
EasyChair Preprint
№ 5033

ROS on ARM Processor Embedded with FPGA
for Improvement of Robotic Computing

Tapas Kumar Maiti

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 25, 2021

ROS on ARM Processor Embedded with FPGA

for Improvement of Robotic Computing

Tapas Kumar Maiti

DA-IICT, Reliance Cross Rd, Gandhinagar, Gujarat 382007, India

Email: tapas_kumar@daiict.ac.in

Abstract—This paper presents the development of an

embedded computing system with the implementation of

communication between ROS (Robot Operating System) -on-

ARM processor and FPGAs (Field Programmable Gate Arrays)

for improvement of robotic computing. A DE0-Nano Terasic

Altera Cyclone IV development board is used in FPGA side

which is programmed with Verilog code to define GPIO

(General Purpose Input/Output). On the other hand, GPIO

parallel communication python library is developed for RPi3

(Raspberry Pi3) board integrated with ARM Cortex-A53

processor. Implementation of parallel communication between

FPGA and RPi3 is verified. As ROS is widely used for different

types of robots development, we considered ROS on RPi3 for

general purpose use in robotic computing system. As a case

study, we performed humanoid robot fall simulation on ROS,

controlled via 3-axis accelerometer embedded with DE0-Nano

board.

Keywords—ROS, FPGA, ARM Processor, Humanoid Robot,

Sensor, Robotic Computing

I. INTRODUCTION

Over the past few years, numerous types of sensors and
their applications have been reported to realize autonomous
and intelligent humanoid robots [1], [2]. These intelligent
robots required high-performance processor for processing
and calculation of huge amount of sensor data. These robots
are under the limitations of power supply due to battery
function, computation, and weight because of their size.
Heavy-weight humanoid robots such as Korean HUBO,
HONDA ASIMO, MIT Cog and AIST HRP are equipped with
high-power battery and high-performance computer which is
large in size [1]. On the other hand, small-size and light-
weight humanoid robots such as SoftBank NAO [1] and
KONDO KHR-3HV [3], which are commercialized for
entertainment, education, and human efficiency analysis
purposes, are also equipped with similar computing platform.
However, these light-weight humanoids required small-size,
low-power, and high-performance computing resources to
solve the intelligent functions.

This paper focused on the FPGAs (Field Programmable
Gate Arrays) to speed-up the light-weight-robot application
specific computing function with low-power consumptions at
circuit level. The direct implementation of robot function in
FPGA is quite challenging, and time consuming compared to
software level implementation due to complexity FPGA
coding of robot mathematical formulations [4]. We proposed
HW/SW co-design method to solve these issues. We used
FPGA for the implementation of complex computing part
which takes longer time in computation, and remaining part is
implemented in ROS (Robot Operating System) robotic
software. We installed ROS on ARM processor which
communicates with FPGA through GPIO (General Purpose
Input/Output) to solve robot computing functions in an
efficient way.

In this work, we developed an embedded system for high-
performance light-weight robotic computing. We used FPGA

and ARM processor development boards (see Fig. 1) to
configure the computing system. Robot-computing functions
are implemented in FPGA using Verilog programming code
at register-transfer-level. Communication between FPGA and
ARM processor is established through GPIO pins. We
programmed a virtual light-weight humanoid-robot on ROS
using Python language. We performed the humanoid-robot
falling simulation using developed computing system,
controlled with 3-axis accelerometer to verify the use of
developed prototype system.

Fig. 1. Robotic computing system configuration. Implementation of FPGA

connections with ROS installed on ARM processor is illustrated. Single task

computing time in FPGA, GPIO, and ROS, is also depicted.

II. DEVELEPOMENT OF ROBOTIC COMPUTING SYSTEN

This section describes the development phases of robotic
computing system which is illustrated in Fig. 1. Figure 1
schematically shows an FPGA hardware, an ARM processor
integrated in RPi3 (Raspberry Pi3) board, ROS software
installed on ARM processor, and GPIO communication ports.
It depicted the single task computing time required in FPGA,
GPIO, and ROS. Several FPGA-based robot computing
systems are reported [5], [6]. For examples, Yamashina et al.,
reported cReComp tool for the development of ROS-
compliant FPGA component [4], Nitta et al., illustrated a
programmable SoC-based ROS framework to develop
autonomous driving systems [5]. However, development of
robotic computing system with those outcome, is very
difficult and slow due to the complexity in integration of
communication interface between FPGA and ROS. There are
also difficulty in ROS installation on ARM based SoC
framework due to rapid increase of number robot-software
packages [6]. In this section, we proposed a simple and
efficient HW/SW co-development method for the high-speed
robotic computing system, is described below.

A. Implementation of Customized Circuits on FPGA

A DE0-nano development education board [7] is used to
implement FPGA part (see Fig. 1). This board is integrated
with Cyclone IV EP4CE22F17C6N FPGA, on-board 50MHz
clock oscillator, ADXL345 3-axis accelerometer, two 40-pin
external GPIO headers, etc. For detail descriptions, we refer
to Intel FPGA design solution network [8]. We configured
accelerometer with customized FPGA circuits at RTL level
using Verilog code. The Verilog code for accelerometer is
supplied with the FPGA board. However, we modified the
code with the 2-bit input register which is called dimension.
The dimension 0, 1 and 2 are corresponding to x, y, and z axis
respectively. We measured the acceleration in three direction
x, y, and z in physical space. The acceleration components are
used for ROS-based light-weight virtual-humanoid-robot
falling simulation.

B. ROS on ARM Processor

A Raspberry Pi 3 (RPi3) microcomputer board [9] with a
1.2 GHz 64-bit quad core ARM Cortex-A53 processor,
consumes power 1.4W (at current consumption 260 mA)
which has overall dimensions of 85mm×56mm×17mm is
used (see Fig. 1). Note that our focus is on the development of
light-weight humanoid robot which requires small dimension
of microcontroller to fit it with robot mechanical structure,
thus the size of RPi3 is suitable for this application. RPi3 is
also compatible with Ubuntu operating system which provides
a flexible framework to ROS. Ubuntu MATE 16.04 is chosen
to install the upgraded version of ROS Kinetic Kame for
software level robotic computing. RPi3 is equipped with
GPIO, is configured with our developed driver based on
RPI.GPIO Python library. The pseudo-code of driver that is
used to configure GPIO in RPi3 is given below,

#! user/bin/env python

import rospy

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

gpio_pins = [18, 19, 20, 21, 22, 23, 24, 25]

gpio_clk = 16

gpio_clr = 17

We considered 10 GPIO pins for parallel communication
purpose for high-speed computing. We described the details
of pin configuration in section II.C. We included
GPIO.cleanup() syntax before the computation exits. This
helps to clean the buffer data from ROS hardware which
increases the efficiency of hardware during re-execution of
ROS program.

C. Connecting FPGA with ROS

Most important part of our development is the
implementation of interface connection between DE0-nao and
RPi3 development boards. We started the development of
computing system to establish serial communication between
DE0-nano and RPi3. We successfully implemented serial port
communication of individual board with baud-rate 115200.
However, after few seconds of ROS with FPGA via RPI3,
both board stop communicating to each-other. As an
alternative, we implemented parallel communication between
both boards using GPIO pins as presented in Fig. 2.

Fig. 2. Implemention of parallel GPIO communication betewwn

Raspiberry Pi 3 (RPi3) and DE0-Nano Cyclone IV FPGA. 10 GPIO pins are
chosen where one GPIO pin is used for clock, one GPIO pin controlled

read/write data, and remaining 8 GPIO pins are used for data transmission.

Here RPi3 functioned as a master device and FPGA as slave
device. The communication between two devices is control by
master. Note that we considered 10 GPIO pins where one pin
gpio_clk is used for clock, one pin gpio_clr controlled
read/write data, and remaining 8 pins gpio_pins are used for
data transmission. This is implemented using the GPIO
python library in RPi3 driver as shown in pseudo code of
Section II.B.

III. LIGHT-WEIGHT HUMANOID ROBOT FALLING SIMULATION

Figure 3 depicted the developed robot computing system
which is used for light-weight humanoid robot simulation.
The simulation is running on ROS installed on RPi3
connected with DE0-Nano Cyclone IV FPGA development
board via GPIO port. Table 1 shows the list of components
which are used for this work. Electronic components such as
processor, FPGA, and sensors are supplied by several
vendors, however software components such as Ubuntu
operating system, ROS, and robot model are open-sources
[6]–[10]. Here, ROS is an open source robotic software,
released by OSRF (Open Source Robotics Foundation) [6]. It
provides communication layers for robot system, runs mainly
on Ubuntu OS. Kuroiwasi et al., has developed a light-weight
humanoid robot model, known as premaidAI model
accessible in GitHub [10], is used for robot simulation. The
model is not directly usable in ROS as it is a CAD file.
Therefore, following method is considered to make the model
ROS compatible.

Fig. 3. Developed computing system for light-weight humanoid robot

simulation using ROS. The system consists of DE0-Nano Cyclone IV FPGA,
Raspberry Pi 3 development board, and virtual humanoid robot simulation

environment which is running on ROS. A 3-axis digitial accelerometer is

embedded in DE0-Nano board.

TABLE I: USED LIST OF COMPONENTS TO DEVELOP COMPUTING SYSTEM

Name Specification

Processor
1.2 GHz 64-bit Quad-Core ARM Cortex-

A53 processor [9]

FPGA Cyclone IV EP4CE22F17C6N FPGA [7]

Sensor
Analog Devices ADXL345, 3-axis

accelerometer [8]

Operating

System

(i) Ubuntu MATE 16.04 LTS

(ii) ROS Kinetic [6]

Robot Model PremaidAI model [10]

Direct import of any format of CAD file to ROS environment
does not allow accurate import of robot shape and texture
information in ROS. Therefore CAD file should be
transformed to COLLADA (COLLAborative Design
Activity) format prior to import in ROS. In this work robot
model considered in COLLADA format where the joint part
is defined as joint, and the rigid body is defined as link. Then
we created a launch file to display the robot structure on
robotics graphics which is RVIZ [6]. Here, RVIZ is a robot
visualization software in 3D for ROS. Next we created
ros_control package to establish the communication between
Gazebo [6] and ROS for robot dynamic simulation. Here,
Gazebo is a 3D robotic simulator integrated with ODE physics
engine and OpenGL. We implemented hardware
communication with ROS using python GPIO which results a
flexible controller established parallel communication
between real-world sensors and simulation robots. We
controlled servo-motors of a humanoid robot using the
developed ROS computing environment. In other words,
position, speed, and force of the robot are controlled for robot
motion analysis.
Based on the principles of position control in ROS, we
proposed a humanoid robot simulation method on human fall
analysis inspired by humanoid robot simulation. We fed the
digital output of ADXL345 3-axis accelerometer into ROS to
perform humanoid robot simulation. We observed different
joints and links configurations of the robot as depicted in Figs.
4. Figure 4(a) depicts stable standing condition, and Fig. 4(b)
represents falling condition. The main focus is given on the
principles of fall simulation, which is based on the change of
robot body configuration due to random control of robot joints
angles influenced by the change in acceleration of the 3-axis
accelerometer.

Fig. 4. Sanding and falling conditions of humanoid robot shown in (a) and

(b) respectively. Joint and links configuration of the humanoid robot in
falling condition is different from stable condition due to influence of output

voltage of the accelerometer.

Figure 5 illustrates changes in acceleration during (i) standing

and (ii) falling measured from accelerometer (see the marked

in blue boxes in Fig. 5). It shows the critical differences in

magnitude of accelerometer resonses between (i) and (ii). We

created a spike on accelerometer responses as it is similar to

a large shock when a body impact on the ground,

corresponding robot body configuration shown in Fig. 4.

Note that Fig. 4(b) is corrsponfing to the acceleration spike in

Fig. 5 marke with bulue box (ii). This illustration confirmed

that our developed platform can be used to simultae the

virtual robot fall with the influnces of accelerometer

responses. Robot fall simulation will guide us to anlysze the

serious consequences of human falling such as

unconsiousness or inacitivity state for long time after falling.

Note that one can use the acceleremeter for the detection of

acceleration of a body which responses to 0 g (zero gravity)

during free fall.

IV. PERFORMANCE EVALUATION

 The performance evaluation of our developed computing
system is described in this section. We conduction the
evaluation in three different conditions which are (i) only
FPGA for sensing (ii) Raspberry Pi 3 software only, and (iii)
including all components such as FPGA, Raspberry Pi 3, and
ROS. We found that a single task computing time in FPGA is
70 µs, RPi3 uses 400ms, and entire computing system uses
500ms. We also compared our work with the previously
reported results [4]. We observed that our system is faster for
the computing only with FPGA or RPi3. However, entire
system computing is slower due to complexity in simulation
of humanoid robot on ROS that uses longer simulation time in
computing due to existence in several joints and links in
humanoid robot model.

Fig. 5. Human generated accelerometer responses for different types

motions such as (i) standing condition, and (ii) falling condtion.

TABLE II: MEASURED COMPUING TIME FOR SINGLE TASK

Work

Done

Time

FPGA Raspberry Pi 3

FPGA +

Raspberry Pi 3 +

ROS

This work 70µs 400ms 500ms

Yamashina

et al., [4]
--

835ms (ARM,

Software only)

32ms (ARM +

FPGA)

V. CONCLUSION

Ddevelopment of an embedded computing system with the
implementation of communication between ROS-on-ARM
and FPGA is presented. Entire system functions such as
sensing with accelerometer embedded with FPGA board,
Communication between ROS and FPGA via Raspberry Pi 3,
and robot model implementation on ROS are described. We
performed the robot simulation which is influenced by
accelerometer responses to demonstrate the use of developed
computing system. A comparative study on performance
evaluation is illustrated.

REFERENCES

[1] A. Goswami, P. Vadakkepat (eds.), Humanoid Robotics: A Reference,
Springer Nature, 2019, pp. 2483-2591.

[2] S. Wang, W. Chaovalitwongse, and R. Babuska, “Machine Learning
Algorithms in Bipedal Robot Control,” IEEE Tran. on Systems, Man,
and Cybernetics, Part C, vol. 42, Iss. 5, pp. 728 - 743, Sept. 2012.

[3] T. K. Maiti, Y. Ochi, D. Navarro, M. Miura-Mattausch and H. J.
Mattausch, “Walking Robot Movement on Non-smooth Surface

Controlled by Pressure Sensor,” Adv. Mater. Lett., vol. 9, no.2, pp.123-
127, May 2018.

[4] K. Yamashina, T. Ohkawa, K. Ootsu, and T. Yokota, “cReComp:
Automated Design Tool for ROS-Compliant FPGA,” Component,”
IEEE 10th Int. Sym. on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC-16), pp.138-145, Sept. 2016, Lyon, France.

[5] Y. Nitta, S.Tamura, and H. Takase, “A Study on Introducing FPGA to
ROS based Autonomous Driving System,” International Conference
on Field-Programmable Technology (FPT), pp-424-427, Dec. 2018,
Okinawa, Japan.

[6] Robot Operating System (ROS), Dec 2020, http://wiki.ros.org/
Distributions/

[7] DE0-Nano Development and Education Board, Dec 2020:
https://www.intel.com/content/www/us/en/programmable/b/de0-
nano-dev-board.html

[8] Intel FPGA design solution network, Dec, 2020:
https://www.intel.com/content/www/us/en/programmable/solutions/p
artners/partner-profile/terasic-inc-.html

[9] Raspberry Pi official site, Dec 2020: https://www.raspberrypi.org/
products/ raspberry-pi-3-model-b-plus/

[10] PremaidAI Model, Aug 2019: https://github.com/kuroiwasi/
PremaidAI_Model

