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Abstract: Recently, there has been a surge of research papers investigating rein-
forcement learning (RL) algorithms for solving temporal logic (TL) tasks. However,
these algorithms are built upon the assumption of a labeling function which can
map raw observations into symbols of subgoals for completing the TL task. In
many practical applications, however, this labeling function often is not readily
available. In this work, we propose an online RL algorithm, referred to as GSTLO,
that collects raw observations from the environment and learns the labeling func-
tion. In other words, it learns to find out key states that are associated with subgoal
symbols used to define the TL task. The proposed framework consists of explo-
ration and labeling parts. In the exploration part, the agent actively explores the
environment and discovers all the sequences of key states which can complete the
TL task. Specifically, GSTLO formulates the discovery of key state sequences as a
sequential multi-armed bandits (MAB) problem, and detects a single key state by
contrastive learning based on the first-occupancy representations (FR) of collected
trajectories. In the labeling part, the discovered key states are mapped to subgoal
symbols by solving an integer linear programming (ILP) problem, yielding the
labeling function. The GSTLO framework is evaluated on three environments,
showing significant improvement over baseline methods.

Keywords: Reinforcement learning, symbol grounding, temporal logic, explo-
ration

1 Introduction
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Figure 1: (a) TL task Example. The robot
is at (0,0) initially. (b) Corresponding FSM
for the TL task: l;(g∨w). Letters "l", "g"
and "w" are short for lever, gear and wheel,
respectively.

Reinforcement learning (RL) algorithms have achieved
many successes in recent breakthroughs like human-level
video game playing from raw sensory input [1] and mas-
tering complex board games [2]. Different from regular
tasks solved by RL algorithms, the temporal logic (TL)
task consists of multiple temporally extended subgoals in
specified orders and can be transformed into a finite state
machine (FSM) [3]. TL tasks have wide applications in
the real-world scenarios. For example, consider a service
robot on the factory floor which is tasked to fetch a set
of components but in different orders depending on the
product being assembled. As shown in Figure 1(a), the
task of the robot is to fetch lever first and then either wheel

or gear, expressed as l;(w∨g) in the TL language. The FSM transformed from the task formula is
shown in Figure 1(b).

Recently, solving TL tasks becomes a hot topic in RL community. In particular, a lot of RL algorithms
have been proposed to solve TL tasks in the form of reward machine (RM) [4, 5, 6] and linear temporal



logic (LTL) formulas [7, 8, 9, 10]. However, all of them assume the availability of a labeling function
which maps raw states to subgoal symbols (e.g., indicating state that contains lever, wheel or gear in
this example) for the task completion. It aligns the environmental raw observation into a Boolean
interpretation over a set of predefined (subgoal) symbols. But in many real-world applications, the
sequences of agent’s observations are often not directly interpretable, whose mapping to symbols
of TL formula is not known. In this case, the agent can only leverage the binary label given at the
end of the episode, which indicates the result of task completion (success or not), to train its strategy
to solve the task. Some previous POMDP algorithms can be used here, which build policy or value
function by using recurrent neural networks (RNNs) [11, 12, 13]. However, these algorithms will
suffer from poor learning efficiency, since the time horizon of TL task can be long and its temporal
structure cannot be utilized. Thus, it is necessary to develop new algorithms for solving TL tasks
without relying on such a labeling function given as prior knowledge.

In this work, we propose a novel framework for Grounding Subgoals of Temporal Logic tasks via
Oline reinforcement learning, short for GSTLO. It essentially learns the labeling function which
can make the agent know the subgoal symbol whenever any of its associated states is reached, so
that the agent can leverage the temporally compositional structure of TL task to improve its learning
efficiency. The learned policies for reaching subgoals can also make the agent generalize to other
unseen TL tasks. First define a key state as the raw state associated with a subgoal symbol of the TL
task, e.g., the state where the robot is in the grid of wheel, gear or lever in Figure 1(a). The GSTLO
framework consists of exploration and labeling parts.

In the exploration part, the agent actively collects trajectories from the environment and tries to
discover every sequence of key states which can complete the TL task. We formulate the problem of
detecting key state sequences as a sequential multi-armed bandit (MAB)[14, 15] problem. Following
previously discovered sequence of key states, the agent only focuses on detecting next key states to
visit based on the reward signal about task completion. The agent will first explore and try to visit
every possible key state for completing the task, then select the state which can maximally increase
the success rate of task completion as next key state. This works similarly as solving an MAB problem
[15]. Then, the agent will continue exploring potential key states next to the selected state, stepping
into solving another MAB problem. Since the TL task has constraints on the temporal ordering
of subgoal visitation, only the first visit to the correct subgoal is meaningful to task completion.
Therefore, the GSTLO computes the first-occupancy representation (FR) [16] of raw states in the
collected trajectories and detects the key state by using contrastive learning based on FRs. After the
agent has discovered sufficient number of key state sequences, every of which can satisfy the TL
task, the labeling part can start to derive the labeling function. In the labeling part, we formulate an
integer linear programming (ILP) problem to determine the mapping from the discovered key states
to subgoal symbols, which can make every discovered sequence of key states reach the accepting
state of the FSM of given TL task. When this mapping is solved, the labeling function is obtained.

We evaluate GSTLO in three environments, including Letter world, AntZone [17], and MiniHack [18].
In these environments, the agent needs to visit different objects in the right temporal orders specified
by the task formula. Our evaluations show that GSTLO can outperform baselines on grounding
subgoals and efficiency of solving TL tasks. The generalizability of GSTLO is also empirically
verified. Ablation study on components of GSTLO framework is conducted as well.

2 Related Works
Recently linear temporal logic (LTL) formulas have been widely used in Reinforcement Learning
(RL) to specify temporal logic tasks [19]. Some papers develop RL algorithms to solve tasks in the
LTL specification [20, 21, 9]. In some other papers, authors focus on learning the task machine from
traces of symbolic observations based on binary labels received from the environment [22, 23, 24].
However, all these papers assume the access to a labeling function which maps raw states into
propositional symbols, working in the labeled MDP [8].

There are some papers assuming to have an imperfect labeling function, where the predicted symbols
can be erroneous or uncertain [25, 26]. But these papers do not address the problem of symbol
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grounding. A recent paper studies the problem of grounding LTLf formulas in image sequences
[27]. However, their method is only applicable to offline problems with static dataset and does not
consider the online exploration in the environment. In addition, authors in [28] propose an algorithm
for learning rational subgoals based on dynamic programming. Their approach is based on the
availability of the state transition model, which is not feasible in general real-world applications.

3 Preliminaries
3.1 Reinforcement Learning

Reinforcement learning (RL) is a framework for learning the strategy of selecting actions in an
environment in order to maximize the collected rewards over time [29]. The problems addressed by RL
can be formalized as Markov decision processes (MDP), defined as a tuple M = ⟨S,A, T , R, γ,S0⟩,
where S is a finite set of environment states, A is a finite set of agent actions, T : S × A × S →
[0, 1] is a probabilistic transition function, R : S × A → [Rmin, Rmax] is a reward function with
Rmin, Rmax ∈ R and γ ∈ [0, 1) is a discount factor. Note that S0 is the set of initial states where the
agent starts in every episode, and S0 : s0 ∼ S0 is a distribution of initial states.

In this work, we equip the environment MDP with a finite set of pre-defined propositions P and a
finite set of pre-defined symbols of TL task subgoals G ⊂ 2P , where each symbol g ∈ G is described
by one or multiple propositions in P . We define a labeling function L : S → G that maps a raw
state to a subgoal symbol of the TL task. We define a key state as the state associated with a subgoal
symbol. Most states of the environment are not key states, where the output of L is empty. For
example, as shown in Figure 1 for the state when the robot is at (0,0), the output of L is empty.
However, when the robot is at (0,3), the state is a key state and the output of L will be "l" (lever).

3.2 Temporal Logic Specification

The temporal logic tasks used in this work is described by a formal language T L together with three
operators. Syntactically, all subgoal symbols in G are in T L, and ∀φ1, φ2 ∈ T L, the expressions
(φ1;φ2), (φ1 ∨ φ2) and (φ1 ∧ φ2) are all in T L, representing "φ1 then φ2", "φ1 or φ2" and "φ1

and φ2", respectively. Formally, a trajectory of states τ = (s1, . . . , sn) satisfies a task description φ,
written as τ |= φ, whenever one of the following holds:

• If φ is a single subgoal g ∈ G, then the first state of τ must not satisfy g, and instead the last
state must satisfy g, which implies that τ has at least 2 states

• If φ = (φ1;φ2), then ∃0 < j < n such that (s1, . . . , sj) |= φ1 and (sj , . . . , sn) |= φ2, i.e.,
task φ1 should be finished before φ2

• If φ = (φ1 ∨ φ2), then τ |= φ1 or τ |= φ2, i.e., the agent should either finish φ1 or φ2

• If φ = (φ1 ∧ φ2), then τ |= (φ1;φ2) or τ |= (φ2;φ1), i.e., the agent should finish both φ1

and φ2 in any order

Note that the language T L for specifying tasks here covers LTLf [30] which is a finite fragment of
LTL without using always operator □.

v0

a b

a; b (a; b) ∨ c

c

a ∧ b

v0 vT

a b

b a
vT v0 vT

a b

Figure 2: Examples of TL formulas and their corre-
sponding FSMs. The initial node is v0 and the accept-
ing (terminal) node is vT .

Every task specification φ ∈ T L can be repre-
sented by a non-deterministic finite-state machine
(FSM) [28], representing the temporal orderings
and branching structures. Each FSM Mφ of task
φ is a tuple (Vφ, Eφ, Iφ, Fφ) which denote sub-
goal nodes, edges, the set of initial nodes and the
set of accepting (terminal) nodes, respectively. Ev-
ery node, excluding those in Iφ and Fφ, corresponds to a subgoal symbol in the task specification,
and each edge represents a possible transition by completing a subgoal.

There exists a deterministic algorithm for transforming any specification in T L to a unique FSM [28].
In this work, we only consider the FSMs which do not contain any loops. Hence, the FSM used here
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can be decomposed into sequences of subgoal symbols. We assume that in any FSM there is only
a single initial and accepting state. If the FSM constructed by transforming the specifications has
multiple initial or accepting nodes, we introduce a super initial node v0 or accepting node vF to unify
them. Several examples of task formulas and transformed FSMs are shown in Figure 2.

Satisfying tree

v0

(0, 3)

(3, 1)

(3, 1)

(0, 3)

(2, 3)

(2, 3)

Figure 3: The satisfying tree of the
task (l ∧ g);w.

In addition, we need to introduce the concepts of satisfying se-
quences and satisfying tree of the TL task, which are important to
the proposed framework. First, we define the satisfying sequence
as the sequence of key states which can satisfy the task. Second,
the tree formed by all the satisfying sequences of the task is defined
as the satisfying tree. For example, for the problem in Figure 1(a),
assuming the task is φ := (l ∧ g);w, its satisfying sequences are
[(0, 3), (3, 1), (2, 3)] and [(3, 1), (0, 3), (2, 3)], where (0, 3), (3, 1)

and (2, 3) represent key states associated with subgoals "l", "g" and "w", respectively. Its satisfying
tree are shown in Figure 3.

3.3 First-occupancy Representation

In this work, we use first-occupancy representation (FR) for subgoal grounding. FR measures
the duration until a policy is expected to reach states for the first time, which emphasizes the first
occupancy.
Definition 1.[16] For an MDP with finite S, the first-occupancy representation (FR) for a policy π
Fπ ∈ [0, 1]|S|×|S| is given by

Fπ(s, s′) := Eπ

[ ∞∑
k=0

γk
1(st+k = s′, s′ ̸∈ {st:t+k})

∣∣∣∣st = s

]
(1)

where {st:t+k} = {st, st+1, . . . , st+k−1} and {st:t+0} = ∅. The above indicator function 1 equals
1 only when s′ first occurs at time t + k since time t. So Fπ(s, s′) gives the expected discount at
the time the policy first reaches s′ starting from s. It can be shown that there is also a recursive
relationship for FR:

Fπ(s, s′) = Est+1∼pπ(·|s)
[
1(st = s′) + γ(1− 1(st = s′))Fπ(st+1, s

′)
∣∣st = s

]
(2)

To compute an empirical FR based on a given trajectory τ of states, the Monte Carlo FR in τ is
defined as below:

FMC(s, s′; τ) :=

T∑
t=1

1(st = s) ·
T−t∑
k=0

γk
1(st+k = s′, s′ ̸∈ {st:t+k}) (3)

where the length of τ is denoted as T and the t-th state in τ is denoted as st. When the state space is
impractically large or not interpretable, we learn a contrastive representation of states to measure the
similarity of two sates, which is used to compute the indicator function in (3).

4 Methodology

In this work, we propose the GSTLO framework for solving TL tasks based on raw observations
without relying on the labeling function, which grounds the subgoal symbols of TL task by actively
exploring the environment. The policies trained to achieve grounded symbols can also make the
agent zero-shot generalize to other unseen TL tasks. In the following, we will first have a general
introduction to the GSTLO framework, and then present every component with details.

4.1 Framework

Grounding subgoals of TL task is essentially to learn the labeling function L : S → G which is
the mapping from raw states in S of the environment to subgoal symbols in G. Since the TL task
may consist of multiple temporally extended subgoals, it is difficult to collect sufficient informative
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Figure 4: Diagram of the GSTLO framework. In the exploration part, B represents the positive and negative
buffers with τ denoting trajectories, fθ is the state representation function, ŜK is the set of discovered key states,
T̂φ is the reconstructed satisfying tree, and πexp is the exploration policy. The trajectory collection is guided
by T̂φ and πexp. In the labeling part, based on Mφ, ŜK and T̂φ, the mapping from key states to subgoals is
determined by solving an ILP problem, yielding the labeling function. Mφ denotes the FSM of the task φ.

trajectories for an offline supervised learning approach to ground all the subgoals at once. As
introduced in Section 3.2, there are finitely many sequences of visits to key states which can satisfy
the task FSM, defined as satisfying sequences. Therefore, in this work, we propose the GSTLO
framework which first discovers all the satisfying sequences of key states by actively exploring the
environment, and second learns the labeling function by solving an ILP problem based on them.

The GSTLO framework consists of exploration and labeling parts. The diagram of GSTLO is shown
in Figure 4. In the exploration part, the agent actively collects trajectories from the environment.
Inspired by the multi-stage nature of TL task, the agent discovers satisfying sequences of key states by
solving a sequential MAB problem. Each stage of the satisfying sequence discovery is to find next key
states to visit which can maximally increase the success rate of task satisfaction of the current stage.
This can be formulated as an MAB problem [15] and solved by contrastive learning. The exploration
policy is used to collect trajectories for discovering key states. Based on the discovered satisfying
sequences of key states, the labeling part of GSTLO determines the mapping from discovered key
states to subgoal symbols in G by solving an ILP problem, yielding the labeling function L. The
detailed algorithm is presented in Appendix E.

Before introducing details of every component, we need to present the basic setup and notations here.
Denote the TL task formula as φ, the FSM of task formula as Mφ and the set of satisfying sequences
as Eφ. The agent knows the task formula φ and its FSM Mφ. In the episode k of exploration, the
agent collects a trajectory τk by actively interacting with the environment and receives a binary
label lk indicating the task completion at the end of the episode (1 for success and 0 otherwise).
Positive (lk = 1) and negative (lk = 0) trajectories are stored into positive (BP ) and negative buffers
(BN ), respectively. By comparing the positive and negative trajectories, the agent uses contrastive
learning to detect next key states. Repeating this process can make the agent discover all the key
states one-by-one, forming the set of discovered satisfying sequences Êφ.

We define the set ŜK as an ordered set of discovered key states indicating where subgoals potentially
are in the raw state space of the environment, i.e., ŜK ⊂ S . Every discovered satisfying sequence is
composed by states in ŜK . For the k-th state in ŜK , i.e., ŝk, k is the index for indicating detected
subgoal and ŝk is the key state associated with the detected subgoal k. Only newly discovered key
state not included in ŜK will be added to ŜK , creating an index indicating a newly detected subgoal.

4.2 Exploration

The target of the exploration part is to discover all the satisfying sequences of the task. According to
the discussion in Section 3.2, since satisfying sequences can be obtained by decomposing satisfying
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Figure 6: Examples of reconstructing satisfying tree T̂φ. In the left three figures, the red node denotes the
working node vw, and ŜK is given on the upper left corner. The dashed nodes are frontier nodes to be explored.
The discovered key state and its index are used as attributes of each node. The fourth figure shows a fully
reconstructed T̂φ. The task FSM in the rightmost figure is transformed from the task formula, composed by
subgoal symbols.

tree into paths, the exploration part of GSTLO is same as reconstructing the satisfying tree composed
by discovered key states in ŜK , denoted as T̂φ, where every path of T̂φ from root to a leaf can
form a satisfying sequence to complete the task φ. Due to the multi-stage nature of TL task, the
reconstruction of T̂φ can be regarded as a sequential MAB problem, and every expansion of T̂φ is to
find the next key states to visit for task completion, which is essentially an MAB problem [14].

In T̂φ, except the root node, each node vn of T̂φ has a key state attribute of ŝkvn
indicating the kvn -th

discovered key state in ŜK . Initially, only the root node v0 is in T̂φ. To reconstruct T̂φ, the agent will
focus on any leaf node whose path towards task completion (vT ) is not clear yet (defined as frontier
nodes), and expand T̂φ starting from this kind of nodes. Specifically, the agent selects a working node
vw from the frontier nodes, and focuses on discovering key states next to vw which are next key states
to visit given that the agent has visited key states of nodes from v0 to vw in T̂φ. The next key states is
discovered by using contrastive learning based on first-occupancy representation (FR). This is the
"discover key state" process with details introduced in Appendix A.2. Then, the discovered key states
are used to expand T̂φ, which is the "reconstruct satisfying tree" introduced in Appendix A.1. The
expansion will not stop until T̂φ is fully reconstructed, where every leaf node of T̂φ is connected to
vT . In this situation, the sequence of key states from the root to every leaf of T̂φ can form a satisfying
sequence and complete the task. Examples of reconstructed satisfying trees are shown in Figure 5
and 6, where the dashed nodes are frontier nodes.

v0

ŝ1

ŝ1ŝ2

ŝ2

vT

Figure 5: Collecting a trajectory
conditioned on vw in one episode.
The red node is the working node
vw. The dashed nodes are in the
frontier set. Blue path: collected
by following the reference sequence
ξw := [ŝ1, ŝ2]. Red path: collected
by using the exploration policy πexp
till the end of the episode.

When discovering key states next to working node vw, the collec-
tion of trajectory in every episode has two stages. First, the agent
sequentially visits key states of nodes along the path from v0 to
vw of T̂φ, forming a sequence of key states, defined as reference
sequence ξw. Then, after reaching the key state ŝkvw

of node vw,
the agent uses an exploration policy πexp to continue collecting the
trajectory τ until the end of the episode. This trajectory following
the reference sequence ξw is called a trajectory conditioned on vw.
An example of trajectory collection process is shown in Figure 5.
In this example, the reference sequence ξw for working node vw
is [ŝ1, ŝ2]. The details of the exploration policy are introduced in
Appendix A.3.

Remark. Generally, ξ defines a reference sequence of key states
that we want the agent to follow. To track this sequence we assume access to a low-level controller
that takes actions a to move the agent along the key states in ξ. There are a variety of controllers for
following reference sequences [31], and our approach is not tied to any specific controller choice.
For example, a robotic agent can use motion planning to arrive any key states in ξ. We can also train
options to make the agent arrive any selected state.

4.3 Labeling
Given discovered satisfying sequences Êφ, discovered key states ŜK and task FSM Mφ, in the
labeling part of GSTLO, the mapping from ŜK to subgoal symbols G is determined by solving an
ILP problem, yielding the labeling function. Specifically, Êφ is obtained by directly decomposing the
tree T̂φ to satisfying sequences. Note that some states in ŜK may not be associated with any subgoals,
such as some bottleneck states of the environment. We will show that our approach can ignore these
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states when determining the mapping. The detailed formulation of the ILP problem is presented in
Appendix B.

5 Experiments

In this section, we first introduce the basic settings of experiments, including environments and
baselines. Then, we present the experimental results and analysis. In this work, the proposed
framework is evaluated in three environments, including Letter, AntZone and MiniHack, as shown
in Figure 7. The details of environments are introduced in Appendix C. Implementation details and
other results are included in Appendix.

5.1 Baselines

Baseline-1. Contrastive learning has been widely used to learn key states or subgoals for solving
a designated task or maximizing the rewards in previous papers [32, 33]. However, these papers
did not consider the temporal ordering of reaching detected subgoals. By mimicking the methods
of these papers, the first baseline directly compares positive and negative trajectories by extracting
subgoals which can differentiate positive trajectories from negative ones. The contrastive objective
is same as (5) except that the pre-processing function for computing FR of trajectories is omitted,
so that FR is discarded in Baseline-1. The state representation fθ and importance function L̃ω are
learned same as those in GSTLO. This baseline is designed to show the effect of FR in GSTLO.

d

c

g

b

f

a

e

(a) Letter (b) AntZone (c) MiniHack

Figure 7: Environments.

Baseline-2. Recently authors in [27]
propose a neural architecture consisting
of a trainable convolutional neural net-
work (CNN) and a non-trainable finite
state automaton (FSA) which is a sub-
class of FSM. Here the CNN predicts
symbols given the input image and the
FSA, which is derived from the LTLf
task formula, describes the automaton

state transitions and their conditions. In Baseline-2, subgoals are represented by pre-defined symbols
and they are grounded by training the neural architecture to predict the binary label (positive or
negative) of input trajectory. The neural architecture are trained whenever a number of additional
trajectories are collected by the exploration policy πexp. In baseline-2, the processes of computing FR
and learning FF of learned subgoals are discarded, and no FSM or FSA is reconstructed, since the
neural architecture is designed to ground all the subgoals together.

5.2 Results

We conduct three sets of experiments to compare the performance of GSTLO and baselines from
different aspects, including the accuracy of grounding subgoals, the success rate of solving TL tasks
and the generalizability to other TL tasks unseen in the training. More results are included in the
Appendix D.2.

The accuracy of grounding subgoals is defined as the ratio of subgoals in G whose corresponding states
are correctly discovered in the state space S. In every environment, the performance is the average
of 6 randomly generated tasks. The performance comparison of accuracy versus the environmental
samples is shown in Figure 8. For all the evaluations in this section, the map in the letter environment
has the width of m = 11 with k = 7 different letters (subgoals), and the map in the room environment
has the width of 11 with 5 subgoals. Every data point is the average of 5 random seeds. In addition,
we compare the GSTLO framework with baselines on the success rate of completing TL tasks, as
shown in Figure 9. The tasks evaluated here are all training tasks, and every curve is the average of 5
random seeds with standard deviation shown in the shadow.
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(a) Letter (b) AntZone (c) MiniHack

Figure 8: Comparison of accuracy of learned subgoals (discovered key states).

(a) Letter (b) AntZone (c) MiniHack

Figure 9: Comparison of success rate of solving the given task.

We can see that GSTLO outperforms baselines in all three experiments. In our method, the progressive
reconstruction of FSM based on the FR of trajectories grounds temporally extended subgoals one-by-
one, transforming the non-Markovian problem into a Markovian one. Instead of grounding all the
subgoals at once, in each training iteration, it only focuses on discovering key states of subgoals next
to a previously grounded subgoal. Based on the FF of discovered key states of grounded subgoals, the
agent can visit any grounded subgoal on FSM efficiently without further training. This can make the
agent actively collect trajectories based on the current progress of subgoal grounding. Additionally, it
can also help the agent generalize to any unseen tasks composed by same subgoals grounded in the
training.

Baseline-1 performs the worst, since it ignores the non-Markovian property of solving temporal logic
(TL) tasks in the non-symbolic state space. This method treats every subgoal equally and ignore their
temporal orders, where the importance function can be distracted by redundant visits to key states of
subgoal. So, it cannot ground many subgoals correctly. In baseline-2, the non-trainable FSA derived
from the task formula is non-differentiable, which can make the CNN part difficult to be trained.
Besides, since TL tasks can have long time-horizon to complete, some subgoals may be visited by
few or even no trajectories, especially in the early learning stage. This can make the training data
imbalanced and subgoals which are never or rarely visited can not be correctly grounded. However,
the active collection of trajectories in GSTLO resolves this problem.

6 Conclusion

In this work, we propose a framework, short for GSTLO, for grounding the subgoal symbols and
solving the TL task based on non-symbolic observations. In the exploration part, by discovering key
states based on contrastive learning, the agent progressively reconstructs the satisfying tree of the
task. In the labeling part, the mapping from discovered key states in the raw state space to subgoal
symbols of the task, which yields the labeling function.
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A The Exploration Part

Due to the page limit, we present the detailed operations of the exploration part
of GSTLO here. The source codes are at https://drive.google.com/drive/folders/
1O-51jLRnku5VlXCPGU2CpplxJyhR8AZ0?usp=sharing

A.1 Reconstruct Satisfying Tree

Assuming that the working node is vw and key state next to vw is selected as ŝnew, a new leaf node
vnew will be added to T̂φ as the child of vw, and ŝnew will be the key state attribute of vnew. The new
working node will be moved to vnew.

Given the working node vw and reference sequence ξw, after following ξw, if the agent’s first visit to
a state ŝ can immediately complete the task by receiving a success label from the environment, ŝ will
be naturally denoted as the key state next to vw, and the sequence ξw ∪ [ŝ] is a discovered satisfying
sequence. Then, a new leaf node v′ will be added as a child of vw in the tree T̂φ, whose key state
attribute is ŝ. No exploration starting from ŝ is needed and a vT node is added to v′, since the task is
completed after following the sequence ξw ∪ [ŝ]. Afterwards, the agent will continue exploring other
possible key states (except ŝ) next to vw, until no more potential key states can be found to increase
R after following ξw. Then, the working node will be moved back to the parent of vw and continue
exploring there, until T̂φ is fully reconstructed. An example of reconstructing a satisfying tree T̂φ is
shown in Figure 6.

A.2 Discovering Key States

Define the reward function R as the success rate of task completion. This section introduces the
discovery of key states next to the working node vw. It has two steps: 1) contrastive learning: the
agent discover potential key states (stored in S̃next) by using contrastive learning based on positive
and negative trajectories conditioned on vw; 2) selecting key state: the agent tries to visit any state of
S̃next after following the reference sequence ξw, and compute their impact on R, selecting the state
which can maximally increase R as the key state next to vw. After that, reconstructed T̂φ is updated
according to Section A.1.

Contrastive Learning. When the raw state of environment has a lot of redundant information
and not directly comparable, we propose to learn a distinguishable representation of states, i.e.,
fθ(·) : S → Rd, based on the InfoNCE loss [34]. Based on state representation fθ, we first
define L̃ω : Rd → [0, 1] as the importance function. In GSTLO, the agent discovers key states by
formulating the return of each trajectory in terms of L̃ω and training L̃ω to give higher returns to
positive trajectories rather than negative ones. With sufficient training, any state s with value of
L̃ω(fθ(s)) close to 1 is regarded as an key state.

After following the reference sequence of working node, only the first visit to a key state can make
progress towards task completion. Thus, the contrastive learning objective used to train Lω is
formulated by the MCFR (introduced in Section 3.3) of positive and negative trajectories. Since the
agent only discovers key states next to the working node vw of T̂φ, for any trajectory conditioned on
node vw, the agent computes the MCFR by using the sub-trajectory starting from the key state ŝkvw

of node vw. The process of discovering key states based on contrastive learning consists of the three
steps, which are presented as below:

1. Selecting Trajectories: We randomly select positive and negative trajectories conditioned
on the current working node vw from buffers BP and BN . Then, we discard the part before
reaching ŝkvw

and store the rest into the set DP (DN ).
2. Computing MCFR: Note that the first state of every τ ∈ DP (DN ) is always ŝkvw

.
Computing MCFR defined in (3) is realized by a pre-processing function for any trajectory
τ ∈ DP (DN ), which consists of two steps: 1) In order to compute the outer Σ in (3), any τ
is decomposed into N(ŝkvw

; τ) segments {τ ′i}, where N(s; τ) is the number of occurrence
s in τ and every segment τ ′i starts with i-th occurrence of ŝkvw

and ends at one-step before
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the i+ 1-th occurrence of ŝkvw
in τ or the end of τ ; 2) For any segment τ ′i , computing the

inner Σ in (3) needs to remove repetitive states from τ ′i , producing τ̃ ′i , where the similarity
of states is evaluated by the cosine similarity of state representations fθ. Define this two-step
pre-processing above as a general function preFR, i.e., {τ̃ ′i}N(s;τ) := preFR(τ, s) with s
replacing the state ŝkvw

above. Therefore, computing the MCFR of τ can be simplified as
the sum over each pre-processed segment τ̃ ′i :

FMC(s, s′; τ) =
∑

τ̃ ′
i∈preFR(τ ;s)

FMC(s, s′; τ̃ ′
i)

=
∑

τ̃ ′
i∈preFR(τ ;s)

len(τ̃ ′
i)∑

t′=1

γt′
1(st′ = s′) (4)

where the function len(τ) gives the length of trajectory τ . For every τ ∈ DP (DN ), its
pre-processed segments {τ̃ ′i} are stored into the set D̃P (D̃N ).

3. Contrastive Objective: Since the indicator 1 in (4) is still intractable to compute when
states are not comparable and interpretable, we replace it by the state representation fθ. Then,
the return for formulating the contrastive objective can be written as

∑
st∈τ̃ γ

tL̃ω(fθ(st))

for any τ̃ ∈ D̃P ∪ D̃N . Therefore, based on the pre-processed datasets D̃P and D̃N , the
contrastive learning objective for discovering important states next to vw is expressed as
in (5), where the set D̃P (D̃N ) is obtained by preFR. Any state s′ with importance value
higher than a threshold κ, i.e., L̃ω(fθ(s

′)) ≥ κ, is chosen as an potential key state next to
vw, added to the set S̃next. Then, if state s′ does not exist in the set of discovered key states
ŜK , s′ will be added into ŜK with a new index |ŜK | + 1 assigned and a newly detected
subgoal |ŜK |+ 1 is also created.

Lcontrast(ω) :=
∑

τ̃0∼D̃P ,τ̃1∼D̃N

exp

(∑len(τ̃0)
t=1 γtL̃ω(fθ(τ̃0[t]))

)
exp

(∑len(τ̃0)
t=1 γtL̃ω(fθ(τ̃0[t]))

)
+ exp

(∑len(τ̃1)
t=1 γtL̃ω(fθ(τ̃1[t]))

) (5)

Selecting Key State. After discovering potential key states in S̃next, the agent needs to select the
key state next to vw from S̃next. The agent collects trajectories to compute the impact of every state
of S̃next on the reward (success rate of task completion). Specifically, in every trajectory, the agent
first follows the reference sequence ξw of working node vw, then visits one state of S̃next, and then
finish the rest of the trajectory by using the exploration policy πexp. By comparing the reward of these
trajectories with those without visiting states in S̃next on purpose, the agent can determine the state in
S̃next which can maximally increase the reward function, and use this state to build the node next to
vw of reconstructed T̂φ.

A.3 Exploration Policy

The exploration policy πexp is realized by a GRU-based policy model. Each action is history dependent
and drawn from the action distribution at the output of the policy model. The action selection of πexp
is conditioned on both current state and a hidden state summarizing previous states and actions. The
policy πexp is trained by the recurrent PPO algorithm [35, 36] which extends the classical PPO [37]
into POMDP domain. The reward for training πexp is just the binary label of task satisfaction given at
the end of the trajectory. This sparse and weak reward signal cannot make the agent directly solve the
task, but can encourage the agent to visit states relatively closer to subgoals, improving the sample
efficiency of subgoal grounding.

B The ILP Problem for Learning Labeling Function

Denote the state space of task FSM Mφ as U which has U states. The transition function of Mφ is
defined as δφ : U × G × U → {0, 1}, and the transition from state u to u′ conditioned on symbol g
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is expressed as δφ(u, g, u′) = 1. Assume that Êφ has M sequences, and the m-th sequence has lm
elements.

Now we start formulating the ILP problem for learning the labeling function. The binary variables
of this ILP problem are composed by state transition variables um,n,i,j and mapping variables vk,l,
where um,n,i,j = 1 denotes that the n-th element of m-th sequence of Êφ makes the agent transit
from state i to j over FSM Mφ, and vk,l = 1 denotes that k-th state in ŜK is mapped to l-th subgoal
symbol in G. Based on their definitions, we can first have 5 constraints on these binary variables:

U∑
i,j=1

um,n,i,j = 1, ∀m = 1, . . . ,M, n = 1, . . . , ln (6)

U∑
j=1

um,1,1,j = 1, ∀m = 1, . . . ,M (7)

U∑
i=1

um,n,i,j =

U∑
i=1

um,n+1,j,i, ∀m = 1, . . . ,M, n = 1, . . . , ln − 1, j = 1, . . . , U (8)

|G|∑
l=1

vk,l ≤ 1, ∀k = 1, . . . , |ŜK | (9)

|ŜK |∑
k=1

vk,l = 1, ∀l = 1, . . . , |G| (10)

where these constraints mean: 1) every element of every sequence in Êφ makes a transition, including
staying at the same state of FSM Mφ; 2) the first element of every sequence is in the first state of
Mφ; 3) for any pair of consecutive elements of every sequence, the out-going state of the previous
element is the same as the in-coming state of the other one; 4) every state in ŜK is mapped to at most
one subgoal symbol; 5) every subgoal symbol in Mφ is associated with one state in ŜK .

Since the transition variables um,n,i,j and mapping variables vk,l must be consistent with the state
transitions of Mφ (δφ), we have another set of constraints:

um,n,i,j ≤ δφ(i, j, l) · vk,l (11)

where m,n, i, j and k, l have the same range of values as above constraints.

Finally, we have another set of constraints which make sure that the last element of every sequence in
Êφ makes the agent stay in any accepting state of FSM Mφ. Then, we have∑

j∈UF

um,n,i,j = 1 (12)

where UF denotes the set of accepting states of Mφ. In order to ignore the states in ŜK not associated
with any subgoals during mapping, such as bottleneck state in the environmental layout, we use the
sum of mapping variables as the objective:

|ŜK |∑
k=1

|G|∑
l=1

vk,l (13)

The formulated ILP problem has the objective (13) and constraints (6)-(12). We solve it by Gurobi
solver [38].

C Environments

In this work, we evaluate the performance of the GSTLO framework in three environments, including
letter world, AntZone and MiniHack [18]. The first two are designed by authors. The third one has
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observations with higher dimensions. The observations of states are image-based in all the three
environments, so simple tabular RL algorithms cannot solve any tasks in these environments. Since
the labeling function is not available, the agent does not know the positions of letters or objects from
state observations and their association with subgoal symbols in the TL task.

d

c

g

b

f

a

e

(a) Letter (b) AntZone (c) MiniHack

Figure 10: Environments.

Letter World. This environment is a
n× n grid game shown in Figure 10(a),
replacing objects by letters. Out of
the n2 grid cells, m grids are associ-
ated propositions (letters). An example
layout is shown in Figure 10(a) with
n = 11,m = 7. At each step the agent
can move along the cardinal directions
(up, down, left and right). The agent
is given the task specification and is as-

sumed to observe the full grid (and letters) from an egocentric point of view. But positions of these
letters and their association with subgoal symbols in the TL task are unknown to the agent. The agent
must visit these letters’ locations in the right order to satisfy the task formula.

Figure 11: Simulated
Ant Robot

AntZone. We use the Zones environment from the MuJoCo-based Safety-
Gymnasium suite of environments [17]. In this domain, a robot must
navigate the environment whose 2D layout has a size of 10 × 10 and
is divided into 100 integer grids, e.g., the grid from [0, 0] to [1, 1]. The
environment contains 5 differently colored goal regions, where every region
is randomly located and covers only one integer grid. The robot receives an
observation of lidar data that detects the presence of nearby objects at each
timestep. The robot is a simulated ant robot shown in Figure 11. The LTL
task description instructs the agent to oscillate amongst visiting different
colored regions. The movement of robot is guided by the pre-trained
options moving to the left, right, up and down neighboring integer grid.
The current position is observable to the agent, and the symbol grounding
is to determine the positions of subgoal symbols among integer grids.

MiniHack. MiniHack is a powerful sandbox for designing custom environments [18] derived from
the NetHack game. The agent there can navigate in the map to visit landmarks, pick up weapons,
use tools and fight against monsters. Our experiments only consider navigation tasks which are
customized to be simpler than original environments. An example of the screenshot is shown in
Figure 10(c). The layout of the map and items are initialized by a description file which is written
by the user. In our experiments, the map is a 10×10 grid. The observation to the agent is an image,
where each grid of the map is described by 16×16 pixels. The action space is customized to be small,
including movement towards 4 directions, kick, and eat actions. The objects include comestible items,
including apple, orange, meat and pancake, and the agent can take them by the eat action. Other
objects are stone and gray rock, which can only be interacted with by using kick action. The task
formula is defined in terms of these 6 objects. The agent needs to visit and interact with right objects
in the right order.

D Additional Experimental Results

D.1 Generalization

Additionally, the generalizability of GSTLO is compared with baselines in Figure 12. The metric for
comparing generalizability is the success rate of completing 10 randomly generated tasks unseen in
the training which are composed by same subgoals in G. The generalizability is evaluated for cases
with different number of subgoals and task lengths, where the task length is the number of subgoals
to be achieved for completing the given task.
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(a) Letter (b) AntZone (c) MiniHack

Figure 12: Comparison of generalizability across different number of subgoals and task lengths. In
MiniHack environment, the number of subgoal is fixed to be 6.

(a) Letter-1 (b) Letter-2 (c) AntZone

Figure 13: Ablation study on the exploration policy in GSTLO.

D.2 Ablation Studies

In addition, we also conduct the ablation study on the exploration policy πexp. As introduced in Section
A.3, πexp is built by a GRU-based network and trained by binary episodic rewards of completing the
given task. We compare this design choice of πexp with a random policy, where the agent will use a
uniformly random selection of actions to finish the rest of episode after reaching the working node vw
on the reconstructed FSM. The other parts of GSTLO framework are not changed. The comparison is
shown in Figure 13. The exploration policy πexp in GSTLO achieves higher sample efficiency. This
is because πexp in GSTLO is trained by the rewards of successfully completing the given task and
hence the collected trajectories contain more states closer to important states of subgoals, but the
trajectories collected by random policy may cover state space uniformly.

E Algorithms

The exploration operations conducted at working node vw are shown in Algorithm 1, denoted as
function G(vw). The operations for discovering key states are in Algorithm 2.

F Model Architecture

We build neural network architectures for state representation function fθ, importance function L̃ω,
FF of important states Fϑ and the exploration policy πexp. Since the observation of every environment
is non-symbolic and image-based, in the models of fθ,Fϑ and πexp, we use different convolutional
neural network (CNN) modules to pre-process the input image and produce an embedding vector for
the downstream processing. The size of the CNN module is determined by the observation space of
the environment. In letter/AntZone domain with map size of m×m, we used a 3-layer convolutional
neural network (CNN) which have 16, 32 and 64 channels with stride of 1, respectively, and the
kernel size is chosen as l ∈ {2, 3, 4} where m is dividable by l. In MiniHack environment, the CNN
module is the same as the classical CNN for deep RL proposed in [1], where the first convolutional
layer has 32 channels with kernel size of 8 and stride of 4, the second layer has 64 channels with the
kernel size of 4 and stride of 2 and the third layer has 64 channels with the kernel size of 3 and stride
of 1. The CNN module produces an embedding vector with the size of 512.
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Algorithm 1 Grounding subgoals via online RL: G(vw)

1: Require: The given task φ; the set of subgoal symbols G; task FSM Mφ; the reconstructed
satisfying tree T̂φ; the working node vw; state representation function fθ; set of discovered key
states ŜK ; the exploration policy πexp; the importance function for detecting key states L̃ω; the
pre-processing function for computing MCFR preFR; the positive and negative buffers BP and
BN ; discovery period T ;

2: Initialize S̃¬ := {}
3: for p = 1, 2, . . . do
4: % Collect an exploration trajectory τ
5: Initialize the environment;
6: On T̂φ, obtain discovered key states along the path from v0 to the working node vw and form

the reference sequence ξw = [ŝ1, . . .];
7: for ŝi ∈ ξw do
8: Guide the agent to reach ŝi by using options or motion planning, where the index i

denotes the index of discovered key state in ŜK ;
9: end for

10: Use the exploration policy πexp to finish the rest of this episode;
11: Store the collected trajectory τ into BP or BN according to the label of task completion;
12: % Discovery part (conducted periodically)
13: if p mod T == 0 then
14: % Discovering key states
15: Call Algorithm 2 to get ŝn as the discovered key state next to vw;
16: if ŝn is not in ŜK then
17: Add ŝn into ŜK and create a new index of learned subgoal accordingly;
18: end if
19: % Training the exploration policy
20: Sample trajectories from BP and BN

21: Use PPO to train πexp with labels of task completion as rewards
22: % Expand the reconstructed satisfying tree T̂φ
23: Add a new leaf node vn to T̂φ as a child of vw, whose key state attribute is ŝn;
24: Add vn to the frontier set Vf ;
25: Select vn as the new working node and call G(vn) recursively; % The exploration of key

states is conducted in a manner of depth-first search
26: Set the working node as vw again; % Try to discover key state next to vw other than ŝn
27: Add ŝn into S̃¬; % Avoid visiting node vn again
28: end if
29: if no new key states has been discovered for K iterations then
30: The working node vw is fully discovered and removed from the frontier Vf ;
31: Return
32: end if
33: end for

Regarding fθ, the state representation has 64 dimensions in letter/AntZone environments and has 256
dimensions in the MiniHack environment. The importance function L̃ω has three fully connected
layers with 64 neurons in each layer. Regarding FF Fϑ, following the CNN module introduced above,
it has three fully connected layers with 64 neurons in first two layers, where the final layer has the
same size of number of subgoals |G|, producing the predicted FF of important states corresponding to
subgoals.

The exploration policy πexp is a GRU-based policy, whose architecture for CNN module is introduced
above. In πexp, the hidden dimension of GRU module is 64 for letter/AntZone environments and 256
for the MiniHack environment. The outputs of πexp consist of action and predicted value, which are
conditioned on both the hidden state and the embedding vector of input image for the current state.
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Algorithm 2 Discovery of key states next to the working node
1: Update the state representation fθ with NCE loss;
2: Select trajectories from BP and BN which are conditioned on vw on T̂φ and do not visit any

states in S̃¬ after vw;
3: Compute MCFR of every trajectory in D̃ by using function preFR (defined in Section A.2), and

store these pre-processed trajectories into D̃;
4: Formulate contrastive learning objective in (5) and train the importance function L̃ω;
5: S̃tmp := {};
6: In every trajectory in D̃, store every state which has high value at L̃ω into S̃tmp as potential key

states;
7: % Try to visit every potential key state
8: for ŝ ∈ S̃tmp do
9: for i = 1, . . . ,K do

10: Initialize the environment; % Start a new episode
11: Guide the agent to visit discovered key states by following the sequence ξw ∪ {ŝ};
12: Use the exploration policy πexp to finish the reset of the episode;
13: end for
14: Based on trajectories collected in the above for loop, compute the success rate of visiting ŝ;
15: end for
16: Select the state with maximal success rate in S̃tmp as the newly discovered key state ŝn;
17: Return ŝn;

G Hyperparameters

In Algorithm 1, the training period T is 5 for every environment, and the period K for updating the
working node vw is 20 for every environment. The hyperparameters of the PPO algorithm for training
the exploration policy πpi is presented in Table 1.

Table 1: Hyperparameters of PPO

Hyperparameter Value
Env. steps per update 1024

Minibatch size 256
Discount 0.995

Satisfaction Reward RF 10
Optimizer Adam

Learning rate 3× 10−4

GAE-λ 0.95
Entropy coefficient 0.01

Value loss coefficient 0.5
Gradient clipping 1.0
PPO clipping (ϵ) 0.2
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