude bits (MB) at the entire lesser significant bits.
They represent the sign and the order of absolute value of the original number,
respectively. Therefore, comparing the magnitudes of two finite FP numbers is
equivalent to simply comparing their MBs. If MB[1 . . . |MB| − 1] are all set to
1, the original value is ∞ (MB[0] = 0) or NaN value (1). Unlike IEEE-754 [10]
which have multiple NaN values per sign, we have one representation per sign5.

The bit-vector representation of an FP constant number is a concatenation of
the sign bit and magnitude bits which is a bit-vector variable in SMT. The bit-
vector variables are given preconditions so that a constant with a larger absolute
value is guaranteed to have larger MB.

Supporting Floating Point Casts To support FP casts, MB is further split
into three parts: limit bits (LB), truncated bits (TB), and precision bits (PB)
in descending significance order. These parts determine the result of casting the
value into a smaller FP type. LB represents the overflow condition. If LB is 0, a
cast to the smaller size yields a finite value. If not, it yields ±∞. TB represents
the magnitude floored to the target type. Its bit width is equivalent to the bit
width of MB of the smaller type. PB represents the offset from the floored value.
If PB is 0, the value is truncated to the exact value without loss of precision.
Otherwise, the value must be rounded, and the direction is determined by a UF
4 We describe its formal proof in our online supplementary material [5].
5 We chose this policy because respecting the bits invalidates several transformations
in LLVM and the behavior of processors canonicalizing NaN values [33].
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returning boolean. Extension is done by copying MB to TB and filling LB and
PB with 06.

4.2 Encoding Tensors

In SMT, a tensor is represented as an array expression from the address space-
sized bit-vector to the element type. A multidimensional tensor is encoded as a
one-dimensional array in row-major order. The dimension sizes of dynamically
shaped tensor arguments are encoded as bit-vector variables. The number of
elements of a tensor cannot exceed the size of the address space.

For each tensor argument in MLIR function, a new SMT array variable is
assigned because its value can be fully arbitrary. The results of tensor operations
are encoded as lambda expressions in SMT which is described in Section 5.1.

Uninitialized Tensors A tensor may contain uninitialized elements. In SMT,
a tensor carries another boolean array that indicates uninitialized elements.

We define accessing uninitialized elements as an undefined behavior (UB) for
the following reason. During bufferization, linalg.init_tensor operation that
returns an uninitialized tensor is lowered into memref.alloc. The memref.alloc
operation is then converted into a malloc call in LLVM IR, reading uninitialized
bytes of which and using them may raise UB.

Tensor arguments in MLIR are assumed to be fully initialized. linalg’s
init_tensor is the only operation that creates an uninitialized tensor. Opera-
tions like tensor.insert can create a partially initialized tensor.

4.3 Calculating the Bit Width

The bit width of the abstract representation of FP numbers is decided by the
number of float registers and constants. Since all FP registers can store distinct
FP numbers, the number of different FP numbers that may appear during the
source and target program execution is bounded by the number of FP registers
and distinct constants.

However, an operation that does not return an FP number can internally
observe an unseen number. For example, suppose is_int(x) that returns true
if float x is an integral value. Given an UF floorSMT(x) that returns an ab-
stract float with its decimal truncated, this operation can be encoded as ‘x ==
floorSMT(x)’, which hides an unseen number in floorSMT(x).

Therefore, we count the number of UFs applied to abstract FP numbers
while encoding the source and target instructions. The size of the BV field is
dlog2Ne where N is the number of applied UFs added by the number of FP
arguments as well as distinct constants of the source and target functions. From
the above example, is_int(x) must increment N even if it returns boolean
because floorSMT(x) can return an unseen FP value.
6 We describe the full encoding of constants of different types and other details in our
online supplementary material [5].
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func @f(%x, %y: tensor<8xf32>) {
%z_src = tosa.add %x, %y
return %z_src

}

func @f(%x, %y: tensor<8xf32>) {
%z_tgt = tosa.add %y, %x
return %z_tgt

}

(a)

func @f(%x, %y: tensor<8xf32>,
%i: index) -> f32 {

%z_src = tosa.add %x, %y
%z_src_i = %z_src[%i]
return %z_src_i

}

func @f(%x, %y: tensor<8xf32>,
%i: index) -> f32 {

%z_tgt = tosa.add %y, %x
%z_tgt_i = %z_tgt[%i]
return %z_tgt

}

(b)

func @f(...) -> f32 {
%x_i, %y_i = %x[%i], %y[%i]
%z_src_i = addf %x_i, %y_i
return %z_src_i

}

func @f(...) -> f32 {
%x_i, %y_i = %x[%i], %y[%i]
%z_tgt_i = addf %y_i, %x_i
return %z_tgt

}

(c)

Fig. 2: Reducing elementwise tensor operations into scalar operations.

Considering Tensors and Memory In general, a tensor with M elements
must increase N by M because it can have M different floats. To reduce the
bound, we again rely on the fact that finding only one counter-example is enough.
If that counter-example is a tensor, one mismatched element is sufficient.

If all tensor operations in functions are elementwise, we can simply ignore
tensors’ dimensions and count them as FP numbers when evaluatingN . Consider
the example in Figure 2(a). To validate that transforming the upper f to the
lower f is correct, we must check whether %z_src[i] and %z_tgt[i] are equal
for any i. Therefore, we can rewrite the functions into the form in Figure 2(b)
without affecting the correctness of the transformation. Note that the return
types of two functions are changed from tensor to float. Since tosa.add is an
instruction that performs addf elementwisely, choosing i from tosa.add only
requires i’th elements from its input tensors. Therefore, the functions can again
be rewritten as in Figure 2(c). Since only the i’th elements of tensors %x and %y
are used, the functions can again be rewritten to take %x_i and %y_i as function
arguments instead, which is not depicted in the figure. Therefore, validating the
initial pair is equivalent to validating two functions taking and adding two FP
numbers.

Given a memref value, one can only access in-bounds locations. Thus, its size
is added into N . If all tensor operations are elementwise, it is counted as one.

5 Supporting Tensor Operations and Loops

In this section, we introduce the SMT encoding of tensor operations and loops.

5.1 Encoding Tensor Operations

The result of a tensor operation is encoded as a lambda expression in SMT.
For example, a negation of tensor t is encoded as ‘lambda i, negate(select(t, i))’
where i is a 32 bit-vector variable, ‘select(t, i)’ selects the i-th element from the
SMT array of t, and ‘negate(bv)’ is an alias for an SMT expression extracting
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the sign bit of bv and concatenating its negation with its BV bits. Note that it
does not check whether i is within the bound of the tensor. It is because the
values at out-of-bounds indices cannot affect the program’s behavior.

For operations returning a multidimensional tensor, the lambda chooses and
returns the element in row-major order. For example, transpose of t whose size
is N ×N is encoded as ‘lambda i, select(t, i%N ×N + i/N)’.

Encoding Reduction Operations In general, reduction operations like sum-
mation of an array cannot be precisely encoded in SMT-LIB 2. To support them,
we abstractly encode the reduction operations using UFs. For example, we de-
clare sum which is a UF taking an array and returning a float number. Since
this is an over-approximation, the validation may fail. In this case, we perform
abstraction refinement, which will be described in Section 6.3.

The out-of-bounds elements of an array are wiped out before applying to
UF because they must not affect the result. This is done by wrapping the input
array with lambda and select. The select returns the value that do not affect the
result of the reduction (e.g., −0.0 for a summation) if the index is out of bounds.

Tensor Operations and Undefined Behavior The documentation was not
clear about the behavior of a program violating the assumptions that tensor
operations expect at runtime. The violations include out-of-bounds access, size
mismatch of the dynamic-shaped tensors, and reading an uninitialized element.
If it is defined as having well-defined side effects such as calling exit, dead tensor
operations cannot be freely removed and lowering to LLVM IR whose behavior
may be undefined cannot be explained. Therefore, we define them as UB.

5.2 Encoding Loops

In MLIR, linalg loops are typically generated from high-level tensor opera-
tions. Compared to loops in general programs, they are simple and syntactically
provide rich information. The loop consists of instructions without side-effect
(modulo UB), and linalg loops explicitly state input/output tensors’ index
mappings as well as parallelizable induction variables. Therefore, we can con-
struct the output tensor or buffer without synthesizing loop invariants.

#id = affine_map<(d0, d1) -> (d0, d1)>
#transposed = affine_map<(d0, d1) -> (d1, d0)>

// %C = %A + %B^T, %C’s shape = %out’s shape
%C = linalg.generic {indexing_maps = [#id, #transposed, #id],

iterator_types = ["parallel", "parallel"]}
ins(%A, %B : tensor<?x?xf32>) outs(%out : tensor<?x?xf32>) {

^bb0(%a: f32, %b: f32, %unused: f32):
%c = arith.addf %a, %b: f32
linalg.yield %c : f32

} -> tensor<?x?xf32>
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Consider the above loop that adds tensors %A and %BT . Indexing maps (#id,
#transposed, #id) are mappings from two induction variables (hence a doubly
nested loop) to the indices of input (%A, %B) and output (%out) tensors. The loop
body shows that the initial value of %out is not used. Since iterations over each
dimension have no dependency because they are parallel (iterator_types), we
can conclude that %out[i][j] = %A[i][j] + %B[j][i].

In this section, we propose an encoding of loops in linalg using the lambda
theory and a universal quantification. Encoding a loop in linalg starts with
finding loop bounds. Loop bounds are determined by matching the ranges of the
indexing maps with the tensor (buffer) sizes. Then, the loop body which yields
the element of the resulting tensor is encoded. If the output type is tensor, the
resulting tensor is encoded in lambda in row-major order. If the output type is
buffer, the memory locations are accordingly updated.

For the above example, the yielded result at each iteration is described as a
lambda expression with two parameters: ‘lambda (d0, d1), add(%A[d0, d1], %B[d1, d0])’.
Then, the output tensor %C is encoded as a lambda with a single parameter i. It
selects (i /N, i%N) from the first lambda where N is %out’s width.

Determining Loop Bounds If the sizes of %A and %B are larger than that of
%out, should the linalg.generic raise UB or add parts of the inputs?

To find its valid semantics, the first transformation to consider is linalg’s
conversion from linalg.generic to a canonical for loop in another dialect. The
conversion generates a for loop with the upper bounds of induction variables
explicitly given. The conversion sequentially visits the indexing maps, and finds
the first dimension that exactly matches. Exact matching means that the range
of the indexing map must be identity, not e.g., d0 + 1. If such dimension cannot
be found, the linalg.generic is considered syntactically invalid.

The second transformation is the canonicalization of linalg.generic. If a
linalg.generic loop iterates over the input tensors and simply returns the
elements, its output is replaced with the input tensors regardless of the in-
put/output tensors’ shapes. However, if we determine the loop bounds only by
the shape of the first matched tensor, this transformation cannot be justified
when input tensors have different sizes.

Therefore, we encode the loop bounds of linalg.generic as follows. First,
we find loop bounds according to the algorithm of the first transformation
(generic to for). For the above example, the upper bounds of d0 and d1 are the
the dimension’s sizes of %A because the first indexing map is for %A. Second, all
input tensors’ shapes must match the determined loop bounds, otherwise UB.
In the case of the above example, %A, %B and %out’s shapes must be equal.

Encoding Loops on Buffers If inputs/outputs are buffers, tensors are loaded
from the inputs, the loop is performed on the tensors, and the resulting tensor is
stored into the output buffer. The input and output buffers of linalg.generic
must be disjoint (Section 6.2). If the output buffer’s layout map is identity, the
output memory block is updated using lambda. If not, a fresh SMT array for
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the updated block is created, and the equalities between old/new elements of
the block and the output tensor are encoded using forall quantifications.

Encoding Reduction Loops Induction variables which have “parallel” in
the iterator_types attribute must appear as the parameters of the SMT lambda
expression. Other variables, however, must be accordingly encoded. To encode
reduction loops, we syntactically match the operand of the last yield and use the
corresponding UF for the reduction (Section 5.1). This worked well in practice
because the reduction loops in MLIR had common patterns.

5.3 Supporting Arithmetic Properties of Reductions

Floating-point addition and multiplication are not associative, but programmers
sometimes want to boost performance at the expense of precision by allowing
compiler optimizations that rely on the property. To encode the property, the
definition of addition and multiplication must be different from IEEE-754 be-
cause using it causes inconsistency in the underlying logic.

Then, what is the semantics of x + y + z? One possible solution is that its
evaluation nondeterministically yields either (x+y)+z or x+(y+z) [11]. However,
encoding the semantics in SMT requires introducing quantified variables.

Therefore, as described in Section 5.1, we start from abstractly encoding
reduction operations in UFs. For example, UF sum takes an array [x, y, z] and
returns its summation. A question is how to encode their arithmetic properties
like sum([sum([x, y]), z]) = sum([x, sum([y, z])]). We introduce a new technique
that works when the length of the input array is constant. This technique is not
specific to a summation but can be applied to any reduction.

Encoding Commutativity The first arithmetic property to consider is com-
mutativity: ‘sum([..., x, ..., y, ...]) = sum([..., y, ..., x, ...])’.

A straightforward solution is to use the multiset theory. Two sums are consid-
ered equal if the multisets converted from input arrays are equal. For the solvers
that do not support the multiset theory, a multiset can be simulated using an
array taking an element and returning its count. However, this multiset-based
approach does not scale well (Section 7.3). We conjecture that existing algo-
rithms in the solvers are not good at checking the equality of two multisets
(cvc5) / counter arrays (Z3).

We suggest a hash-based approach for encoding the multiset equality. Our
approach begins with defining a hash function F on an array. If two arrays are
equal, their hash values must be equal. The inverse holds when the range of F
is sufficiently large. It only uses the theory of UF and BV, which are cheap.

To define F , we define another hash function f on floating-point numbers.
F (A) is defined as a summation of hash values of its elements

∑
x∈A f(x). By the

arithmetic property of bit-vector addition, F (A) = F (A′) if A′ is a permutation
of A. The inverse direction also holds. We prove that if F (A) = F (A′) for any
f , A′ is a permutation of A.



SMT-based Translation Validation for ML Compiler 13

Theorem 1. Given A and A′ that are arrays of type T , if ∀f .
∑

x∈Af(x) =∑
x∈A′f(x) where f ∈ T→BV (dlog2max(|A|, |A′|)e), A′ is a permutation of A.

Proof. Let’s assume that count(S, x) is the number of x in multiset S. For ex-
ample, count({1, 1, 3}, 1) is 2. We first prove the following lemma.

Lemma 1. Given two multisets S and S′, S = S′ holds if

∀g,

(∑
x∈S

count(S, x)× g(x)

)
=

(∑
x∈S′

count(S′, x)× g(x)

)
where g ∈ T → BV (dlog2max(|S|, |S′|)e).

Proof. Assume that gk(x) is a function that returns 1 if x = k and 0 otherwise.
By picking each element of S as k and g = gk, S = S′ holds. �

Assume that S is a multiset from array A and S′ from A′. From the assump-
tion ∀f .

∑
x∈A f(x) =

∑
x∈A′ f(x), we can derive ∀g,

(∑
x∈S count(S, x)× g(x)

)
=(∑

x∈S′ count(S′, x)× g(x)
)
. Then, we can apply the lemma. By the conclusion

of the lemma, the two multisets are equal, hence A is a permutation of A′. �

For each pair of two sum function calls appearing in the source and target,
their equality is encoded as a constraint. Since P =⇒ Q iff ¬Q =⇒ ¬P , the
universal quantification in the Theorem 1 can be converted into an existential
form ‘sum(A) 6= sum(A′) =⇒ ∃f .

∑
x∈A f(x) 6=

∑
x∈A′ f(x)’. Since ∃f can be

moved out, the precondition is quantifier-free.

Encoding Flattening of a Nested Reduction By expanding the hash func-
tion based approach, we can encode the equality between nested reductions.
Consider this equality: ‘sum([sum(A), sum(B)]) = sum(A++B)’.

Since the array [sum(A), sum(B)] is not a permutation of A++B, the previous
encoding does guarantee that the two summations are equivalent. To support
this case, given a hash function F and summation sum(A), we add a precondition
F (sum(A)) =

∑
x∈A F (x). That is, the hash value of sum(A) is equivalent to the

summation of hash values of x ∈ A.
Note that the hash function is individually defined per a pair of summations

in the programs. This causes additional preconditions for each hash pair to relate
inner and outer summation. We reduce the number of preconditions by unifying
hash functions into one7.

6 Encoding Memory and Refinement

MLIR has several dialects providing memory operations, such as memref, affine,
and bufferization. We propose a memory model for these dialects. Also, we
illustrate our SMT encoding for the model.
7 Due to the limited space, we prove that the unified hash function’s range must not
be smaller than [0, p2n) where p is the number of summation pairs and n is the
maximum size of an array in our online supplementary material [5].
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6.1 Memory Model

Memory Block Amemory is made up of smaller memory blocks in our memory
model. A memory block is a unit of a memory allocation, and is either created
by memref.alloc, memref.alloca, clone-like operations of bufferization, or
defining a global variable. memref.alloca allocates a block at stack whereas
memref.alloc has no such constraint. memref.dealloc frees the block.

A memory block is uniquely identified with a block id. Its properties consist
of the number of elements, block type, writability, liveness, and the list of el-
ements with the list of booleans indicating whether each element is initialized.
The block type is a boolean value which shows whether it is created by mem-
ref.alloc. Allocating instruction creates a new memory block which is initially
alive, writable, and fully uninitialized. The clone-like operation marks the source
block with permanent read-only. The behavior of accessing a dead block is un-
defined, and also accessing an uninitialized element is undefined behavior. This
decision is described in Section 4.2 as well.

Memory Reference The memref type is a reference to a specific memory area.
It consists of the pointing block’s id, block offset, layout map, dimension sizes of
the pointing area, and a flag indicating whether it is a view reference. A block
offset may be non-zero because memref allows creating an aliased reference via
memref.view, which may not point to the head of the block. memref may point
to an out-of-bounds area of the block, and accessing that area is UB.

Loading a tensor from memref is well-defined if (1) the referenced area is
within the bounds of the memory block, (2) the block is alive (i.e. not deallocated
yet), and (3) the visited offsets are fully initialized. Writing a tensor is well-
defined if the area is in-bounds and the block is alive and writable.

6.2 Encoding the Memory Model

The properties of memory blocks are encoded as SMT variables size, writable,
liveness, block_type, elements, initialized. By default, all properties are
defined as SMT variables because we cannot make any assumption on how and
when a block is created in general. If the block’s definition is visible (e.g., it is
a global variable), they are initialized with literals in SMT. elements and ini-
tialized are encoded as SMT arrays from the offset to the value and boolean.

The number of blocks necessary to validate the transformation is determined
via static analysis, which is described in [30]. The number is bounded because
we do not support loops containing allocating operations. This works in practice
because allocations are usually located outside of the loops. After the analy-
sis, each block and property declares one SMT variable. The blocks for global
variables and allocating operations are assigned constant block ids.

Local and Non-Local Blocks We adopt the notion of local and non-local
blocks from [30]. Local blocks are created by the allocating instructions that
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belong to the validated function, whereas non-local blocks are not. Only the
non-local blocks are checked at the refinement of final states. We do not consider
escaped local blocks because (1) memref cannot have memref as its element type,
and (2) we do not support call instructions.

Encoding Memory Access The SMT encodings of memory load/store oper-
ations follow the encodings described in [30]. The result of loading a value from
memref %m is encoded as ite(%m.bid = 0, arr0[%m.ofs], ite(%m.bid = 1, . . .)) where
arr0 has the elements of memory block 0. Storing a value to memref updates the
elements of possibly aliased blocks with ites.

Encoding disjointnesses of two memref accesses – which is required by sev-
eral buffer operations – is hard in general because a memref can point to non-
contiguous locations in arbitrary patterns. Therefore, we support encoding a
disjointness of memrefs with trivial, row-major layout maps only, raising an er-
ror otherwise.

6.3 Compiler Correctness and Abstraction Refinement

Finally, we compare the final states of the source and target functions. A final
state is defined as (ub,m, v) where ub is UB, m is the memory, and v is the
return value. A final state refines another, or (ub,m, v) w (ub′,m′, v′), if (1) ub
is true, or (2) ub = ub′ ∧ v = v′8 ∧ m refines m′. A memory m refines m′ if for
non-local blocks (b, b′) with same id in the source and target, if (1) reading b at
offset o is successful, so does the access to o at b′, and (2) if b is writable, so does
b′. For any input state I consisting of an initial memory and argument values,
fsrc(I) w ftgt(I) must hold where f(I) denotes the final state of function f . In
SMT, the formula is inverted to remove the outermost quantification.

Abstraction Refinement To make validations cheap on average, we progres-
sively refine the abstraction scheme that describes the abstraction level of en-
codings. Abstraction refinement happens when a validation fails or timeouts.

In the first round, the integer and FP dot operations are encoded using
independent UFs which are not related to a summation. Also, FP numbers of
different types are independently encoded and casts are defined as full UFs. If
validation fails, the dot operations are encoded as a composition of a summation
and multiplications, and the encoding for casts described in Section 4.1 is used. If
this also fails, summations of arrays having small constant numbers of elements
are unrolled into a sequence of additions and validated again. This validates, for
example, folding sum([1.0, 2.0]) into 1.0 + 2.0.

Our abstraction cannot validate the constant folding optimization in general.
To address this, mlir-tv provides a command-line option for using IEEE-754.
It disables the unsafe properties on reductions because they are not compatible.
8 For floats, NaNs of different signs are considered equivalent. For memrefs, we do
not support references to local blocks because it needs universal quantifications [30].
Validating functions returning such values may result in false alarms.
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7 Implementation and Evaluation

mlir-tv consists of 8,900 lines of C++ codes. It supports 25 tosa ops, 11 mem-
ref ops, 13 linalg ops, 10 tensor ops, 29 arith ops, 3 bufferization ops,
and 8 other ops. mlir-tv uses Z3 4.8.13 and cvc5 0.0.3 as a solver, with 30 sec-
onds timeout. The experiments in this section are performed using Z3 because
Z3 showed better performance than cvc5 in mlir-tv’s sanity tests. We used
the Apple M1 CPU and 16GB RAM with a fixed version of MLIR (b5a0f0f,
26/Dec).

We wrote 57 function pairs to check that it validates correct transformations
and finds counterexamples for wrong pairs. From these tests, we observed that
using the abstract encoding was 13.6x faster on average than the concrete IEEE-
754 encoding. Shrinking the bit width of abstract FP (Section 4.3) was important
because it brought 2.2x speedup compared to simply using 32 bits.

7.1 Validating MLIR Unit Tests

We validated the unit tests in the official MLIR project using mlir-tv. The unit
tests (1) apply specific transformations to small, pre-defined MLIR programs,
and (2) check whether the output programs syntactically match the test patterns.
Using mlir-tv, we validated that the outputs of the transformations preserved
the semantics of the inputs as well. We bounded the size of dynamic-shaped
tensors to 100 to avoid timeouts. Bugs in tests with such tensors may have been
missed.

Among the MLIR’s unit tests, which consist of 2,467 function pairs in total,
mlir-tv validated 433 tests, raised timeout for 8 tests, and failed for 8 tests.
Validating the tests did not require encoding the unsafe arithmetic properties for
reductions, but we are aware of uncovered transformations that require them.

We could find several issues in the semantics of MLIR dialects.

Signed Zero, NaN and −∞ The tosa.conv2d and tosa.depthwise_conv2d
operations are lowered to linalg.pad_tensor with the input tensors padded
with +0.0. Also, we found that MLIR was folding x+(+0.0) into x. However, this
is incorrect since (1) x+(+0.0) 6= x if x = −0.0 and (2) the tosa specification [6]
states that an FP type must support signed zero. This problem was also found
from tosa.fully_connected and tosa.reduce_sum operations whose lowered
loops fill the initial tensors with +0.0. We reported these issues to the LLVM
community. After the report, x+ (+0.0)→ x folding has been fixed [1]. We also
found that lowering tosa.clamp and tosa.max_pool2d does not preserve their
outputs if the inputs contain a NaN and −∞ value.

memref Operations and Read-Only Blocks We couldn’t find a good seman-
tics for linalg.fill with a memref reference to a read-only memory block given
as its operand. If linalg.fill with a read-only memref raises UB, it cannot
explain the linalg-bufferize transformation because it creates linalg.fill
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Name Transformation

sum-RV Σrev(X)→ ΣX

sum-TP ΣXT → ΣX

sum-CC Σ(ΣX1, ΣX2)→ Σ(X1 ++X2)

dot-RV rev(X1) · rev(X2)→ X1 ·X2

dot-CC
X1 ·X2 +X3 ·X4 →

(X1 ++X3) · (X2 ++X4)

Fig. 3: (a) A graph showing the effectiveness of our encoding of unsafe arithmetic
properties of reduction operations. The numbers below the labels indicate the
sizes of input tensors. The Y-axis shows the running time of mlir-tv. Timeout
is 30,000ms. (b) Descriptions of the test cases. X is a 1D or 2D tensor, Σ is a
summation, rev is a reverse, · is a dot product, and ++ is a concatenation.

with its memref operand pointing to a read-only block. If it is well-defined, it
cannot explain the linalg-generalize-named-ops transformation because this
converts linalg.fill into a loop storing a value to the pointer.

We found that buffer-deallocation transformation was introducing UB.
It inserts memref.dealloc to free the unused result of memref.clone. But, mu-
tating the result of clone is UB according to the specification.

Also, it was not clearly stated in the document when memref.clone makes
the referenced location read-only. We discussed this issue in the online LLVM
Discussion Forums, and the document was fixed to clearly state that it is imme-
diately after the operation that the block becomes read-only [2].

7.2 Validating Compilation of Deep Learning Models

We compiled the TFLite models of text_classification_v2, SqueezeNet [25]
and MobileNet [24], taken from the official TensorFlow website [7,8], by running
them through tosa-to-linalg, tosa-to-standard, canonicalize, fuse-
elementwise-ops, tensor-constant-bufferize, linalg-bufferize, tensor-
bufferize transformations. To address validation failures of tosa-to-linalg
due to the problem in tosa’s ±0.0 handling, we tweaked mlir-tv so that it
recognizes +0.0 used by certain operations as −0.0 instead.

To validate them in a reasonable time, we split the source and target pro-
grams into smaller functions. Since the networks did not have complex control
flows other than loops, splitting was not very hard. The split functions contain
an average 9.5 to 11.6 instructions. All transformations were validated correctly
in text_classification_v2, but the last two transformations were failed in the
other models since they have unsupported operations.

7.3 Performance Evaluation of Hash-Based Encoding
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tensor size. Timeout is 30,000ms.

We compared the performance of our
hash-based encoding to the multiset-
based encoding. In the latter encoding,
two reductions are assumed to be equal
if the multisets converted from the input
arrays are equal. For cvc5, we used its na-
tive multiset theory. For Z3, we simulated
multisets by defining an array that counts
the numbers of elements. We set QF_AUFBV
logic to Z3 by default and used ALL logic
only when the solver failed. For cvc5, we used HO_AUFBV and HO_ALL logic re-
spectively. We ran tests 10 times and calculated their average execution times.
The timeout was set to 30 seconds.

Our hash-based encoding was faster than multiset-based encoding in overall
cases (Figures 3 and 4). cvc5’s multiset theory performed better than the Z3’s
array encoding, but was still slower than the hash-based encoding. The hash-
based encoding showed consistent running time regardless of tensor size.

8 Related Work

Verifying Programs with Floating-Points Strategies for verifying programs
using FP arithmetic (FPA) vary with their goals and background theories. Sev-
eral works using abstract interpretation [29], SMT solvers [23,40] or computer
algebra systems [31] target checking round-off errors of FP operations automati-
cally. Axiomatizing and verifying FPA in theorem provers [12] enable us to make
analysis sound and complete, but they require significant efforts.

To realize bit-precise FP reasoning in SMT, one can use a bit-vector rep-
resentation of FP numbers (bit-blasting). Since bit-blasting can generate large
and complex formulae, researchers have tried to find better FP abstraction. [15]
presents an abstraction technique using either large or reduced precision of FPA.
UppSAT [44] proposes an abstraction framework including fixed-point and real
arithmetic. SymFPU [13] gives an effective yet correct bit-vector encoding of
FPA considering various types and special cases of IEEE 754.

Verifying Programs using Arrays Several works have proposed their ap-
proaches to embedding the theory of arrays [34] into SMT solvers. [21,35] con-
sider array read and write terms as uninterpreted functions, and regard the
theory of array as axioms. FreqHorn [20] and SPACER [26] utilize constrained
Horn clauses (CHC) engines.[27] analyzes array programs with broader theories
by translating the axioms of the theory of array into the CHC format.

Yet another approach uses mathematical induction-based techniques to rea-
son about array-manipulating programs with loops. [16] verify the validity of
a given parameterized Hoare triple where the length of array N is used as a
parameter of the pre- and post-condition.
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Machine Learning Compilers Optimizing deep learning specific workloads
has been a major working field for both hardware vendors [3,4] and software de-
velopers. [9,19] These frameworks translate neural-net representations in several
frameworks into high-level computation graphs. Then, they optimize the graphs
via well-known optimizations such as operator fusion or data layout transforma-
tion. Recent works allow optimization of dynamic workloads [38,45] and supports
optimizations for heterogeneous systems [43].

[39] surveyed the bugs in DL compilers. They reported that the high-level
IR transformations are the most buggy ones and stated that finding wrong code
generation is challenging and should receive more attention.

Compiler Verification [11] relaxes FPA semantics since a compiler can ignore
strict IEEE-754 behavior like fast-math optimizations in LLVM. They propose
Icing which is a language allowing IEEE 754-unsafe FPA optimizations, and
CakeML [28] which is a verified compiler with the optimizations. [32] proposes a
verified tensor optimizer whose optimizations can be explored via Coq’s tactics.

As for translation validation (TV), [18] proposes a practical TV framework for
Halide which is a language for processing arrays. To support fast-math optimiza-
tions, it mainly uses Z3’s type for real numbers. For general-purpose compilers,
many different tools have been developed [36]. Alive2 [33], LLVM-MD [42] and
Peggy [41] validate the transformations in LLVM using various techniques. The
SMT memory model for Alive2 [30] uses a technique that is similar to our ap-
proach in order to bound the number of memory blocks. Some TV tools [22,17]
split the original programs and validate the smaller pairs.

9 Conclusion

We propose mlir-tv, an SMT-based translation validation framework for MLIR.
It abstractly encodes the FP arithmetic and reduction operations in SMT. Since
the abstraction is an over-approximation, mlir-tv does not miss bugs unless a
flag for bounding the size of dynamically shaped tensors is given. If validation
fails, mlir-tv tries again with refined abstractions. We also propose a hash-based
approach for encoding arithmetic properties of reductions, which outperformed a
multiset-based one. mlir-tv found several mismatches between the specification
and implementation of MLIR from the unit tests. Finally, mlir-tv validated
high-level transformations for three pretrained DL models.
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