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Abstract

Background: The identification of pre-microRNAs (precursor microRNAs) helps
us to understand the regulatory mechanism of biological processes. Currently,
machine learning is the most popular method for pre-microRNA identification.
However, most methods mainly focus on secondary structure information of
pre-microRNA, while ignoring sequence-order information and sequence evolution
information.

Results: In this work, we use three different methods to extract features of the
pre-microRNAs at different levels. We first extract features from PSI-BLAST
profiles and Hilbert-Huang transform, which contain rich sequence evolution
information and sequence-order information respectively. We then get properties
of small molecular networks of pre-microRNAs, which contain refined secondary
structure information. We extract 591 features in total. After extraction, we use
support vector machine (SVM) as our classifier, and use the maximum relevance
and minimum redundancy (mRMR) method for feature selection. Finally, we
construct a new predictor MicroRNA−NHPred by using the optimal feature set.
The performance of MicroRNA−NHPred is quite promising compared to other
popular miRNA predictors. It achieves an accuracy of up to 94.83%.

Conclusions: The higher prediction accuracy achieved by our proposed method is
attributed to the design of a comprehensive feature set on the sequence and
secondary structure, which are capable of characterizing the sequence evolution
information and sequence-order information, and global and local information of
pre-microRNAs secondary structure. Therefore, it is a valuable method to
pre-microRNAs identification.

Keywords: Pre-microRNA; PSI-BLAST profiles; Hibert-Huang transform;
Network; mRMR; SVM

Background
MicroRNAs (miRNAs) are small single-strand, non-coding RNAs (about 22 nu-

cleotides in length), which play significant regulatory roles in various biological pro-

cesses of animals, plants and viruses [1, 2]. There are many forms of miRNAs, includ-

ing primary miRNAs (pri-miRNAs), mature miRNAs and precursor microRNAs

(pre-microRNAs). Mature miRNAs are usually cleaved from ∼ 90nt pre-microRNAs

which are derived from processing of a long pri-miRNA by a ribonucluease [3]. In

fact, pre-microRNAs is the earliest and most widely studied, and many commer-

cialized miRNA libraries take this form. With the advent of the post genome era

and the development of sequencing technology, how to find miRNAs from millions

of reads has been one of the hot topics in bioinformatics. Detecting miRNAs by
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experimental techniques in biology is expensive and time-consuming. What’s more,

it is difficult to identify directly the lowly expressed miRNAs or the miRNAs that

are expressed in the specific tissues or in the developmental stage. Computational

methods have provided potential pre-microRNAs candidates for biologists. Because

miRNAs are too short, the traditional feature engineering approaches [4] are usually

failed to extract features based on their sequences and structures. Therefore, com-

putational methods is usually to identify the pre-microRNAs instead of miRNAs.

At present, there are many methods to identify pre-microRNAs, which are main-

ly divided into four categories. The first category contains the earliest methods

which are based on searching homologous genes [5]. The search process is a typi-

cal alignment problem of sequences and structures, the main alignment algorithms

including the Smith-Waterman algorithm [5], the FASTA algorithm, the BLAST

algorithm [6, 7, 8, 9], etc. However, these methods can only find highly homologous

miRNAs with known miRNA sequences and require a large amount of computation-

al resource for whole genome. The second category contains comparative genome

methods which predict miRNAs in the study of species early stages. In the process of

prediction, these methods mainly utilize the conserved characteristics of miRNAs

and their precursor sequences in multiple species to search for the conserved se-

quences in the intergenic region. These sequences have a better secondary structure

of stem ring. Based on comparative genomics, the limitation of predicting miRNAs

is that the predicted miRNA candidates are highly conserved in multiple species,

and these methods cannot be used to predict miRNAs which are not conserved

[10, 11, 12, 13]. At the same time, these methods are also subject to challenges of

both time complexity and space complexity. The third category is based on conser-

vation of binding sites of miRNA which are the short sequences of miRNA that bind

the target mRNA. These short sequences have conserved properties among multiple

species [14, 15, 16]. The miRNAs and the target mRNAs usually have perfect com-

plementary features in plants, while it does not match well in animals. Therefore,

this kind of methods is usually used in plants. The fourth category is based on

machine learning methods [17, 18, 19, 20, 21]. Machine learning uses the informa-

tion on sequences, structural and thermodynamic energy of pre-microRNAs. These

methods can discover new, non-homologous pre-microRNAs. So, machine learning

is the main method for miRNA prediction and identification at present. The diffi-

culty of the method is how to select the positive/ negative samples which are able

to describe sufficiently the whole sample space and how to find a better distinction

between true/ false pre-microRNAs. In addition, high false positive rates and com-

putational complexity likely occur in the prediction of whole genome data. Thus,

further improvement in sensitivity and specificity of the pre-microRNA classifica-

tion is necessary. It is also a desirable task to explore a solution based on machine

learning prediction.

Generally speaking, the problem of pre-microRNA identification can be viewed as

a classification problem so that it can be tackled by machine learning methods. To

implement a classification task, two major procedures are generally required: fea-

ture extraction and a machine learning classifier. In the past few decades, extracted

features of pre-microRNAs are mainly divided into three categories: primary se-

quences, secondary structures and thermodynamical properties. Among them, the
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k-mer sequence composition (based on the primary sequence) is the most success-

ful technique for representation of pre-microRNAs [22]. Many studies have shown

that most of pre-microRNAs have the properties of stem loop hair-pin structures

[19]. Therefore, secondary structures can be predicted, and features derived from

these structures, e.g, 32 local structure features in triplet-SVM, are used to predict

human pre-microRNAs [19]. Energy characteristics are another kind of important

features of pre-microRNAs [23]. The pre-microRNAs in a folded state have lower

free energies than random sequences [24]. It is well studied that good features and

positive/ negative (real/ pseudo pre-microRNA) datasets are the basis of construct-

ing efficient classification models.

In this study, we use three different methods to extract features of the pre-

microRNAs at different levels. To describe the local or short-range sequence order

information and evolution information of pre-microRNAs, we introduce the PSI-

BLAST profile into the analysis of pre-microRNAs for the first time. And then

we introduce the Hilbert-Huang transform [25], which is a time-frequency analy-

sis method, into pre-microRNA identification. We use it to describe the local and

long-range relationship between sequence bases. We obtain the topological parame-

ters of small molecular networks constructed from the secondary structures of pre-

microRNAs, which contain refined secondary structure information. These features

are carefully selected so that they can depict both global and local characteristics of

pre-microRNAs. After the feature extraction, we use support vector machine (SVM)

as our classifier, and use the maximum relevance and minimum redundancy (mRM-

R) [26] method for feature selection. Finally, a new predictor MicroRNA−NHPred

is constructed by using the optimal feature set, which achieves an accuracy of up

to 94.83%. This demonstrate that the new constructed predictor improves the sen-

sitivity and specificity of precursor microRNA prediction.

Materials and methods
Datasets

In order to compare with previous works, we use the benchmark dataset in the

works of Liu et al. [27, 28, 29, 30] and Khan et al. [31], which consists of positive

samples (true pre-microRNAs) and negative samples (pseudo pre-microRNAs). As

in the above works, we derived the positive samples from the miRBase (released

on 20 June, 2013) [32], which is composed of 1872 experimentally confirmed pre-

microRNA sequences of homo sapiens. These sequences were filtered by the CD-HIT

software [33], and the redundant sequences were filtered out with a threshold of

80% sequence identity. Finally, we obtained 1612 true pre-microRNA sequences as

positive samples. As in previous works [17, 18, 19, 24], we used 8494 human pseudo

pre-microRNAs. The dataset of negative samples collected from human protein

coding regions was downloaded from Xue et al. [19]. These sequences are very

similar to the real pre-microRNAs in the sequence length, the minimum base pair

of their stem of hairpin structure, and the maximum energy of secondary structure.

In the same way as positive samples, we also used the CD-HIT software to filter the

sequences, so that sequence similarity of the negative samples is kept below 80%. In

order to solve the sample imbalance problem [27, 28], 1612 sequences are selected

randomly as negative samples from the filtered sequences.
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In order to further verify the performance of our method, we use an indepen-

dent test set to verify it. This test set comes from the latest released miRBase 22

[34] (released on March 2018) which contains 1917 homo sapiens pre-microRNA

sequences, while miRBase 20 (released on June 2013) contains 1872 homo sapi-

ens pre-microRNA sequences. We selected 78 new homo sapiens pre-microRNA

sequences as our independent test set from the latest version of miRBase 22, and

those sequences are not in the released miRBase 20.

Feature extraction methods

In this study, we use three different methods to extract different features of pre-

microRNAs from PSI-BLAST profiles [35, 36], parameters of networks [37] and

spectrum analysis based on the Hilbert-Huang transform [25].

PSI−BLAST profile−based features

The PSI-BLAST profile is represented as a so-called position specific score matrix

(PSSM), which is acquired through aligning a query amino acid sequence to the

NCBI’s nonredundant (NR) database by using PSI-BLAST [35]. In this work, we

apply this idea to the nucleotide sequences.

First, we build a new database, which is composed of all the pre-microRNA se-

quences in the miRBase [38] and 8494 human pseudo pre-microRNAs in the work

of Xue et al. [19] and 410 non-coding RNAs in the work of Batuwita et al. [18].

Second, we use PSI-BLAST to align a query nucleotide sequence in the dataset

to the newly built database and to get the PSSM for the sequence. The PSSM is

a matrix of size L × 5, where L is the length of the query sequence and 5 is due

to the 4 nucleotide symbols (A,C,G,U) and the symbol −. Its elements are 10×
loge of the ratios between the observed base frequencies and the background base

frequencies, and rounded down to the nearest integer.

Third, our feature extraction method also starts by transforming each element sij
of the PSSM into s

′

ij using

s
′

ij = 20.1×sij . (1)

The resulting value s
′

ij is guaranteed to be non-negative even when sij is negative.

We further apply the normalization to the values s
′

ij so that each row sums to one.

Let fij denote the normalized value of s
′

ij . All the values fij form a matrix, which

we called the frequency matrix (FM).

Fourth, to extract PSI-BLAST profile features, a so-called concensus sequence

(CS) [39] is first constructed from the FM as follows:

µ(i) = arg max{fij : 1 ≤ j ≤ 4}, 1 ≤ i ≤ L. (2)

The i-th base CS(i) of the consensus sequence is set to be the µ(i)-th nucleotide in

the nucleotide alphabet. It can be seen that a consensus sequence retains the most

valuable evolutionary information from the PSSM.

Fifth, we compute

NCCS(j) =
n(j)

L
, 1 ≤ j ≤ 4, (3)
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where n(j) is the number of the nucleotide j occurring in the CS. It gives 4 features

corresponding to the nucleotide of the CS. Moreover, we also include the entropy

into our feature set, that is,

ECS = −
5∑

j=1

NCCS(j) loge NCCS(j). (4)

Another entropy-based feature is directly computed from FM to reflect the global

characteristic of the PSSM:

EFM = − 1

L

L∑
i=1

5∑
j=1

fij loge fij . (5)

Most of the extracted features of k-mer features shown in many articles are based

on the original sequences. In this study, we extract their features from the CS of the

original nucleotide sequences. Since a pre-microRNA sequence is too short (about

60bp-130bp), longer k are less likely to be exactly conserved among species. So, we

computed k-mers with k = 2, 3 resulting in 80 (16+64) different features. At the

same time, we also calculate the content of GC from consensus sequences.

In summary, for each query sequence, a total of 87 features are extracted from

its PSI-BLAST profile. Our experimental results show that the features extracted

from CS are more effective to discriminate than those from the original nucleotide

sequences.

Topological parameters of small molecular networks constructed from secondary

structures

The pre-microRNA has a very significant secondary structure in the hairpin shape.

There are many machine-learning based methods to identify pre-microRNAs which

take advantage of the hairpin shape, so that the prediction accuracy has been greatly

improved. There are more representative Triplet-SVM [19], iMiRNA-PseDpc [27],

and properties based on networks [37] in these methods. In Refs. [40, 41], the authors

have verified that the features based on networks have higher prediction accuracies.

Meanwhile, in Ref. [37], Childs et al. further discussed the topological properties of

the networks, which can reflect more essential characteristics of the pre-microRNAs.

Therefore, in this work, we also extract features based on networks constructed from

the secondary structure, and the process is as follows:

Firstly, each nucleotide sequence of positive and negative samples is folded into a

stem-loop secondary structure by RNAfold [42]. Secondly, we use a two-dimensional

network (graph) to represent the RNA secondary structure, with all nucleotides

converted to nodes and all bonds between nucleotides converted to edges. Network

elements, including nodes and edges, can be defined by the network itself or pa-

rameters which may relate to limited or full knowledge of the network. Based on

these criteria Childs et al. classified the network parameters into three types: local,

local-global and global structural properties that can be used as a method in identi-

fication of RNA family [37]. Here we use the summary statistics for the local-global

properties, since they provide insight not only on the global level of the graph itself,
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but also on the level of its nodes and edges. Thirdly, all properties were calculated

using the igraph R package [43] for complex networks. In this study, 24 network pa-

rameters are extracted to describe the stem-loop structure of pre-microRNAs based

on previous works and experimental criteria [37] although a number of network pa-

rameters are available. We also choose the following features: degree, path length,

shortest path, graph motifs, articulation point, modularity, graph density, coreness,

closeness, centrality, bibliographic coupling, transitivity, cocitation coupling, diam-

eter, node betweenness, edge betweenness, grith, constraint, hub score, and so on.

A brief definition of all graph properties used in this study is provided in [37].

Extraction of sequence-order features based on the Hilbert-Huang transform

The features of the pre-microRNAs based on k-mers, with k small, they can only

describe the short-range relationship between the nucleotide sequences. When k is

larger, they can describe the long-range relationship of the nucleotide sequences,

but the dimension of extracted feature vector is too large, which leads to the curse

of dimensionality, and the classifier’s performance will be reduced. Since most of

the previous methods extracted k-mer composition information from a nucleotide

sequence (for pre-microRNAs, k generally takes the values 2, 3, 4), the sequence-

order information is missing. Although Chen and Li [44] considered local sequence-

order information based on Chou’s concept of pseudo amino acid composition, the

overall prediction accuracy was not significantly improved. In order to depict the

long range relationship and order information of the sequence, we introduce the

Hilbert-Huang transform [25] based on the physical and chemical properties of the

known dinucleotides.

The Hilbert-Huang transformation consists of two parts: empirical mode decom-

position (EMD) and Hilbert spectral analysis (HSA). The empirical mode decom-

position is a time-frequency analysis and was originally proposed by Huang et al.

[25] for the study of ocean waves. The EMD method has been used by our group to

simulate geomagnetic field data [45] and to predict protein subnuclear localization

[46]. In EMD, the base functions, which are called intrinsic mode functions (IMF-

s), are obtained adaptively from the original signal. The principle and details of

Hilbert spectral analysis can be found in [25, 46]. Combining the sequences of the

pre-microRNAs and the physical and chemical characteristics of the dinucleotides,

the feature extraction method based on the Hilbert-Huang transform is described

as follows:

1. According to the physical and chemical properties of dinucleotides and the

intrinsic characteristics of Hilbert-Huang transform, we selected 15 physical and

chemical properties for RNAs from the database [47], including: enthalpy, enthalpy2,

entropy, entropy2, free energy, free energy2, hydrophilicity, hydrophilicity2, rise, roll,

shift, slide, stackingenergy, tilt, twist.

2. According to the physical and chemical properties of dinucleotides, the sequence

of each pre-microRNA was converted into 30 time series by sliding a window along

the sequence.

3. At first, we need to get the intrinsic mode functions of each time series by

empirical mode decomposition. And then we applied Hilbert spectral analysis to

every intrinsic mode function to obtain the analysis signals. Finally, we obtained
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16 features for each time series. The specific signal analysis process can be found in

[46].

In this study, we firstly transformed all the RNA sequences into time series accord-

ing to 15 physical and chemical properties of dinucleotides. Finally, we extracted

480 Hilbert-Huang features.

Feature selection method

After the feature extraction is completed for a sequence such as pre-microRNA,

some extracted features may be redundant, some may not be related to a class.

Therefore, before prediction is carried out, it may be necessary to remove some

features according to certain rules. There are many ways to remove redundant or

useless features (in the sense that they have no significant relation to a class), such

as mRMR [26], FOCUS [48], Wrapper [49], and so on. In this work, we choose the

mRMR method as our feature selection method, now described:

Let Ω be the whole feature space which contains all of the aforementioned 591

features in this work; each sequence is represented by a vector consisting of the

values of these 591 features. We assume that E and F are two disjoint subsets of

Ω and Ω=E∪F . In order to select a feature fj in E with maximum relevance and

minimum redundancy in F , we use the following formula:

max
fj∈E

[I(fj , θ)−D(fj , F )], j = 1, 2, . . . , ♯E, (6)

where θ is a vector characterizing the class of all nucleotide sequences in the sample

set, ♯E denotes the cardinality of the subset E.

In the actual computation process, we regard E as a feature set to be selected,

and F as an already selected feature set. At the beginning, E is the feature space,

F is the null space, the process of the mRMR method is as follows: First, we select

a feature that is most relevant to the class vector in E, then remove it from E and

add it to F . Second, according to the mRMR function, repeat the first step. After

♯Ω cycles, E is null, F is the entire feature set. According to the order in which the

feature is added to F , the features in the whole feature set are reordered, and we

use S to represent the ordered feature set:

S = {fi1 , fi2 , fi3 , . . . , fi♯Ω}. (7)

After all features are ranked, we can determine the optimal feature components

by an incremental feature selection (IFS) method [50]. For the ranked feature set

S, we can construct the feature component sets by adding one component at a time

in an ascending order as follows:

Sk = {fi1 , fi2 , fi3 , . . . , fik} (1 5 k 5 ♯Ω). (8)

For each feature component set, a predictor is constructed and the accuracy is

obtained by the rigorous jackknife validation. Finally, we choose the feature com-

ponent set for the best jackknife validation accuracy as the optimal feature set.
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Support vector machine

A Support Vector Machine (SVM) is a class of supervised learning algorithms first

introduced in [51]. It is based on statistical theory, and has a good general appli-

cation. In this work, we use an SVM as a classifier to identify the real and pseudo

pre-microRNAs.

Given a set of labelled training vectors (positive and negative input samples),

SVM learns a linear decision boundary from both positive and negative training

samples to discriminate between the unknown RNA sequences. A key feature of

SVM is that it needs a fixed length of the input vector. The pre-microRNAs in the

training set and the test set are transformed into fixed-dimension feature vectors

following the process introduced above, and then the training vectors are input into

SVM to construct the classifier. The SVM gives a predicted class for each sample

in the test set.

The LIBSVM algorithm [52] was employed, which is a type of software for SVM

classification and regression. The radial basis function (RBF) defined as

k(xi,xj) = exp(−γ(∥ xi − xj ∥)2), γ > 0 (9)

is used as the kernel function k (x,y) in the SVM. Here, {x1, ...,xn} is a given

dataset. For a Gaussian RBF, γ is parametrized as γ = 1
2σ2 . The parameter γ and

the soft margin parameter C are optimized on the benchmark dataset by adopting

the grid tool provided by LIBSVM [52]. More details are provided in [53].

The proposed identification method

Fig.1 illustrates the overall architecture of our proposed method which is called

MicroRNA-NHPred. Firstly, the query nucleotide (RNA) sequences are input into

PSI-BLAST to obtain PSSM, and entropy of sequences and consensus sequences

(CS) [39]. We then obtain k-mer composition of CS. The query nucleotide sequence

is submitted to RNAfold software to generate a secondary structure.

We build a single molecule network from the secondary structure, then extract

network topological parameters. Each pre-microRNA molecule is represented by the

topological parameters of a single molecule network.

On the other hand, the query nucleotide sequence is converted into a time series

based on the physicochemical properties of the RNA. The obtained time series are

transformed and 480 characteristics are obtained. Ultimately, we get 591 features in

total. These features are finally put into an SVM-based classifier for pre-microRNA

classifier recognition.

Performance evaluation

The performance of the predictor should be objectively evaluated. In statistical

prediction, three cross-validation tests are often used to evaluate the prediction

performance: independent dataset test, sub-sampling (or K-fold crossover valida-

tion) test and jackknife test. Only the jackknife test is the least arbitrary that

can always yield a unique result for a given benchmark dataset [54, 55]. That is

why researchers have a preference for the jackknife test for examining the quality

of various machine learning based predictors such as [30, 31, 46]. Hence, we also
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Fig 1 Flow chart of the identification method in this study.

use the jackknife test and independent dataset test to evaluate the accuracy of the

current predictor in this work. In the jackknife test, each sequence in the samples

is singled out in turn as a test sample and the remaining sequences are used as

training samples. Although the jackknife test consumes more computing resources,

it is worthwhile to have a single output for a given set of samples.

When the cross-validation method is selected, we need to choose the perfor-

mance metrics of the predictor. The identification of pre-microRNAs is a bina-

ry classification problem. For this problem, we select the following indicators to

evaluate our predictor: Sn (sensitivity), Sp (specificity), Acc (overall accuracy),

Mcc (Mathew correlation coefficient) [56], calculated by Sn = TP/(TP + FN),

Sp = TN/(TN + FP ), Acc = (TP + TN)/(TP + TN + FP + FN), and

Mcc =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

In the above formulas, TP means the true positive, TN the true negative, FP the

false positive and FN the false negative. The sensitivity denotes correct identifi-

cation of positive pre-microRNAs by avoiding false negative, while the specificity

denotes correct identification of negative pre-microRNAs by avoiding false positive.

The sensitivity and the specificity range between 0 and 1, the bigger the value, the

better the predictor. The Mathew correlation coefficient (Mcc) ranges between -1

and 1, the overall accuracy (Acc) ranges between 0 and 1.

Discussion and results
Parameter selection by mRMR

We use three different methods to extract 591 features. Since some of these fea-

tures are not essential and may not be significantly related to the classes of pre-

microRNAs, we used the method in subsection ”Feature selection method ” to sort
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the features first and used the increment feature selection method to select the op-

timal feature set. For each feature subset, we constructed a classifier and derived

its jackknife validation accuracy. Finally, we obtained the best feature subset cor-

responding to the best jackknife validation accuracy as the optimal feature subset.

We used all the feature sets to construct the predictor, whose jackknife validation

accuracy turns out to be 89.73%. We used the optimal feature subset to construct

a predictor with a jackknife validation accuracy of 94.83% being achieved.

Performance of predictor on different feature sets

As shown in subsection “Feature extraction methods”, we used 3 different methods

to extract 3 different feature sets. In order to study the effect of different feature sets

on the performance of the predictor, we tested the single feature set and different

feature combinations respectively on prediction performance, as shown in Table 1.

We can see that the three feature sets have different contributions to the recognition

of pre-microRNAs, of which the contribution of the network feature set is the most

significant and the accuracy of the predictor is 87.85%.

Table 1 The performance of different feature sets.

Method Mcc Accuracy Precision Recall
PSI-BLAST 0.5129 0.7564 0.7681 0.7446
HHT 0.4887 0.7440 0.7731 0.7148
Network 0.7589 0.8785 0.9144 0.8425
PSI-BLAST+Network 0.7707 0.8853 0.8909 0.8797
Network+HHT 0.7212 0.8802 0.8783 0.8841
PSI-BLAST+HHT+Network 0.7850 0.8973 0.9028 0.8718

We firstly introduced PSI-BLAST to the prediction of pre-microRNAs. In order to

verify the performance contribution of the k-mers from CS, we separately extracted

k-mers (k=2, 3) from the original sequence and the CS for jackknife test verification.

The result of the test is shown in Table 2. The accuracy of jackknife test validation

shows that the contribution of k-mers from CS is more significant.

Table 2 The performance of different k-mers: (k = 2, 3).

Predictors Mcc Accuracy Sn Sp

PSI-BLAST-K-mer 0.5129 0.7404 0.7501 0.7218
K-mer 0.5010 0.7201 0.69 0.6901

Secondary structure features have a variety of different representations, e.g,

triplet-SVM [19], iMcRNA-PseSSC [27], network [37], and so on. To verify the effect

of three secondary structure features on the problem of pre-microRNA classifica-

tion, we used the jackknife test on the same benchmark dataset. As shown in Table

3, we found that the parameters of networks reflect the pre-microRNA secondary

structure. So, we used the parameters of networks to depict the secondary structure

of pre-microRNAs in this work.

Table 3 The performance of different features of secondary structure.

Predictors Mcc Accuracy Sn Sp

Network 0.7589 0.8785 0.9144 0.8425
Triplet-SVM [19] 0.64 0.8185 0.7847 0.8520
IMcRNA-PseSSC [27] 0.72 0.8576 0.8836 0.8350
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Comparison with other methods

We compared our predictor with the best and most accurate predictors in this field,

triplet-SVM [19], miPred [24], iMcRNA-EXPseSSC [27], microR-Pred (SVM) [31].

The comparison indicates that the accuracy of our predictor is higher than other

predictors in the same larger and more stringent benchmark dataset using rigorous

jackknife tests. As can be seen from Table 4, we have the highest prediction accuracy

on Mcc, Accuracy and Sn, and only Sp is lower than miPred [24] and microR-Pred

(SVM) [31], but also higher than 90%.

Table 4 The performance of different methods on the same benchmark dataset.

Predictors Mcc Accuracy Sn Sp

Triplet-SVM [19] 0.64 0.8185 0.7847 0.8520
MiPred [24] 0.75 0.8730 0.84 0.9060
IMcRNA-EXPseSSC [27] 0.80 0.8986 0.8993 0.8978
MicroR-Pred(SVM) [31] 0.88 0.9390 0.93 0.9470
MicroRNA-NHPred 0.8965 0.9483 0.9420 0.9010

Validation based on an independent test set

The benchmark dataset was constructed based on miRBase released 20 (June 2013).

At present, compared with miRBase released 20, the latest miRBase released 22

reports 78 new homo sapiens pre-microRNAs, which were treated as an independent

test set to further evaluate the performance of the proposed MicroRNA-NHPred.

The test results are shown in Table 5. This method trained with the benchmark

dataset can correctly predict 75 testing samples in the independent dataset as true

sapiens pre-microRNAs. The accuracy of the proposed method can reach 96.15%,

which demonstrates the stable prediction performance of microRNA-NHPred for

predicting sapiens pre-microRNAs.

MicroR-Pred (SVM) [31] and iMcRNA-EXPseSSC [27], which are the most accu-

rate predictors in this field as we know, were also tested on the same independent

test set. It is worth noting that microR-Pred (SVM) [31] and iMcRNA-EXPseSSC

[27] correctly identified 71 and 67 homo spaeins pre-microRNAs with an accuracy

of 91.03% (71/78) and 85.90% (67/78) respectively.

Table 5 The result of different methods on an independent test set.

Method Accuracy Pre-microRNAs without the correct identification
IMcRNA-EXPseSSC [27] 0.8590(67/78) hsa-mir-8069-2, hsa-mir-1843, hsa-mir-10393, hsa-mir-10394,

hsa-mir-10395, hsa-mir-10400, hsa-mir-10527, hsa-mir-11401,
hsa-mir-12115, hsa-mir-12128, hsa-mir-9500

MicroR-Pred(SVM) [31] 0.9103(71/78) hsa-mir-10395, hsa-mir-9500, hsa-mir-8069-2, hsa-mir-12115,
hsa-mir-10400, hsa-mir-11401, hsa-mir-12128,

MicroRNA-NHPred 0.9615(75/78) hsa-mir-1843, hsa-mir-12115, hsa-mir-11401.

Conclusion
We used three different methods to extract different level features of pre-microRNAs

and used SVM to classify positive and negative samples. The extracted features can

describe sequence and the secondary structure characteristics of pre-microRNAs.

1. We firstly introduced PSI-BLAST into the analysis of pre-microRNAs, ex-

tracted the consensus sequence of every sample and the entropy of the PSSM, the

entropy of the consensus sequence, the k-mers and G+C content of the consensus
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sequence. The PSI-BLAST profile describes the local or short-range sequence order

information and evolution information of pre-microRNAs.

2. We transformed the sequence of positive and negative samples into a secondary

structure, transformed the secondary structure into a single molecule network. The

network parameters were extracted and each sample was represented by network

parameters. These network parameters can describe more completely the local and

global characteristics of RNAs. Under the same benchmark dataset, the accuracy of

network parameters can reach 87.85%; The well-known triplet-SVM can only reach

81.85%.

3. We introduced the Hilbert-Huang transform into pre-microRNA identification

for the first time, used it to describe the local and long-range relationship between

sequence bases.

Finally, we combined these features, and then selected the optimal 268 features

by mRMR. Compared with the most accurate predictor, MicroR-Pred (SVM) [31],

in this field, the accuracy is not improved significantly, but the results of the exper-

iment show that the extracted features are related to pre-microRNAs. We believe

that the features extracted from this method are relevant and useful for further

works by biologists.
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