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Abstract—This paper presents the development of an 

embedded computing system with the implementation of 

communication between ROS (Robot Operating System) -on-

ARM processor and FPGAs (Field Programmable Gate Arrays) 

for improvement of robotic computing. A DE0-Nano Terasic 

Altera Cyclone IV development board is used in FPGA side 

which is programmed with Verilog code to define GPIO 

(General Purpose Input/Output). On the other hand, GPIO 

parallel communication python library is developed for RPi3 

(Raspberry Pi3) board integrated with ARM Cortex-A53 

processor. Implementation of parallel communication between 

FPGA and RPi3 is verified. As ROS is widely used for different 

types of robots development, we considered ROS on RPi3 for 

general purpose use in robotic computing system. As a case 

study, we performed humanoid robot fall simulation on ROS, 

controlled via 3-axis accelerometer embedded with DE0-Nano 

board.   

Keywords—ROS, FPGA, ARM Processor, Humanoid Robot, 

Sensor, Robotic Computing 

I. INTRODUCTION 

Over the past few years, numerous types of sensors and 
their applications have been reported to realize autonomous 
and intelligent humanoid robots [1], [2]. These intelligent 
robots required high-performance processor for processing 
and calculation of huge amount of sensor data.  These robots 
are under the limitations of power supply due to battery 
function, computation, and weight because of their size. 
Heavy-weight humanoid robots such as Korean HUBO, 
HONDA ASIMO, MIT Cog and AIST HRP are equipped with 
high-power battery and high-performance computer which is 
large in size [1]. On the other hand, small-size and light-
weight humanoid robots such as SoftBank NAO [1] and 
KONDO KHR-3HV [3], which are commercialized for 
entertainment, education, and human efficiency analysis 
purposes, are also equipped with similar computing platform. 
However, these light-weight humanoids required small-size, 
low-power, and high-performance computing resources to 
solve the intelligent functions.   

This paper focused on the FPGAs (Field Programmable 
Gate Arrays) to speed-up the light-weight-robot application 
specific computing function with low-power consumptions at 
circuit level. The direct implementation of robot function in 
FPGA is quite challenging, and time consuming compared to 
software level implementation due to complexity FPGA 
coding of robot mathematical formulations [4]. We proposed 
HW/SW co-design method to solve these issues. We used 
FPGA for the implementation of complex computing part 
which takes longer time in computation, and remaining part is 
implemented in ROS (Robot Operating System) robotic 
software. We installed ROS on ARM processor which 
communicates with FPGA through GPIO (General Purpose 
Input/Output) to solve robot computing functions in an 
efficient way.  

In this work, we developed an embedded system for high-
performance light-weight robotic computing. We used FPGA 

and ARM processor development boards (see Fig. 1) to 
configure the computing system. Robot-computing functions 
are implemented in FPGA using Verilog programming code 
at register-transfer-level. Communication between FPGA and 
ARM processor is established through GPIO pins.  We 
programmed a virtual light-weight humanoid-robot on ROS 
using Python language. We performed the humanoid-robot 
falling simulation using developed computing system, 
controlled with 3-axis accelerometer to verify the use of 
developed prototype system. 

 

Fig. 1. Robotic computing system configuration. Implementation of FPGA 

connections with ROS installed on ARM processor is illustrated. Single task 

computing time in FPGA, GPIO, and ROS, is also depicted.  

II. DEVELEPOMENT OF ROBOTIC COMPUTING SYSTEN 

This section describes the development phases of robotic 
computing system which is illustrated in Fig. 1. Figure 1 
schematically shows an FPGA hardware, an ARM processor 
integrated in RPi3 (Raspberry Pi3) board, ROS software 
installed on ARM processor, and GPIO communication ports. 
It depicted the single task computing time required in FPGA, 
GPIO, and ROS. Several FPGA-based robot computing 
systems are reported [5], [6]. For examples, Yamashina et al., 
reported cReComp tool for the development of ROS-
compliant FPGA component [4], Nitta et al., illustrated a 
programmable SoC-based ROS framework to develop 
autonomous driving systems [5]. However, development of 
robotic computing system with those outcome, is very 
difficult and slow due to the complexity in integration of 
communication interface between FPGA and ROS. There are 
also difficulty in ROS installation on ARM based SoC 
framework due to rapid increase of number robot-software 
packages [6]. In this section, we proposed a simple and 
efficient HW/SW co-development method for the high-speed 
robotic computing system, is described below.    



A. Implementation of Customized Circuits on FPGA 

A DE0-nano development education board [7] is used to 
implement FPGA part (see Fig. 1). This board is integrated 
with Cyclone IV EP4CE22F17C6N FPGA, on-board 50MHz 
clock oscillator, ADXL345 3-axis accelerometer, two 40-pin 
external GPIO headers, etc. For detail descriptions, we refer 
to Intel FPGA design solution network [8]. We configured 
accelerometer with customized FPGA circuits at RTL level 
using Verilog code. The Verilog code for accelerometer is 
supplied with the FPGA board. However, we modified the 
code with the 2-bit input register which is called dimension. 
The dimension 0, 1 and 2 are corresponding to x, y, and z axis 
respectively. We measured the acceleration in three direction 
x, y, and z in physical space. The acceleration components are 
used for ROS-based light-weight virtual-humanoid-robot 
falling simulation.  

B. ROS on ARM Processor 

A Raspberry Pi 3 (RPi3) microcomputer board [9] with a 
1.2 GHz 64-bit quad core ARM Cortex-A53 processor, 
consumes power 1.4W (at current consumption 260 mA) 
which has overall dimensions of 85mm×56mm×17mm  is 
used (see Fig. 1). Note that our focus is on the development of 
light-weight humanoid robot which requires small dimension 
of microcontroller to fit it with robot mechanical structure, 
thus the size of RPi3 is suitable for this application. RPi3 is 
also compatible with Ubuntu operating system which provides 
a flexible framework to ROS. Ubuntu MATE 16.04 is chosen 
to install the upgraded version of ROS Kinetic Kame for 
software level robotic computing. RPi3 is equipped with 
GPIO, is configured with our developed driver based on 
RPI.GPIO Python library. The pseudo-code of driver that is 
used to configure GPIO in RPi3 is given below,  

 
#! user/bin/env python 

import rospy 

import RPi.GPIO as GPIO 

GPIO.setmode(GPIO.BCM) 

gpio_pins = [18, 19, 20, 21, 22, 23, 24, 25] 

gpio_clk = 16 

gpio_clr = 17 

We considered 10 GPIO pins for parallel communication 
purpose for high-speed computing. We described the details 
of pin configuration in section II.C. We included 
GPIO.cleanup() syntax before the computation exits. This 
helps to clean the buffer data from ROS hardware which 
increases the efficiency of hardware during re-execution of 
ROS program. 

C. Connecting FPGA with ROS 

Most important part of our development is the 
implementation of interface connection between DE0-nao and 
RPi3 development boards. We started the development of 
computing system to establish serial communication between 
DE0-nano and RPi3. We successfully implemented serial port 
communication of individual board with baud-rate 115200. 
However, after few seconds of ROS with FPGA via RPI3, 
both board stop communicating to each-other. As an 
alternative, we implemented parallel communication between 
both boards using GPIO pins as presented in Fig. 2. 

 
Fig. 2. Implemention of parallel GPIO communication betewwn 

Raspiberry Pi 3 (RPi3) and DE0-Nano Cyclone IV FPGA. 10 GPIO pins are 
chosen where one GPIO pin is used for clock, one GPIO pin controlled 

read/write data, and remaining 8 GPIO pins are used for data transmission. 

Here RPi3 functioned as a master device and FPGA as slave 
device. The communication between two devices is control by 
master. Note that we considered 10 GPIO pins where one pin 
gpio_clk is used for clock, one pin gpio_clr controlled 
read/write data, and remaining 8 pins gpio_pins are used for 
data transmission. This is implemented using the GPIO 
python library in RPi3 driver as shown in pseudo code of 
Section II.B. 

III. LIGHT-WEIGHT HUMANOID ROBOT FALLING SIMULATION 

Figure 3 depicted the developed robot computing system 
which is used for light-weight humanoid robot simulation. 
The simulation is running on ROS installed on RPi3 
connected with DE0-Nano Cyclone IV FPGA development 
board via GPIO port. Table 1 shows the list of components 
which are used for this work. Electronic components such as 
processor, FPGA, and sensors are supplied by several 
vendors, however software components such as Ubuntu 
operating system, ROS, and robot model are open-sources 
[6]–[10]. Here, ROS is an open source robotic software, 
released by OSRF (Open Source Robotics Foundation) [6]. It 
provides communication layers for robot system, runs mainly 
on Ubuntu OS. Kuroiwasi et al., has developed a light-weight 
humanoid robot model, known as premaidAI model 
accessible in GitHub [10], is used for robot simulation.  The 
model is not directly usable in ROS as it is a CAD file. 
Therefore, following method is considered to make the model 
ROS compatible.  

 

Fig. 3. Developed computing system for light-weight humanoid robot 

simulation using ROS. The system consists of DE0-Nano Cyclone IV FPGA, 
Raspberry Pi 3 development board, and virtual humanoid robot simulation 

environment which is running on ROS. A 3-axis digitial accelerometer is 

embedded in DE0-Nano board. 



TABLE I: USED LIST OF COMPONENTS TO DEVELOP COMPUTING SYSTEM 

Name Specification 

Processor 
1.2 GHz 64-bit Quad-Core ARM Cortex-

A53 processor [9] 

FPGA Cyclone IV EP4CE22F17C6N FPGA [7] 

Sensor 
Analog Devices ADXL345, 3-axis 

accelerometer [8] 

Operating 

System 

(i)  Ubuntu MATE 16.04 LTS 

(ii) ROS Kinetic [6] 

Robot Model PremaidAI model [10] 

 

Direct import of any format of CAD file to ROS environment 
does not allow accurate import of robot shape and texture 
information in ROS. Therefore CAD file should be 
transformed to COLLADA (COLLAborative Design 
Activity) format prior to import in ROS. In this work robot 
model considered in COLLADA format where the joint part 
is defined as joint, and the rigid body is defined as link. Then 
we created a launch file to display the robot structure on 
robotics graphics which is RVIZ [6]. Here, RVIZ is a robot 
visualization software in 3D for ROS. Next we created 
ros_control package to establish the communication between 
Gazebo [6] and ROS for robot dynamic simulation. Here, 
Gazebo is a 3D robotic simulator integrated with ODE physics 
engine and OpenGL. We implemented hardware 
communication with ROS using python GPIO which results a 
flexible controller established parallel communication 
between real-world sensors and simulation robots. We 
controlled servo-motors of a humanoid robot using the 
developed ROS computing environment. In other words, 
position, speed, and force of the robot are controlled for robot 
motion analysis.  
Based on the principles of position control in ROS, we 
proposed a humanoid robot simulation method on human fall 
analysis inspired by humanoid robot simulation. We fed the 
digital output of ADXL345 3-axis accelerometer into ROS to 
perform humanoid robot simulation. We observed different 
joints and links configurations of the robot as depicted in Figs. 
4. Figure 4(a) depicts stable standing condition, and Fig. 4(b) 
represents falling condition. The main focus is given on the 
principles of fall simulation, which is based on the change of 
robot body configuration due to random control of robot joints 
angles influenced by the change in acceleration of the 3-axis 
accelerometer.  
 

 
 

Fig. 4. Sanding and falling conditions of humanoid robot shown in (a) and 

(b) respectively. Joint and links configuration of the humanoid robot in 
falling condition is different from stable condition due to influence of output 

voltage of the accelerometer. 

Figure 5 illustrates changes in acceleration during (i) standing 

and (ii) falling measured from accelerometer (see the marked 

in blue boxes in Fig. 5). It shows the critical differences in 

magnitude of accelerometer resonses between (i) and (ii). We 

created a spike on accelerometer responses as it is similar to 

a large shock when a body impact on the ground, 

corresponding robot body configuration shown in Fig. 4. 

Note that Fig. 4(b) is corrsponfing to the acceleration spike in 

Fig. 5 marke with bulue box (ii). This illustration confirmed 

that our developed platform can be used to simultae the 

virtual robot fall with the influnces of accelerometer 

responses. Robot fall simulation will guide us to anlysze the 

serious consequences of human falling such as 

unconsiousness or inacitivity state for long time after falling. 

Note that one can use the acceleremeter for the detection of 

acceleration of a body which responses to 0 g (zero gravity) 

during free fall. 

IV. PERFORMANCE EVALUATION 

       The performance evaluation of our developed computing 
system is described in this section. We conduction the 
evaluation in three different conditions which are (i) only 
FPGA for sensing (ii) Raspberry Pi 3 software only, and  (iii) 
including all components such as FPGA, Raspberry Pi 3, and 
ROS. We found that a single task computing time in FPGA is 
70 µs, RPi3 uses 400ms, and entire computing system uses 
500ms. We also compared our work with the previously 
reported results [4]. We observed that our system is faster for 
the computing only with FPGA or RPi3. However, entire 
system computing is slower due to complexity in simulation 
of humanoid robot on ROS that uses longer simulation time in 
computing due to existence in several joints and links in 
humanoid robot model. 

 

Fig. 5. Human generated accelerometer responses for different types 

motions such as (i) standing condition, and (ii) falling condtion. 

TABLE II: MEASURED COMPUING TIME FOR SINGLE TASK 

Work 

Done 

Time 

FPGA Raspberry Pi 3 

FPGA + 

Raspberry Pi 3 + 

ROS 

This work 70µs 400ms 500ms 

Yamashina 

et al., [4] 
-- 

835ms (ARM, 

Software only) 

32ms (ARM + 

FPGA) 



V. CONCLUSION 

Ddevelopment of an embedded computing system with the 
implementation of communication between ROS-on-ARM 
and FPGA is presented. Entire system functions such as 
sensing with accelerometer embedded with FPGA board, 
Communication between ROS and FPGA via Raspberry Pi 3, 
and robot model implementation on ROS are described. We 
performed the robot simulation which is influenced by 
accelerometer responses to demonstrate the use of developed 
computing system. A comparative study on performance 
evaluation is illustrated.   
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