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Abstract

In the last few years, people started to share lots of information related to health in the form of

tweets, reviews and blog posts. All these user generated clinical texts can be mined to generate

useful insights. However, automatic analysis of clinical text requires identification of standard

medical concepts. Most of the existing deep learning based medical concept normalization

systems are based on CNN or RNN. Performance of these models is limited as they have to

be trained from scratch (except embeddings). In this work, we propose a medical concept

normalization system based on BERT and highway layer. BERT, a pre-trained context sensitive

deep language representation model advanced state-of-the-art performance in many NLP tasks

and gating mechanism in highway layer helps the model to choose only important information.

Experimental results show that our model outperformed all existing methods on two standard

datasets. Further, we conduct a series of experiments to study the impact of different learning

rates and batch sizes, noise and freezing encoder layers on our model.

Keywords: Medical Concept Normalization, Clinical Natural Language Processing, BERT,

Highway Network

1. Introduction

Social media with an increasing number of users in recent times, evolved as a rich source of

data for many domains, including healthcare. People use twitter1, facebook2 and online health

forums and often share many things including their treatment experiences, symptoms while

consuming a drug etc. This rich clinical data is underutilized which can be leveraged in many

applications to offer better services [1].

The task of medical concept normalization aims to map health related entity mentions iden-

tified in free-form text to formal medical concepts in standard vocabulary like Unified Medical

Language System (UMLS), Medical Dictionary for Regulatory Activities (MEDRA) or System-

atized Nomenclature of Medicine – Clinical Terms (SNOMED-CT) (see Figure 1). Here, entity

mention refers to adverse drug reaction, symptom, finding, drug or disease. Such a mapping

is required because of variation in the languages of general public and healthcare professionals.

Most of the general public express their health conditions in layman terms rather than formal
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medical terms i.e., in a descriptive way which reveals how they feel. For example, ‘insomnia’

is expressed in layman terms as ‘could not sleep much’. Further, the same health condition

can be expressed in multiple ways which makes the task more challenging. Medical concept

normalization also called Entity Linking or Entity Encoding is one of the fundamental tasks in

information extraction with applications in tasks like Question and Answering, Pharmacovigi-

lance etc. However, it is less explored when compared to other information extraction tasks like

named entity recognition and relation extraction.

Figure 1: Example to illustrate medical concept normalization

Most of the traditional approaches for entity normalization applied string matching tech-

niques [2, 3, 4]. For example, MetaMap tool maps biomedical text to UMLS concepts and it

makes use of knowledge base and computational linguistic techniques [2]. Tsuruoka et al. [3]

used character bigrams while McCallum et al. [4] used string edit distances. String matching

techniques fail when there is no overlap between entity mention and the corresponding concept

(e.g., ‘could not sleep much’ → ‘insomnia’, ‘head spinning a little’ → ‘dizziness’). The appli-

cation of machine learning techniques to entity normalization started with DNorm proposed by

[5] followed by [6] and [7]. However, these methods failed to take semantics into consideration

which significantly affected the performance.

Recent studies [8, 9, 10, 11] approached the task of concept normalization as a multi-class

text classification problem. All these systems are deep learning based with embeddings as input

features. The two drawbacks in these deep learning based systems are a) Use of traditional

embeddings – Traditional word embeddings are learned using shallow neural network mod-

els like Word2Vec. Shallow neural networks are unable to encode more information in vector

representations and hence quality of word vectors is limited. The context insensitive nature

of traditional word embeddings further limits their quality. b)Training downstream model

from scratch - With embeddings as input features, the downstream model based on CNN or

RNN has to be trained from scratch. A model trained from scratch requires more training exam-

ples for better performance. With small size datasets, the performance of downstream models

trained from scratch is limited.

In recent times, learning representations using deep language models achieved promising

results in many NLP tasks. Some of the popular deep language representation models are

ELMo [12], ULMFiT [13], GPT [14] and BERT [15]. ELMo and UMLFiT use recurrent neu-

ral network while GPT and BERT are transformer based. ELMo and ULMFiT use BiLSTM

for language modeling which is sequential in nature. Further, the representations learned are

shallow bidirectional. As GPT uses unidirectional language modeling objective, it is unable to

encode information from both left and right contexts. BERT overcomes the drawback in ELMo,
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ULMFiT and GPT by learning bidirectional representations using Masked Language Modeling

objective and achieved state-of-the-art performance in eleven NLP tasks. In case of BERT a)

representations learned are bidirectional and context sensitive b) model is pre-trained on large

volumes of unlabeled text using stack of transformer encoders. This iterative approach of gen-

erating representations, helps the model to learn lots of language information. c) Task specific

layers are added on the top of BERT and entire model is fine-tuned using task specific labeled

dataset. As BERT model learns lots of language information during unsupervised pre-training

itself, it can be fine-tuned even with small datasets and hence performs better compared to CNN

or RNN based models which are to be trained from scratch.

We consider medical concept normalization as multi-class text classification problem and pro-

pose a system based on BERT and highway layer. Miftahutdinov and Tutubalina [16] achieved

state-of-the-art performance in medical concept normalization using BERT based fine-tuned

model. They experimented with only general BERT model pre-trained over text from Wikipedia

and books. We believe that domain specific BERT models can better represent medical terms

and there is a need for comprehensive evaluation of these models in the task of medical concept

normalization. Recently, few research works evaluated the effectiveness of biomedical and clini-

cal BERT models in the tasks of named entity recognition [17], hospital readmission prediction

[18] and biomedical concept normalization [19]. However, there is no work which conducted

evaluation of general as well as domain specific BERT models to normalize medical concepts in

social media text. The work of Ji et al. [19] has also conducted evaluation of BERT based models

for the normalization task on three different biomedical datasets. However, our work differs from

the work of Ji et al. [19]. We treat medical concept normalization (MCN) as multi-classification

task while Ji et al. [19] addresses it as information retrieval task. CADEC-MCN and TWADR-L

datasets contain phrases which are written by online users in a colloquial language using de-

scriptive words while concepts names are written by trained professionals in formal language.

As the languages used in user generated phrases and concept names differ significantly in many

aspects (colloquial vs formal, descriptive words vs standard single words, noisy vs clean), can-

didate concepts retrieved by BM25 don’t include ground truth concepts in many of the cases

which significantly affects the performance of the model (explained in detail in Section 6.2.1).

As reported in Table 3, the model proposed by Ji et al. [19] is able to achieve only 46.98%,

61.38% and 32.45% on CADEC-Custom, CADEC-Random and TwADR-L datasets while our

model achieves 82.62%, 89.95% and 48.32% on these datasets.

In this paper, we provide comprehensive evaluation of general as well as domain specific

BERT models. Our key contributions can be summarized as

• Study the effectiveness of BERT based fine-tuned models to normalize medical concepts.

• As per our knowledge, it is the first work to provide comprehensive evaluation of general

as well as domain specific BERT models to normalize medical concepts.

• We show that inclusion of highway layer before softmax layer improves the performance

of model by filtering irrelevant information.

• Our best model based on BioBERT and highway layer outperforms all existing systems

and achieves state-of-the-art accuracy on two standard datasets.
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• Study the impact of different learning rates, batch sizes and freezing encoder layers on our

best performing model.

• Study the robustness of our best performing model against different noises.

2. Related Work

2.1. Word2Vec to BERT

Machine learning or deep learning based models applied for NLP tasks require representa-

tion of text in numerical vectors. Traditional text representations which are based on various

measures like word frequency, tf-idf suffer from high dimensionality, lack of language informa-

tion and require more computation power for processing. The concept of learning distributed

representations started with [20, 21, 22, 23, 24]. Bengio et al. [22] used shallow neural net-

work architecture for language modeling. The neural network consists of tanh and softmax

activations in hidden and output layers. Apart from predicting next word in the sequence,

the model also learns distributed representations of words. Later, Collobert and Weston [23]

learned distributed representation of words in an unsupervised manner using language modeling

and then used these learned representations in various supervised downstream tasks. Models

like Word2vec [25] and Glove [26] with simple and effective architectures made embeddings a

default choice for text representation in NLP models. Word2vec is a prediction based model

which learns vector representations using shallow neural network with three layers while glove

being a counted based regression model learns vector representations using both local context

information as well as global co-occurrence statistics from training corpus. Both Word2vec and

Glove models are unable to a) leverage sub-word information and b) provide vectors for words

which are missing in the training corpus. To overcome these two drawbacks, Bojanowski et al.

[27] proposed FastText embedding model which modifies skipgram model with the introduction

of character n-grams. In this model, word representation is based on vectors of its character

n-grams.

The limitations of Word2vec, Glove and FastText models are a) Use of shallow neural network

to learn representations - Word2vec and FastText models use a three layered neural network

while glove is log-bilinear global regression model. These shallow models limits the amount

of language information encoded in vector representations and hence the quality of vectors is

limited. b) Context insensitive representations - All these models assign single representation

to a word irrespective of its context.

To encode complex relations and make representations sensitive to context, models like ELMo

[12], ULMFiT [13], GPT[14] and BERT [15] were proposed. The state-of-the-art performance

of these models in many tasks illustrated the effectiveness of learning representations using

deep language models over large volumes of text. Further these models except ELMo, changed

the approach for NLP tasks from using a model trained from scratch to using a pre-trained

model. Peters et al. [12] proposed ELMo which consists of two layers of BiLSTM with inputs

generated by CNN and Highway network. Radford et al. [14] introduced GPT model based on

Transformer decoder and Devlin et al. [15] proposed BERT based on Transformer encoder. The

pre-trained language models can be used in two ways namely feature based and fine-tuned. In
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feature based approach, embeddings learned by model are used as input features to downstream

architectures and model has to be trained from scratch (except embeddings) using task specific

labeled dataset. In fine-tuning approach, one or two task specific layers are added on the top of

pre-trained model and entire model is fine-tuned using task specific labeled dataset. ELMo is

feature based approach, GPT follows fine-tuning approach while BERT can be in used in both

feature-based and fine-tuning approaches.

2.2. Social Media for Health care

With evolution of internet and various social media websites, common people started to

share lots of data in the form of tweets, blog posts, questions and answers in discussion forums

etc. The data shared by public includes information related to various domains including health.

Mining publicly available health related social media data results in useful insights [1].

Traditional disease surveillance systems involves collection of data from health care centers

and then processing of collected data. It is truly a time-consuming process and delay in data

processing can have severe impacts. Modern disease surveillance systems [28, 29, 30, 31] based

on real time social media data helps in early prediction of diseases and reduce the harm. More-

over, early prediction gives more time to handle the situation. Apart from disease surveillance,

research studies utilized social media data for extraction of medical concepts [32, 33, 34, 35]

like disease, symptoms, adverse drug reactions etc. Recently, there has been raising interest

in research community in the form of shared tasks [36, 37, 38] related to identification of text

containing drug mentions, medication intake, adverse drug reactions etc.

2.3. Normalizing concepts in social media text

O’Connor et al. [39] proposed a model based on Apache Lucene to normalize Adverse Drug

Reaction (ADR) expressions in tweets to UMLS Concept Unique Identifiers (CUI). For a given

ADR expression, Apache Lucene retrieves the relevant UMLS concepts. Limsopatham and Col-

lier [7] proposed a model which involves phrase based machine translation and cosine similarity

to normalize medical concepts. Medical concept is assigned to twitter phrase based on similarity

score obtained as sum of cosine similarity between twitter phrase and concept and translation

score calculated using phrase based translation model. The proposed model improved accuracy

by upto 55% compared to baselines. Limsopatham and Collier [8] experimented with Google

News embeddings as well as embeddings inferred from biomedical articles. They showed that

CNN with Google News embeddings achieved better performance when compared to CNN with

randomly initialized or biomedical embeddings on three datasets. Further they showed that

updating GNews embeddings improved accuracy only on AskAPatient which is larger in size

compared to other datasets (TwADR-L and TwADR-S).

Lee et al. [9] experimented with CNN and RNN based models. As the size of training corpus

influence the quality of inferred embeddings, they generated embeddings using word2vec over

clinical text collected from various sources. RNN with clinical embeddings inferred from com-

bined corpora outperformed all others on two datasets created from tweets and online health

forum reviews. Tutubalina et al. [10] proposed BiGRU+Attention model with embeddings in-

ferred from Askapatient.com reviews and UMLS based semantic features as input. The proposed
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model achieved an accuracy of 70.05% on custom folds and 85.71% on random folds of Aska-

Patient dataset. Niu et al. [40] system is based on multi task char level attention network.

With character embeddings matrix as input, auxiliary task with attention mechanism gener-

ates weights. CNN applies convolution and pooling operations on character embeddings matrix

added with attention weights and predicts the concept.

Recently Miftahutdinov and Tutubalina [16] investigated context sensitive models like ELMo

and BERT to normalize medical concepts. ELMo being a feature based embedding model, was

used as input features to BiGRU+Attention model. BiGRU+Attention with ELMo+HealthVec

as input features outperformed BiGRU+Attention model with only HealthVec embeddings. Fur-

ther they showed that BERT based fine-tuned model achieved state-of-the-art performance.

Our work is closely related to [16] in applying BERT based fine-tuned model to medical

concept normalization. However, Miftahutdinov and Tutubalina [16] experimented with only

general BERT models while we do comprehensive evaluation of general as well as domain specific

BERT models to normalize concepts. Further, we conduct series of experiments to study the

a) impact of inclusion of highway network layer on the top of BERT before softmax layer b)

impact of different learning rates, batch sizes and freezing encoder layers on our best model and

c) robustness of our best model against different noises.

3. BERT Model

3.1. Description

BERT model consists of an embedding layer followed by a stack of bidirectional transformer

encoders. Embedding layer maps sequence of tokens in input to list of vectors. Each trans-

former encoder [41] applies multi-head self attention and feed forward neural network to list

of vectors and returns output to next encoder in the stack. Self-attention mechanism helps to

encode bidirectional contextual information in token representations while feed forward network

generates hierarchical features. ResNet [42] followed by layer normalization [43] is applied on

each of the sub layers - multi-head self attention and feed forward network, to overcome the

issue of vanishing and exploding gradients.

3.1.1. Embedding Layer

Input is added with special tokens [CLS] and [SEP] at the start and end respectively. Embed-

ding layer maps sequence of tokens in input {[CLS], t1, t2, .., tn, [SEP ]} to sequence of vectors

X = {x[CLS], x1, x2, .., xn, x[SEP ]} where each xi is obtained as sum of three embeddings namely

word embedding, position embedding and segment embedding.

X = W + P + S

where X ∈ Rl×demb is input embedding matrix, W ∈ Rl×demb is word embedding matrix,

S ∈ Rl×demb is segment embedding matrix,P ∈ Rl×demb is position embedding matrix and each

row of all these matrices correspond to a word. All these three embeddings are of equal dimension

demb and have their own significance.

Word embeddings encode language information and BERT model uses WordPiece embed-

dings [44]. The advantage with WordPiece embeddings is a)Fixed and small size vocabulary
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of 0.3M words b)Any word that is not available in vocabulary is represented in terms of sub-

words available in vocabulary. Position embeddings encode information related to position of

words in the sequence. It is required to include position embeddings because unlike RNN or

CNN, self-attention is unable to capture order of words. Segment embedding differentiate words

of different sequences. All these three embeddings are updated during pre-trainig as well as

fine-tuning. Word embeddings are initialized with WordPiece embeddings while position and

segment embeddings are initialized randomly.

3.1.2. Bidirectional Transformer Encoder

Each bidirectional transformer encoder consists of multi-head self attention and feed forward

network layers. Self attention mechanism allows each token to attend to all tokens in the sequence

and encode context information in vector representations. It is calculated using three weight

matrices WQ ∈ Rdemb×dk , WK ∈ Rdemb×dk and WV ∈ Rdemb×dv

SA(X) = Softmax(
QKT

√
dk

)V ∈ Rl×dv

where Q ∈ Rl×dk , K ∈ Rl×dk and V ∈ Rl×dv are query, key and value matrices obtained by

multiplying X ∈ Rl×demb with the corresponding weight matrices.

Q = X •WQ,K = X •WK , V = X •WV

where • represents matrix multipication.

To obtain representations from different subspaces, self-attention is computed h times using

different weight matrices. The outputs of all self-attention operations are concatenated to get

CONCAT = [SA1(X), SA2(X), ...SAh(X)] ∈ Rl×hdv . Finally a linear transformation with

weight matrix WO ∈ Rhdv×demb is applied to get MHSA(X) ∈ Rl×demb .

MHSA(X) = CONCAT •WO

To avoid vanishing and exploding gradients, ResNet followed by layer normalization is applied.

G̃ = LN(X + MHSA(X))

To generate non-linear hierarchical features, a position wise feed forward networks is applied

separately for each position. Gelu [45] layer in between two linear layers constitutes position

wise feed forward network i.e., PwFFN(x) = Gelu(xW1 + b1)W2 + b2 . After applying ResNet

followed by layer normalization, we get

G = LN(G̃ + PwFFN(G̃))

BERT consists of a stack of such bidirectional transformer encoders and the depth of stack is

12 in case of BERTBase and 24 in case of BERTLarge. Each transformer encoder generates rep-

resentation of input sequence by capturing bidirectional contextual information. This iterative

process of generating sequence representation using a stack of encoders helps the model to learn
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complex relationships.

G̃m = LN(Gm−1 + MHSA(Gm−1))

Gm = LN(G̃m−1 + PwFFN(G̃m−1))

where G̃ is the intermediate result of mth encoder , Gm is the output of mth encoder and G0 = X

3.2. Training Procedure

BERT framework consists of two steps: Unsupervised pre-training and Supervised fine-

tuning. Unsupervised pre-training helps the model to learn parameters from scratch using tasks

like Masked Language Modeling and Next Sentence Prediction. Training the model with these

tasks helps it to learn semantics at both word and sentence levels. Once the model is pre-trained,

it can be adapted to downstream tasks using supervised fine-tuning.

3.2.1. Self-Supervised Pre-training

Pre-trainig model involves two tasks namely Masked Language Modeling and Next Sentence

Prediction. The authors selected these two tasks because Masked Language Modeling helps the

model to encode bidirectional context features while Next Sentence Prediction helps to learn

relationships between sentences.

Masked Language Modeling Language Modeling computes the probability of a word using

previous or subsequent words. Forward language model predicts the word xt using previous t−1

words {x1, x2, ...xt−1}
P (xt|x1, x2, ...xt−1)

Backward language model predicts the word xt using the next t− 1 words {xt+1, xt+2, .., x2t−1}

P (xt|xt+1, xt+2, ...x2t−1)

GPT is unidirectional as it is based on forward language model while ELMo is shallow bidirec-

tional as ELMo representations are obtained from the concatenation of forward and backward

language model representations. The main drawback in unidirectional language modeling ob-

jective is its inability to encode information from both left and right contexts simultaneously.

BERT overcomes the drawback of unidirectional language model in GPT and ELMo with Masked

Language Modeling. In Masked language modeling, a randomly masked word is predicted using

words in both left and right contexts.

P (xt|x1, x2, ..., xt−1, x̃t, xt+1, xt+2, .., xn)

where x̃t is masked representation of xt. The authors randomly masked 15% of tokens in each

sequence. There will be masked tokens only during pre-training phase. To reduce mismatch

between pre-training and fine-tuning, the authors introduced a special masking procedure. Each

of the randomly sampled token a) is replaced with [MASK], 80% of time b) is replaced with

random word, 10% of time and c) is left unchanged remaining times.

Next Sentence Prediction This pre-training task aims to help the model to learn semantics

at sentence level. Learning relationships between sentences is useful for downstream tasks in-

volving more than one sentence like question and answering, natural language inference etc. It
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is basically, a binary classification task with two labels, ‘IsNext ’ and ‘IsNotNext ’. For a given

pair of sentences (x,y), the model has to predict whether y is next sentence of x or just a random

sentence in the training corpus. Sentence pairs are generated from training corpus in a way that

a) combined length of two sentences should not exceed 512 b) 50% of times, second sentence is

actual next sentence and 50% of times, second sentence is a random sentence. The corpus used

for pretraining BERT model includes text from BookCorpus having 800M words and English

Wikipedia having 2500M words.

3.2.2. Supervised Fine-tuning

It helps the model to adjust to downstream task. Here task specific layers are added on

the top of BERT. All the parameters of BERT and task specific layers are fine-tuned using

task specific labeled data set. Different downstream tasks will have different fine-tuned models,

though all of them are initialized with the same pre-trained BERT model.

4. Highway Networks

Highway Networks introducted by Srivastava et al. [46] filters out irrelevant information

from input vector. It improves ResNet layer [42] with inclusion of gating mechanism. Kim et al.

[47] showed the use of highway network layer as a potential filter of irrelevant information in

character aware neural language model. Highway Network layer is defined as:

HN(x) = h(x)� t(x) + x� (1− t(x)) (1)

where h(x)= ReLU (xWh + bh), t(x) = Softmax (xWt + bt) is Transform gate, 1 − t(x) is

Carry gate. Here � represents element wise multiplication, Wh and Wt are weights, bh and bt

are biases. Further h(x) represents traditional non-linear path and x represents skip path. t(x)

and 1− t(x) act as gates and regulate the flow of information through non-linear and skip paths.

5. Methods

5.1. Datasets

In this work, we experiment with custom and random folds of CADEC-MCN and TwADR-L

datasets. TWADR-L was generated from tweets while CADEC-MCN was generated from health

related reviews on Askapatient.com which is an online health discussion forum.

CADEC-MCN Karimi et al. [32] developed a dataset called CADEC(CSIRO Adverse Drug

Event Corpus) from AskAPatient3 forum posts. This dataset consists of 1253 user posts having

7398 sentences and each identified entity is mapped to adverse effect, drug, symptom, disease

or finding, using three vocabularies namely SNOMED-CT, MEDRA and AMT (The Australian

Medicines Terminology). We represent this dataset as CADEC-MCN. Random and custom folds

of CADEC-MCN are taken from [8] and [10] respectively. CADEC-MCN Custom consists of

five folds with each fold having train and test sets (number of unique medical concepts is 181).

CADEC-MCN Random consists of ten folds with each fold having train, validation and test sets

3https://www.askapatient.com
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(number of unique medical concepts is 1036). For more details, refer Tables A.13 and A.14 in

appendix section.

TwADR-L Limsopatham and Collier [8] created TwADR-L dataset which contains twitter

ADR phrases mapped to medical concepts from Side Effect Resource (SIDER)4. The authors

collected tweets generated over a span of three months related to fixed set of drugs, manually

extracted and annotated ADR phrases with SIDER medical concepts. The datasets includes

1436 ADR phrases mapped to one of 2200 SIDER medical concepts. The authors divided dataset

into ten folds with each fold having train, validation and test sets (number of unique medical

concepts is 2200). For more details, refer Table A.15 in appendix section.

5.2. Problem Definition

Medical concept normalization is treated as multi class classification problem. Given, health

related entity mention M and a label space {C1,C2,...,CK}, the normalization system maps M

to one of the concepts in label space. Here K represents number of unique concepts in dataset.

• Input: Health related entity mention expressed as [CLS] M [SEP].

• Output: Probability vector q ∈ R1xK such that qi represents probability that the entity

mention belongs to concept Ci. The concept with maximum probability is assigned to the

mention.

5.3. Model Configuration

In this work, we experiment with two BERT based fine-tuned models namely BertForSe-

quenceClassification and BERT+Highway Network. The first model is pre-trained BERT added

with Classifier on the top while second model is pre-trained BERT added with Highway Net-

work+Classifier on the top (see Figure 2) .

Figure 2: Architecture of BERT based fine-tuning models for medical concept normalization.

4http://sideeffects.embl.de/
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5.3.1. BertForSequenceClassification

It is the default BERT model applied for text classification. In BERT model, the final hidden

vector of the [CLS] token is considered to represent input text. So, this vector is given to softmax

layer which outputs a vector containing label probabilities.

q = BERT (mention) (2)

logits = qW T + b (3)

p = Softmax (logits) (4)

Here q ∈ R1xH is final hidden state vector of [CLS] token and H is BERT hidden vector

dimension. W ∈ RKxH and b ∈ R are weights and bias of classifier layer. p ∈ R1xK is a

vector with label probabilities where K is size of label space.

The model is trained by fine-tuning all the parameters of BERT model and classifier layer.

5.3.2. BERT + Highway Network

As show in Figure 2, this model is an improvement over default BERT model with addition

of highway network layer before classifier layer. Gating mechanism in highway network layer

filters out irrelevant information. So, we believe that by passing final hidden vector of [CLS]

token through highway network and then through classifier layer, improves the performance of

model.

q = BERT (mention) (5)

r = h(q)� t(q) + q � (1− t(q)) (6)

logits = rW T + b (7)

p = Softmax (logits) (8)

Here q ∈ R1xH is final hidden state vector of [CLS] token and H is BERT hidden vector

dimension. r ∈ R1xH is output vector of highway network. W ∈ RKxH and b ∈ R are weights

and bias of classifier layer. p ∈ R1xK is a vector with label probabilities where K is size of label

space.

The model is trained by fine-tuning all the parameters of BERT model, highway network and

classifier layer.

5.4. Evaluation Metric

Following the previous state-of-the-art methods [8, 10, 16], we considered accuracy as eval-

uation metric. Here accuracy refers to percentage of entity mentions that are assigned concepts

correctly.

Accuracy =
#EntityMentionsCorrectly Mapped

#EntityMentionsTotal
(9)

The accuracy values obtained over all the folds are averaged to get the final accuracy.

11



Model Training Corpus Initialized from

BERTbase uncased Books Corpus and English Wikipedia -

BERTbase cased Books Corpus and English Wikipedia -

BioBERTPubMed 1M PubMed abstracts (1 Million) BERTbase cased

BioBERTPubMed 200K PubMed abstracts (200K) BERTbase cased

BioBERTPMC 270K PMC full text articles (270K) BERTbase cased

BioBERTPubMed+PMC 470K PubMed abstracts (200K) + PMC full text articles (270K) BERTbase cased

ClinicalBERT scratch 100K Clinical Notes from MIMIC-III -

ClinicalBERT300K All Clinical Notes from MIMIC-III BERTbase cased

ClinicalBERTclinical All Clinical Notes from MIMIC-III BioBERTPubMed+PMC 470K

ClinicalBERTdischarge All Discharge Notes from MIMIC-III BioBERTPubMed+PMC 470K

Table 1: Summary of various BERT models. A model trained from scratch is indicated by ‘-’.

5.5. Pre-trained BERT Models

In this paper, we experiment with three different pre-trained BERT models namely, general

BERT [15] models trained on Books and Wikipedia corpus, BioBERT [48] models trained on

biomedical corpus and ClinicalBERT [49, 17, 18] models trained on medical corpus. Lee et al. [48]

released four BioBERT models (BioBERTPubMed 1M, BioBERTPubMed 200K, BioBERTPMC 270K

and BioBERTPubMed+PMC 470K) trained on 1 million PubMed abstracts, 200K PubMed ab-

stracts, 270K PubMed Central (PMC) full text articles and 200K PubMed abstracts + 270K

PMC articles respectively. All these four models were initialized from BERTbase cased. Alsentzer

et al. [49] released two ClinicalBERT models (ClinicalBERTclinical and ClinicalBERTdischarge)

trained on clinical notes and discharge summaries from MIMIC-III [50]. Both these models were

initialized from BioBERTPubMed+PMC 470K) model. Huang et al. [18] released ClinicalBERTscratch

model trained from scratch with 100K clinical notes from MIMIC-III. Si et al. [17] released

ClinicalBERT300K model initialized from BERTbase cased and trained for 300K steps using MIMIC-

III clinical notes. Table 1 shows a brief summary of different pre-trained BERT models.

6. Results and Discussions

We conduct experiments in two phases. In first phase, we evaluate general BERT, biomedical

BERT and clinical BERT based fine-tuned models with and without including highway network

layer on CADEC-MCN custom folds dataset. Then, we evaluate our best performing model

on TwADR-L and CADEC-MCN random folds. Section 6.1 discuss the impact of including

highway layer and Section 6.2 compare our best model with existing systems. In second phase,

we conduct a series of experiments using CADEC-MCN custom folds to study the impact of

different batch sizes, learning rates, noises and freezing encoder layers on our best model.

As there is significant overlap between train and test sets in TwADR-L and CADEC-MCN

random, to study the impact of different batch sizes, learning rates, noises and freezing encoder

layers on our best model, we use CADEC-MCN custom folds only. Section 6.3 discuss the impact

of different batch sizes of 16, 32, 64 and 128 (learning rate fixed at 3e-5) on our best model.

Section 6.4 disuss the impact of different learning rates of 2e-5, 3e-5, 4e-5 and 5e-5 (batch size

fixed at 128) on our best model. Section 6.5 discuss the impact of freezing first 1, 2, 4, 6, 8, 10
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Model
Accuracy

without HN? with HN‡

BERTbase uncased 80.91 81.12

BERTbase cased 81.37 81.36

BioBERTPubMed 1M 82.35 82.62

BioBERTPubMed 200K 81.03 81.57

BioBERTPMC 270K 81.08 81.14

BioBERTPubMed+PMC 470K 81.77 81.46

ClinicalBERT scratch 80.42 80.83

ClinicalBERT300K 81.23 82.40

ClinicalBERTclinical 81.20 81.27

ClinicalBERTdischarge 82.10 82.21

Table 2: Accuracy of various BERT based models on custom folds of CADEC-MCN dataset. HN stands
for Highway Network, ? represents BERT for Sequence Classification model and ‡ represents BERT+Highway
Network Model.

and 11 encoder layers (batch size and learning rate are fixed at 128 and 3e-5 respectively) on

our best model. Section 6.6 discuss the robustness of our best model against different noises.

Table 2 shows accuracy of different BERT based models evaluated on CADEC-MCN cus-

tom folds. From Table 2, it is clear that (1) In case of general BERT models, BERTbase cased

(without HN) with an accuracy of 81.37% outperformed other general models. (2) In case of

BioBERT models, BioBERTPubMed 1M which was initialized from BERTbase cased and trained

on 1 Million PubMed abstracts achieved an accuracy of 82.62% (with HN) and outperformed

other biomedical models. (3) In case of ClinicalBERT models, ClinicalBERT300K which was

initialized from BERTbase cased and trained for 300K steps using all clinical notes from MIMIC-

III achieved an accuracy of 82.40% (with HN) and outperformed other clinical models. (4)

BioBERTPubMed 1M+HN achieved highest accuracy of 82.62% on CADEC-MCN custom folds.

Further, we evaluated our best model BioBERTPubMed 1M+HN on CADEC-MCN random folds

and TwADR-L and achieved accuracy of 89.95% and 48.32% respectively.

In case of general BERT models, BERTbase cased outperformed BERTbase uncased . This shows

that cased BERT models encode more information compared to uncased BERT models. This is

the reason why all the domain specific BioBERT and ClinicalBERT (except ClinicalBERTscratch

which is trained from scratch) models were initialized from BERT cased models rather than

BERT uncased models.

In case of BioBERT models, BioBERTPubMed 1M outperformed all other biomedical models

with an accuracy of 82.62% (with HN). It is expected because BioBERTPubMed 1M is trained on

a large corpus of 1M PubMed abstracts compared to BioBERTPubMed 200K, BioBERTPMC 270K,

BioBERTPubMed+PMC 470K which were trained on relatively small corpus of 200K PubMed ab-

stracts, 270K PubMed Central full text articles and (200K PubMed abstracts + 270K PubMed

Central full text articles) respectively. Further, BioBERTPubMed 1M and BioBERTPubMed+PMC 470K

outperformed BERTbase cased. Both BioBERTPubMed 1M and BioBERTPubMed+PMC 470K were

initialized from BERTbase cased and then further pre-trained on domain specific biomedical

corpus. This shows that further pre-training general BERT models on domain specific cor-

pus improves the performance. However, BioBERTPMC 270K achieved lower performance than
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BERTbase cased. This may be because it was further pre-trained using a relatively small corpus of

270K PubMed Central full text articles compared to BioBERTPubMed 1M and BioBERTPubMed+PMC 470K

which were further pre-trained using relatively large corpus of 1M PubMed abstracts and (200K

PubMed abstracts + 270K PubMed Central full text articles) respectively. In case of Clinical-

BERT models, ClinicalBERT300K trained using all the clinical notes from MIMIC-III outper-

formed other clinical models with an accuracy of 82.40% (with HN).

BioBERTPubMed 1M+HN achieved the best performance on CADEC-MCN custom folds

data set. We expected ClinicalBERT300K+HN to achieve the best performance however it

achieved 0.22% accuracy lower than BioBERTPubMed 1M+HN. We believe that further pre-

training the model for more number of steps or further pre-training the model using medical

related Wikipedia pages can improve the performance. We would like to explore these options

in future. Further, ClinicalBERTscratch achieved the lowest performance compared to all the

models including general BERT models. This is because it was trained from scratch using a

relatively small corpus of 100K clinical notes. In future, we would like to investigate whether

further pre-training this model using more clinical notes and medical related Wikipedia pages

can improve the performance.

6.1. Impact of Highway Network

The performance of various BERT based fine-tuned models after including Highway network

layer is reported in Table 2. From Table 2, it is clear that highway network has improved the per-

formance in all the cases except BERTbase cased and BioBERTPubMed+PMC 470K. The improve-

ment is highest in case of ClinicalBERT300K(1.17%) and lowest in case of BioBERTPMC 270K

(0.06%). Highway network layer consists of two gates namely t(x) - transform and 1 − t(x) -

carry gates. These two gates regulate the flow of data through non-linear and skip paths. This

will help the model to choose only important information and hence the model performance

increases.However, highway networks didn‘t improve the performance in case of BERTbase cased

and BioBERTPubMed+PMC 470K. This may be, because of inclusion of an additional layer, the

model is over fitted. In these two cases, changing the dropout applied to Highway network layer

or a better learning rate can improve the performance.

6.2. Comparison with previous systems

We compare our best performing model with previous systems which includes systems based

on a) machine learning (DNorm and Logistic Regression [8]) b) deep learning with i) traditional

embeddings (CNN [8] and Multi-task Char-CNN + Att [40] ) ii) ELMo embeddings (GRU +

Att, GRU + Att + tf-idf(Max) [16]) c) fine-tuned BERT (BERT, BERT + tf-idf(Max) [16]) and

d) information retrieval based methods (BM25[51], BM25+BioBERT 1M[19])

• DNorm [8] - Applies pairwise rank learning technique to normalize medical concepts.

• Logistic Regression [8] - Multi-class logistic regression classifier with phrase vector as

input and phrase vector is obtained by concatenating embeddings of words in phrase.

• CNN [8] - CNN with Google News embeddings as input.
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Model
CADEC-MCN

TwADR-L
Custom Random

DNorm [8] - 73.39 30.99

Logistic Regression [8] - 77.67 34.09

CNN [8] - 81.41 45.90

Multi-task Char-CNN [40] - 84.65 46.46

GRU+Att [16] 71.68 85.06 -
GRU+Att+tf-idf(max) [16] 74.70 85.71 -
BM25Υ 30.43 55.46 23.00

BM25 + BioBERT 1MΥ 46.98 61.38 32.45

BERT [16] 79.83 88.69 44.15⊥

BERT+tf-idf(max) [16] 79.25 88.84 44.51⊥

Our Best Model 82.62 89.95 48.32

Table 3: Performance comparison of our best model BioBERTPubMed 1M+HN with existing methods on
TwADR-L and CADEC-MCN datasets. ⊥ - we evaluated BERT baseline models on TwADR-L and reported
the accuracy. Υ - we evaluated BM25 and BM25 + BioBERT 1M on CADEC-MCN(Custom and Random) and
TwADR-L datasets and reported the accuracy.

• Multi-task Char-CNN + Att [40] - CNN applies convolution and max-pooling opera-

tions on character embeddings matrix added with attention weights generated by auxiliary

task and then predicts the concept.

• GRU + Att, GRU + Att + tf-idf(Max) [16] - GRU + Att with ELMo, HealthVec

embeddings as input. UMLS based similarity features are calculated using tf-idf.

• BM25 [51] - Ranking function which retrieve relevant concepts for the given colloquial

phrase and the concept with maximum score is assigned to colloquial phrase.

• BM25 + BioBERT 1M [19] - BioBERT 1M re-ranks the relevant concepts retreived by

BM25 and then the concept with maximum score is assigned to colloquial phrase.

• BERT, BERT + tf-idf(max) [16] - BERT based fine-tuned model without and with

UMLS based similarity features calculated using tf-idf.

Table 3 shows comparison of our best performing model with existing systems on TwADR-L,

custom and random folds of CADEC-MCN. Our best model based on BioBERTPubMed 1M and

highway network outperformed all the existing systems. Based on the values reported in Table

3, it is clear that our best model based on BioBERT and highway layer outperformed existing

deep learning systems based on traditional embeddings as well as systems based on ELMo

embeddings. Traditional word embeddings which are learned using shallow neural networks are

unable to encode more information in vector representations. Moreover, these representations

are context insensitive which further limits the quality of vectors. Though ELMo is context

sensitive, it is shallow bidirectional i.e., the representations are obtained as concatenation of

representations from forward and backward LSTMs. Further, traditional word embeddings or

ELMo embeddings are used as input features to downstream models which are then trained from

scratch using task specific labeled data set. As downstream models are to be trained from scratch

(except embeddings), they require more training instances to perform better. However in case of
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BERT a) representations learned are bidirectional and context sensitive b) model is pre-trained

on large volumes of unlabeled text using stack of transformer encoders. This iterative approach

of generating representations, helps the model to learn lots of language information. c) Task

specific layers are added on the top of BERT and entire model is fine-tuned using task specific

labeled dataset. As BERT model learns lots of language information during unsupervised pre-

training itself, it does not require large labeled data sets for fine-tuning. So, our best model

achieved better performance compared to traditional embedding or ELMo based deep learning

systems.

6.2.1. Why Information Retrieval based methods (BM25, BM25+BioBERT 1M) failed?

BM25 [51] also called as Okapi BM25 is a probabilistic ranking function used to retrieve

relevant documents for a given query. BM25 ranks the documents based on a score which

involves statistical measures like term frequency, document frequency, query length, average

length of documents etc. In medical concept normalization, for a given colloquial phrase, BM25

retrieve top n (here n value is 10) candidate concept names and the concept with maximum

score is assigned to the phrase. From Table 5, it is clear that it successfully maps concepts

when a)colloquial phrase lexically matches with concept names. For example, colloquial phrase-

abdominal pain and concept name – abdominal pain. b)colloquial phrase significantly overlaps

with concept name. For example, colloquial phrase - constant muscle tension in legs and concept

name - muscle tension. Here, colloquial phrase and concept name have ‘muscle tension’ in

common.

However, as the function ranks the concepts based on statistical measures, it ignores sub

word information as well as semantic information which makes it to fail in many of the instances

falling under three cases namely ( from Table 4) a) No common words in phrase and concept

name. For example, heart attack (phrase) and myocardial infarction (concept name) have no

words in common. b) Lexical variants. For example, diahorea (phrase) is a lexical variant of

diarrhea (concept name). c) One or two common words in phrase and the predicted concept.

For example, coronary disease is mapped to parkinson’s disease (instead of heart disease which

is ground truth) as they have ‘disease’ in common.

BM25 + BioBERT 1M approach involves two phases namely a)generation of candidate con-

cepts – BM25 retrieve top 10 candidate concepts for the given colloquial phrase b) re-ranking of

candidate concepts – BioBERT with colloquial phrase and candidate concept as input, predicts

the similarity. The candidate concept with maximum similarity is assigned to the colloquial

phrase. As shown in Figure 3, re-ranking using BioBERT brings the appropriate concept at the

top and hence accuracy improves in comparison to using only BM25.

However, as BM25 scoring function does not consider sub word and semantic information,

in many of the cases as shown in Figure 4, the ground truth concept is not in the retrieved

top 10 concepts and so, even after re-ranking, the top candidate concept is not same as ground

truth. Hence, the performance of BM25+BioBERT 1M is very low compared to our model. We

strongly believe that as the languages used in user generated phrases and concept names differs

significantly in many aspects ( colloquial vs formal, descriptive words vs single words, noisy vs

clean etc.), candidate concept generation should be semantic based rather than string matching

based like BM25. We consider this as future work.

16



Figure 3: Re-ranking using BioBERT places appropriate concept at the top.

Figure 4: Ground truth concept is not in the concepts retrieved by BM25 and hence even after re-ranking by
BioBERT, the top concept is not same as ground truth concept.

Colloquial Phrase Prediction Ground Truth

Case 1 (No common words)

extremely sick paresthesia of lower extremity generally unwell

heart attack heart disease myocardial infarction

decreased sex drive paresthesia of lower extremity reduced libido

reduced mental capabiities reduced libido impaired cognition

Case 2 (Lexical variants)

dizzieness paresthesia of lower extremity dizziness

excruciatig pain pain excruciating pain

ibruprofen paresthesia of lower extremity ibuprofen

diaharrea paresthesia of lower extremity diarrhea

diahorea paresthesia of lower extremity diarrhea

Case 3 ( Overlapping)

chest ache stomach ache chest pain

coronary disease parkinson’s disease heart disease

lack of enthusiasm lack of libido loss of motivation loss of motivation

elevated levels of high cholesterol elevated blood pressure serum cholesterol raised

Table 4: Incorrectly classified phrases by BM25
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Colloquial Phrase Prediction Ground Truth

Case 1 (Lexical Match)

hip pain hip pain hip pain

fatigue fatigue fatigue

abdominal pain abdominal pain abdominal pain

excruciating pain excruciating pain excruciating pain

Case 2 (Significant overlap)

constant muscle tension in legs muscle tension muscle tension

legs are restless restless legs restless legs

weakness in muscles muscle weakness muscle weakness

right heel pain heel pain heel pain

Table 5: Correctly classified phrases by BM25.

6.2.2. Baseline BERT vs Our best performing model

Tables 6,7 and 8 contain the instances illustrating the impact of BioBERT 1M+HN model

in case of CADEC-MCN Custom, CADEC-MCN Random and TwADR-L datasets respectively.

The base line BERT model is pre-trained on Books Corpus and Wikipedia i.e., general text

corpus while BioBERT model is initialized from BERT and further pre-trained on PubMed

abstracts i.e., domain related text corpus.

• In Case 1, the baseline BERT model assigns a related but wrong concept. For example,

menstrual cramps →Menorrhagia (386692008) (Table 6), clotting, and horrible periods

→Menstrual cramp (431416001) (Table 6), Pain in left arm Pain in left arm →Pain in

wrist (56608008) (Table 7) and Psychotic Disorders Mental illness →Mental disorders

(C0004936) (Table 8) Here, the words menstrual, periods, arm and psychotic are related

to Menorrhagia5, menstrual, wrist and mental respectively.

• In Case 2, the baseline BERT model assigns concepts which overlap with the colloquial

phrase i.e., one to two words in common. For example, fatigue in forearms →Fatigue

(84229001) (Table 6), Severe dehydration extreme dehydration →Dehydration (34095006)

(Table 7) and Anxiety aggravated incr anxiety →Anxiety (C0003467) (Table 8).

• In Case 3, the baseline BERT model assigns concepts which are close in meaning with

subtle difference. For example, difficulty thinking →Poor concentration (26329005) (Ta-

ble 6), agitated6 →Depressive disorder (35489007) (Table 6), Impatient character less

patience →Personality change (102943000) (Table 7) and Yawning yawns →Drowsiness

(C0013144) (Table 8).

In all these three cases, the baseline BERT model which is pre-trained on general text

corpus assigns wrong concepts due to lack of enough domain specific information. Our model

based on BioBERT 1M (initialized from BERT and further pre-trained on PubMed abstracts )

with rich domain specific information generate better phrase representations and hence assigns

5Menorrhagia means menstrual periods with abnormally heavy or prolonged bleeding
6Agitated means feeling or appearing troubled or nervous
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Colloquial Phrase Prediction (BERT)Γ Prediction(BioBERT 1M+HN)Υ

Case 1 (related)

menstrual cramps 386692008-Menorrhagia 431416001-Menstrual cramp

clotting, and horrible periods 431416001-Menstrual cramp 386692008-Menorrhagia

terrible pains in big toe 47933007-Foot pain 285365001-Pain in toe

numbness in left foot 309539008-Numbness of toe 309538000-Numbness of foot

sleeplesness 77692006-Hypersomnia 193462001-Insomnia

Case 2 (Overlapping)

fatigue in forearms 84229001-Fatigue 80449002-Muscle fatigue

cramping in hamstrings 55300003-Cramp 449917004-Cramp in lower limb

aching joints shoulders 45326000-Shoulder pain 267949000-Shoulder joint pain

muscles in my chest started aching 29857009-Chest pain 68962001-Muscle pain

elbows burning 74323005-Pain in elbow 90673000-Burning sensation

Case 3 (Subtle variations)

difficulty thinking 26329005-Poor concentration 247640008-Unable to think clearly

lack of sexual desire 8357008-Reduced libido 248096004-Lack of libido

agitated 35489007-Depressive disorder 24199005-Feeling agitated

no sleep 301345002-Difficulty sleeping 248255005-Cannot sleep at all

foggy thinking 247640008-Unable to think clearly 419723007-Mentally dull

Table 6: Baseline vs Our model in CADEC-MCN Custom. Here Γ - predicted and ground truth concepts are
different, Υ - predicted and ground truth concepts are same.

Colloquial Phrase Prediction (BERT)Γ Prediction(BioBERT 1M+HN)Υ

Case 1 (related)

pale yellow complexion 16386004-Dry skin 398979000-Pale complexion

pain in left arm 56608008-Pain in wrist 287045000-Pain in left arm

thumb pain 56608008-Pain in wrist 300955002-Pain in thumb

aching joints wrists 202480001-Elbow joint pain 202482009-Wrist joint pain

Case 2 (Overlapping)

over stressed 73595000-Stress 424582000-Stress overload

extreme dehydration 34095006-Dehydration 450316000-Severe dehydration

swollen joints 84445001-Joint stiffness 271771009-Joint swelling

aches and stiffness hips 49218002-Hip pain 249914008-Hip stiff

Case 3 (Subtle variations)

less patience 102943000-Personality change 286755001-Impatient character

sleepy all or most sf the time 301345002-Difficulty sleeping 248262001-Always sleepy

yellow color to my skin 278528006-Facial swelling 225549006-Yellow skin

feeling depressed 420038007-Feeling unhappy 272022009- feeling depressed

Table 7: Baseline vs Our model in CADEC-MCN Random. Here Γ - predicted and ground truth concepts are
different, Υ - predicted and ground truth concepts are same.

concepts correctly. For example, yawning and drowsiness are close in meaning with subtle

difference. The baseline BERT model with insufficient domain information is unable to identify

this subtle difference while our model with rich domain information maps yawning yawns to

yawning-C0043387 instead of Drowsiness-C0013144.
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Colloquial Phrase Prediction (BERT)Γ Prediction(BioBERT 1M+HN)Υ

Case 1 (related)

mental illness C0004936-Mental disorders 0033975-Psychotic Disorders

cramps C0000737-Abdominal Pain C0000729-Abdominal Cramps

get my shoulder right C0000737-Abdominal Pain 0037011-Shoulder Pain

Case 2 (Overlapping)

increased anxiety C0003467-Anxiety C0549259-Anxiety aggravated

suicide thoughts C0086132-Depressive Symptoms C1269683-Major Depressive Disorder

migraines C0149931-Migraine Disorders C0235890-Migraine aggravated

my knee has gotten all swollen C0038999-Swelling C0853619-Localized swelling

Case 3 (Subtle variations)

wrecking my sleep C0917801-Sleeplessness C1262141-Poor quality sleep

knock you out C0037317-Sleep disturbances C0851578-Sleep Disorders

threatened to hurt me C0002957-Anger C0001807-Aggressive behavior

yawns C0013144-Drowsiness C0043387-Yawning

Table 8: Baseline vs Our model in TwADR-L. Here Γ - predicted and ground truth concepts are different, Υ -
predicted and ground truth concepts are same.

Colloquial Phrase Prediction (BioBERT 1M+HN) Ground Truth

CADEC-MCN Custom

damaging my muscles 68962001-Muscle pain 129565002-Disorder of muscle

itching of the skin 418290006-Itching 418363000-Itching of skin

constant sleepiness 193462001-Insomnia 77692006-Hypersomnia

CADEC-MCN Random

runny nose 301202006-Nasal sinus problem 64531003-Nasal discharge

joints in my angles hurt 247373008-Ankle pain 202490009-Ankle joint pain

cold hands 309086004-Paresthesia of hand 271584002-Cold hands

TwADR-L

need prozac C0011570-Mental Depression C0011581-Depressive disorder

cold sweat C0038990-Sweating C0232431-Cold sweat

accidentally double dosed C1963951-Acute overdose C0151821-Accidental overdose

Table 9: Failure analysis of our model (BioBERT 1M+HN)

6.2.3. Failure Analysis of our model (BioBERT 1M+HN)

Table 9 contains the instances for which our model assigned concepts wrongly. From Table

9, it is clear that predicted and ground truth concepts are close in meaning. For example, “in-

somnia” and “hypersomnia” are related as both represents disorders of sleep. One drawback of

deep learning models is that they require sufficient training data i.e., good number of instances

related to each class. When there is an imbalance, model prefer to assign the frequently occur-

ring concept over less frequently occurring concept. Here, as ground truth concepts occur less

frequently compared to predicted concepts, our model assigned concepts wrongly.

6.3. Impact of batch size

To study the impact of batch size on our best performing model, we evaluated it at different

batch sizes of 16, 32, 64 and 128 using CADEC-MCN custom folds. In all these experiments,

learning rate is fixed at 3e-5. The performance of our best model at different batch sizes is
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Figure 5: Our best model performance on CADEC-MCN custom folds at different batch sizes.

shown in Figure 5. Figure 5 shows that performance of model increases with increase in batch

size and highest accuracy is achieved at batch size=128.

6.4. Impact of learning rate

Figure 6: Our best model performance on CADEC-MCN custom folds at different learning rates.

To study the impact of learning on our best performing model, we evaluated it at different

learning rates of 2e-5, 3e-5, 4e-5 and 5e-5 using CADEC-MCN custom folds. In all these exper-

iments, batch size is fixed at 128. The performance of our best model at different learning rates

is shown in Figure 6. Figure 6 shows that performance of model increases in the beginning and

then decreases. Our best model achieved highest accuracy at learning rate=3e-5.

6.5. Impact of freezing encoder layers

Freezing a layer means, parameters of layer are not updated while fine-tuning the model.

BERT consists of an embedding layer and stack of transformer encoder layers in which lower
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Figure 7: Our best model performance on CADEC-MCN custom folds at different learning rates.

layers capture syntactic information while upper layers capture semantic information. As syn-

tactic information is common across domains and tasks, we believe that there is no need to

further update the parameters of first few layers. Further freezing first few layers, allows the

model to focus on learning more task specific information in upper layers which improves the

performance of model. To study the impact of freezing encoder layers on performance of our

best model, we conducted a series of experiments by freezing embedding layer along with first

1, 2, 4, 6, 8, 10 and 11 encoder layers while fine-tuning. In all these experiments, batch size

and learning rate are fixed at 128 and 3e-5 respectively. From Figure 7, freezing encoder layers

did not improve the performance of model. Freezing up to 6 encoder layers did not hurt the

performance of model much and further, it increased speed of fine-tuning also. Freezing 8, 10

or 11 encoder layers reduced the performance considerably. The model achieved least accuracy

when all the encoder layers were freezed.

BioBERT was initialized from general BERT and further pre-trained on biomedical text.

Biomedical text authored by researchers is less noisy with standard terms while CADEC-MCN

phrases authored by general public are more noisy with lots of colloquial and misspelled terms.

Due to these variations, freezing first few layers while fine tuning didn’t improve the performance

of model, as expected.

6.6. Impact of Noise

To study robustness of our model against noise, we created four noisy datasets from custom

folds of CADEC-MCN dataset. In each colloquial phrase, a word is chosen at random and one

of the following types of noise is added (see Table 10).

• Addition of a special character at the start of word (Type 1)

• Deletion of a randomly chosen character (Type 2)

• Repetition (2 times) of a randomly chosen character (Type 3)

• Swapping a randomly chosen character with its adjacent character (Type 4)
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Original phrase Noisy phrase

Type 1 belly weight gain #belly weight gain

Type 2 belly weight gain bely weight gain

Type 3 belly weight gain bellyy weight gain

Type 4 belly weight gain blely weight gain

Table 10: Example to illustrate different types of noise added.

Noisy test set? Noisy train and test setsΥ

Type 1 81.22 82.31

Type 2 60.39 72.35

Type 3 66.91 75.69

Type 4 60.65 73.90

Table 11: Performance (accuracy) of our best performing model on noisy datasets generated from CADEC-MCN
custom folds. ?- accuracy obtained when our best model is trained on original train set and evaluated on noisy test
set. Υ- accuracy obtained when our best model is trained and evaluated on noisy train and test sets respectively.

Our best performing model is evaluated in two ways namely a) Fine-tuned on original train set

and evaluated on noisy test set and b) Fine-tuned on noisy train set and evaluated on noisy test

set.

From Table 11, we observe

• Except in case of Type 1 noise, in all other cases the performance of model is significantly

reduced in both evaluations. This is because, type 1 noise just adds a special character at

the beginning of word, while other noises modify word by randomly deleting or swapping

or repeating one of its characters.

• Our model performs much better when it is fine-tuned and evaluated on noisy instances

compared to fine-tuned on original instances and evaluated on noisy instances. This is

expected because the model performs better on noisy instances if it sees noisy instances

during training itself.

6.7. Impact of BERT model

To show the impact of BERT model, we fine-tuned our best model using different sizes of

training set from CADEC-MCN custom folds and then evaluated it. From Table 12, we observe

that our best model outperforms ELMo based existing system [16] by 1.2% (75.90 vs 74.70)

even when it is trained using 60% of training set. This is because ELMo based system has to be

trained from scratch so it requires more training instances to perform better. Our best model

is based on fine-tuned BioBERT and highway layer. As BERT model learns lots of language

information during unsupervised pre-training itself, it can be fine-tuned even with small datasets

and hence performs better compared to CNN or RNN downstream based models which are to

be trained from scratch.
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Our best model trained on Accuracy

Full training set 82.62

95% of training set 81.93

90% of training set 81.16

85% of training set 80.82

80% of training set 79.25

70% of training set 78.38

70% of training set 77.82

65% of training set 76.59

60% of training set 75.90

Model Accuracy

GRU+Att+tf-idf(max) ? [16] 74.70

Table 12: Performance (accuracy) of our best model on training sets of different sizes from CADEC-MCN custom
folds. ? - model is trained on full training set.

7. Conclusion

In this study, we proposed a deep neural network based architecture to normalize medical

concepts in social media text. Our deep neural network architecture consists of pre-trained

BERT and task specific classifier which includes highway layer followed by softmax layer. We

experimented with two general, four biomedical and four clinical BERT models to normalize

concepts. As per our knowledge, it is the first work to do comprehensive evaluation of BERT

based fine-tuned models in medical concept normalization. Our best model based on BioBERT

pre-trained on 1M PubMed abstracts and highway layer outperformed other BERT models as

well as existing systems and achieved best performance on TwADR-L, custom and random folds

of CADEC-MCN. We also conducted series of experiments to study the impact of different batch

sizes, learning rates and freezing encoder layers on the performance of our best model. Further

we evaluated our best model on noisy datasets created from CADEC-MCN custom folds, to

study its robustness against noise. In future, we would like to explore possible ways to a) make

our model robust against noises and b) incorporate knowledge from sources like UMLS which

can potentially improve the performance of model.
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Appendix A. Datasets

Appendix A.1. CADEC-MCN Custom

Table A.13 contains detailed statistics of CADEC-MCN Custom dataset.

Fold #train samples #test samples #unique medical concepts

0 1655 504 181

1 1700 459 181

2 1735 424 181

3 1762 397 181

4 1784 375 181

Table A.13: Statistics of CADE-MCN Custom dataset

Appendix A.2. CADEC-MCN Random

Table A.14 contains detailed statistics of CADEC-MCN Random dataset.
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Fold #train samples #valid samples #test samples # unique medical concepts

0 15612 845 867 1036

1 15631 826 867 1036

2 15700 758 866 1036

3 15672 786 866 1036

4 15630 828 866 1036

5 15675 783 866 1036

6 15710 748 866 1036

7 15659 799 866 1036

8 15647 811 866 1036

9 15716 742 866 1036

Table A.14: Statistics of CADEC-MCN Random dataset

Appendix A.3. TwADR-L

Table A.15 contains detailed statistics of TwADR-L dataset.

Fold #train samples #valid samples #test samples # unique medical concepts

0 4816 115 143 2200

1 4817 114 143 2200

2 4791 140 143 2200

3 4812 119 143 2200

4 4811 120 143 2200

5 4801 130 143 2200

6 4819 112 143 2200

7 4790 142 142 2200

8 4788 144 142 2200

9 4812 120 142 2200

Table A.15: Statistics of TwADR-L dataset
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