
EasyChair Preprint
№ 7718

New Languages of Abstract Automata

Mark Burgin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 4, 2022

New languages of abstract automata

Mark Burgin
UCLA, Los Angeles, 90095, USA

Abstract. The conventional theory of automata and algorithms associates only one language

with each automaton or algorithm. Here it is demonstrated that each automaton or algorithm

determines several algorithmic languages on different levels of computability. Properties of these

languages and relations between them and conventional languages of automata or algorithms are

studied. The obtained results made possible the discovery of a new class of algorithmic languages

in addition to the well-known recursively enumerable and recursively coenumerable languages.

The new languages are called recursively bienumerable comprising both recursively enumerable

and recursively coenumerable languages.

Keywords: algorithmic language, finite automaton, Turing machine, recursively enumerable

language, recursively coenumerable language, logic

1. Introduction

In the theory of algorithms, automata and computation, a definite language of an automaton

(algorithm) is defined (cf., for example, (Cohen, 1991; Sipser, 1997; Burgin, 2005)). For an

accepting automaton (algorithm) A, this language consists of all words accepted (recognized) by A.

For a computing automaton (algorithm) A, its language consists of all words computed by A. These

languages show what abstract automata can do defining their computing or accepting (recognizing)

power.

However, a more detailed analysis of computation shows that it is natural to associate more

languages with each automaton or algorithm. Indeed, given a word w in the alphabet of an

accepting automaton (algorithm) A, this word can be accepted (recognized) by A, rejected by A,

both accepted and rejected by A, and it is possible that it is undefined whether the word is accepted

or rejected. This partition of words into four categories gives birth to four types of the algorithmic

languages of automata and algorithms:

 The upper or positive language L+(A) of an automaton (algorithm) A consists of all

words accepted (recognized) by A

 The lower or negative language L-(A) of an automaton (algorithm) A consists of all

words rejected (negatively recognized) by A

 The impartial language L0(A) of an automaton (algorithm) A consists of all words

computationally undefined by A

 The double language L±(A) of an automaton (algorithm) A consists of all words both

accepted (recognized) and rejected (unrecognized) by A

Two latter cases contradict classical European logic, according to which each statement can be

either true or false, that is, in our case, a word can be either accepted or rejected (cf., for example,

(Church, 1956)). In the case of automaton languages, it will give two languages – upper (positive)

and lower (negative), from which only upper languages have been studied in the theory of

automata and computation.

Contemporary intuitionistic logic added one more truth value. As the result, intuitionistic logic

uses three truth values: true, false and undefined (Dummett, 1973). This correlates with

computations of Turing machines when a word can be accepted, rejected or neither of this is true

(cf., for example, (Cohen, 1991)). Going even further, different directions of ancient Indian logic

allow four types of truth values. Namely, a statement can be: (1) true, (2) false, (3) neither true or

false, and (4) both true and false (Ganeri, 2001; 2004; Chi, 1969).

For instance, one of the most prominent Buddhist philosophers Nagarjuna (ca. 150-250), who

founded the madhyamaka school of the Buddhist philosophy, maintained that paradox in the

following terms: "all phenomena are empty and so ultimately have no nature. But emptiness is,

therefore, the ultimate nature of things. So [phenomena] both have and lack an ultimate nature"

(Garfield, 2002). This means that the statement that all phenomena have no nature is true and false

at the same time being transconsistent.

In this paper, we study the described types of algorithmic languages for different classes of

algorithms and automata, relations between them, and connections between the languages,

algorithms and automata. In section 2, finite automata and their algorithmic languages are

analyzed. In section 3, Turing machines and their algorithmic languages are explored. An

interesting phenomenon is that nondeterministic Turing machines determine even more than four

considered above types of algorithmic languages. In Conclusion, we analyze the obtained results

and suggest directions of future research.

2. Languages of finite automata

In what follows, we assume that all automata and algorithms work with words in the alphabet

 while * denotes the set of all words in this alphabet.

Let us consider algorithmic languages of accepting finite automata.

When A is a deterministic finite automaton, then given a word w as the input to A, it consumes

any word w ending either in a final state or not in a final state (Cohen, 1991; Sipser, 1997). In the

first case, w is accepted while in the second case, w is rejected. This gives us the following result.

Theorem 2.1. For any deterministic finite automaton A, we have L0(A) = L±(A) = and L+(A)

∪ L-(A) = *.

The conventional approach tells that the standard language L(A) of a deterministic finite

automaton A is L+(A) and it is a regular language (Cohen, 1991; Sipser, 1997).

Taking a deterministic finite automaton A and making all its final states not final and not final

states final, we come to the following result the deterministic Duality Theorem because the new

automation is also finite and deterministic.

Theorem 2.2. For any deterministic finite automaton A, there is a deterministic finite

automaton B such that L+(B) = L-(A) and L-(B) = L+(A).

The automaton B is called the dual automaton to the automaton A. It is denoted by DA and by

Theorem 2.2, it exists for any deterministic finite automaton.

In addition, because the positive (upper) language of a deterministic finite automaton is

regular, we have the same property of negative (lower) languages.

Theorem 2.3. For any deterministic finite automaton A, its lower language L-(A) is regular.

Indeed, the language L+(B) of the automaton B that is dual to A is regular and L-(A) = L+(B).

Theorems 2.2 and 2.3 imply the following result.

Corollary 2.3. For finite automata, the class of all positive (upper) languages coincides with

the class of all negative (lower) languages and with the class of all regular languages.

Remark 2.1. There are different ways of defining languages. Automaton languages are

determined by (abstract) automata. Algorithmic languages are determined by algorithms as system

of computational rules. Denotational languages are determined by formulas.

Examples of automaton languages are languages of finite automata or Turing machines.

Examples of algorithmic languages are instructional programming languages or languages of

formal grammars. Examples of automaton languages are languages determined by regular

expressions, which are called regular languages.

Some classes of these languages coincide. For instance, it is proved that regular languages

coincide with class of languages of finite automata and with class of languages of regular

grammars.

In what follows, we do not make a distinction between automaton languages and algorithmic

languages calling all of them algorithmic languages.

For nondeterministic finite automata, the variety of algorithmic languages is essentially richer.

Indeed, when A is a nondeterministic finite automaton, then given a word w as the input to A, four

results are possible:

(1) A consumes w always ending in a final (accepting) state, which means that A accepts w

(2) A consumes w always ending not in the final state, that is, in a rejecting state, and this

means that A rejects w

(3) A does not consume w, which means that the computation of A is undefined for w

(4) A consumes w with some paths of computation bringing it to a final state while there are

other paths of computation that bring A to the state that is not final, which means that A

both accepts and rejects w

In the first case, we assume that w is accepted by A. In the second case, we assume that w is

rejected by A. In the third case, we assume that it is not defined whether w is accepted by A or not.

Finally, in the fourth case, we assume that w is both accepted and rejected by A.

As a result, we have four algorithmic languages of a nondeterministic finite automaton A in a

general case:

 The positive (upper) language L+(A) of the finite automaton A consists of all words w

totally accepted (recognized) by A, that is, all paths from the start state produced by the

consumption of w end in a final state.

 The negative (lower) language L-(A) of an automaton A consists of all words w totally

rejected (recognized) by A, that is, all paths from the start state produced by the

consumption of w end in a state that is not final.

 The impartial language L0(A) of an automaton A consists of all words computationally

undefined by A, that is, of those words that are not consumed by A.

 The double language L±(A) of an automaton A consists of all words that are consumed

by A and have both the transition paths reaching accepting states and transition paths

reaching rejecting states of A

Example 2.1. Let us consider a finite automaton A with the alphabet = {0, 1}, the set of

states Q = { q0 , q1 , q2 , q3}, the set of final states F = { q1} and transition rules:

q0 , 1 q1

q1 , 1 q1

q1 , 0 q1

q0 , 0 q2

q2 , 0 q3

q3 , 1 q3

q3 , 0 q3

Then we have:

 The positive (upper) language L+(A) of the automaton A consists of all words that start

with 1

 The negative (lower) language L-(A) of an automaton A consists of one word 0

 The impartial language L0(A) of an automaton A consists of all words that start with 01

 The double language L±(A) of an automaton A consists of all words that start with 00

Lemma 2.1. For any nondeterministic finite automaton A, all four languages are disjoint.

Properties of nondeterministic finite automata allow proving the nondeterministic Duality

Theorem for finite automata.

Theorem 2.4. For any nondeterministic finite automaton A, there is a nondeterministic finite

automaton B such that L+(B) = L-(A), L-(B) = L+(A), L0(A) = L0(B) and L±(A) = L±(B).

The automaton B is also called dual to the automaton A and it is denoted by DA.

This gives us the following result.

Corollary 2.2. For any nondeterministic finite automaton A, there is the dual automaton DA.

As for deterministic finite automata, we show regularity of the languages of nondeterministic

finite automata.

Theorem 2.5. For any nondeterministic finite automaton A, all its four algorithmic languages

are regular.

Proof. Let us consider a nondeterministic finite automaton A. A nondeterministic finite

automaton A accepts a word w if there is a path from the start state to a final state produced by the

consumption of w. For languages, it means that the standard language L(A) of a nondeterministic

finite automaton A is L+(A) ∪ L±(A) and it is a regular language (Cohen, 1991; Sipser, 1997).

For the dual automaton DA, we have

L(DA) = L+(DA) ∪ L±(DA) = L-(A) ∪ L±(A)

and L(DA) is also a regular language.

Thus,

L(A) \ L(DA) = L+(A) \ L-(A) = L+(A)

because by Lemma 2.1,

L+(A) L-(A) =

Regular languages are closed with respect to difference and both languages L(A) and L(DA) are

regular. Consequently, L+(A) is a regular language.

Considering the difference

L(DA) \ L(A) = L+(DA)= L-(A),

we come to the conclusion that L-(A) is also a regular language.

In addition, we have

L±(A) = L(A) \ L+(A)

It means that L±(A) is also a regular language.

Regular languages are closed with respect to union. Thus, L+(DA) ∪ L-(A) ∪ L±(A) is a regular

language. The L0(A) = * \ (L+(DA) ∪ L-(A) ∪ L±(A)) and * is a regular language. Consequently,

L0(A) is a regular language.

Theorem is proved.

We naturally defined two types of languages of deterministic finite automata proving their

regularity. However, a deterministic finite automaton can have (determine) more than two

algorithmic languages. Indeed, in the conventional definition of finite automata, only accepting

states are defined while all other states are treated as rejecting states. At the same time, it is

possible to separate the set of all states Q of a finite automaton A into three groups: P consists of

positive states, N consists of negative states, and D consists of undefined states. This partition

determines three partition languages for the deterministic finite automaton A.

 The positive (upper) language L+(A) = LP(A) of the finite automaton A consists of all

words w totally accepted (recognized) by A, that is, the path from the start state

produced by the consumption of w ends in a state from P.

 The negative (lower) language L-(A) = LN(A) of an automaton A consists of all words w

totally rejected (recognized) by A, that is, the path from the start state produced by the

consumption of w ends in a state from N.

 The indeterminate language L∻(A) = LD(A) of an automaton A consists of all words w

the path from the start state produced by the consumption of w ends in a state from D.

As deterministic finite automata consume all words in their alphabet, they do not have

impartial languages.

Lemma 2.2. For any nondeterministic finite automaton A, all its three partition languages are

disjoint.

Theorem 2.6. For any deterministic finite automaton A, all its three partition languages are

regular.

Indeed, defining X a the set of accepting states of the automaton B where X {P, N, D} and B

has the same transition rules as A, we have that B is a deterministic automaton with the

conventional language L(B) = LX(A). As X {P, N, D} and L(B) is a regular language, all three

partition languages of the automaton A are regular.

3. Languages of Turing machines

As we proved for finite automata, all their languages are regular. For other classes of automata,

positive and negative languages can be essentially different.

Example 3.1. Let us take the class T of all Turing machines that work with words in the

alphabet and define that a word w is accepted by a Turing machine T from T if and only if given

w as an input to T, the machine T stops after making a finite number of steps. If given w as an input

to T, the machine T does not stop, then w is computationally undefined by T. In this case, for any

Turing machine T, L-(A) = L±(A) = and L+(A) ∪ L0(A) = *. As for this class, all negative

languages are empty while there are many non-empty positive languages, the class of all positive

languages of the automata from T is the class of all recursively enumerable languages and it does

not coincide with the class of all negative languages of the machines from T.

Example 3.2. If T is a Turing machine from T, then it is possible to define that the word w is

rejected by a Turing machine T from T if the machine T does not stop given w as the input. In this

case, the class of all positive languages of the automata from T is also the class of all recursively

enumerable languages and it does not coincide with the class of all negative languages because the

latter contains languages that are not recursively enumerable.

We see that relations between languages of a given Turing machine depend on how we define

these languages. Thus, let us define these languages in a natural way and study algorithmic

languages of accepting Turing machines that work with words in a finite alphabet .

 The upper or positive language L+(T) of a deterministic Turing machine T consists of

all words w accepted (recognized) by T, i.e., when with the input w, T stops in a final

(accepting) state after making a finite number of steps

 The lower or negative language L-(T) of a deterministic Turing machine T consists of

all words w rejected (negatively recognized) by T, i.e., when with the input w, T stops

not in a final, that is, in a rejecting state after making a finite number of steps

 The impartial language L0(T) of a deterministic Turing machine T consists of all words

w such that T does not stop given w as its input

This gives us three languages for deterministic Turing machines. At the same time, it is also

possible to split all states of a deterministic Turing machine into three groups – positive states,

negative states and indefinite states – obtaining more languages.

Let us study properties of algorithmic languages of deterministic Turing machines.

Lemma 3.1. For any deterministic Turing machine, all three languages – positive, negative and

impartial - are disjoint.

Remark 3.1. Assuming that the Turing machine T accepts words some of which are logical

statements, it is possible to suggest the following interpretation of the considered languages. The

positive language L+(T) consists of true statements. The negative language L-(T) consists of false

statements. The impartial language L0(T) consists of statements the truth values of which are

undefined.

Similar to what is done above for finite automata, it is possible to define dual Turing machines.

Definition 3.1. A deterministic Turing machine Q is dual to a deterministic Turing machine T

if we have L+(Q) = L-(T) and L-(Q) = L+(T).

Note that the dual deterministic Turing machine is not defined in a unique way because

different machines can determine the same group of languages.

Properties of Turing machines imply the following result.

Theorem 3.1. For any deterministic Turing machine, there is the dual deterministic Turing

machine.

Definition 3.2. a) A formal language L in is positively (negatively) recursively decidable if

there is a Turing machine T such that L = L+(A) (L = L-(A)) and L+(A) ∪ L-(A) = *.

b) A formal language L in is positively (negatively) recursively recognizable if there is an

automaton (algorithm) A such that L = L+(A) (L = L-(A)).

Theorem 3.1 implies the following result.

Corollary 3.1. A language L is positively recursively recognizable (decidable) if and only if it

is negatively recursively recognizable (decidable).

It is known that for any Turing machine, there is another Turing machines that determines the

same conventional language and accepts a word only if it stops (Hopcroft, et al, 2001; Burgin,

2005). This gives us the following result.

Proposition 3.1. For any deterministic Turing machine T, there is a deterministic Turing

machine Q such that L+(Q) = L+(T), L0(Q) = L0(T) L-(T) and L-(Q) = .

Corollary 3.2. For any deterministic Turing machine T, there is a deterministic Turing

machine Q such that L-(Q) = L-(T) , L0(Q) = L0(T) L+(T) and L+(Q) = .

As conventional languages of Turing machines are recursively enumerable and for any

deterministic Turing machine T its conventional language coincides with L+(T), Theorem 3.1

implies the following result.

Theorem 3.2. a) For any deterministic Turing machine, its languages L-(T) and L+(T) are

recursively enumerable.

b) Any recursively enumerable language L is equal to the positive language L+(T) of some

deterministic Turing machine T and to the negative language L-(Q) of some deterministic Turing

machine Q.

Example 3.2 shows that impartial languages of Turing machines are not always recursively

enumerable.

Corollary 3.3. A formal language L in is positively (negatively) recursively recognizable if

and only if it is recursively enumerable.

The dual to recursive enumerability concept is recursive coenumerability.

Definition 3.3. A formal language L is recursively coenumerable if it is the complement CL of

a recursively enumerable language L.

Theorem 3.3. A language is recursively coenumerable if and only if it is the impartial

language L0(T) for some deterministic Turing machine T.

Proof. Necessity. Let us consider a deterministic Turing machine T. Then its impartial language

L0(T) is the complement of the union L-(T) L+(T) and this union is a recursively enumerable

language because both L+(T) and L-(T) are recursively enumerable languages and the union of two

recursively enumerable languages is a recursively enumerable language (Hopcroft, 2001).

Sufficiency. Let us take a recursively coenumerable language L. It is a complement of a

recursively enumerable language M. By definition, M is the conventional language of a Turing

machine T such that when given the input w, the machine T stops after making a finite number of

steps when w belongs to M and does not stop otherwise (Burgin, 2005). It means that L+(T) = M

and L0(T) = L.

Theorem is proved.

Corollary 3.4. The complement of an impartial language L is a recursively enumerable

language.

Corollary 3.5. The complement CL of a recursively enumerable language L is an impartial

language.

Post theorem (cf. (Shen and Vereshchagin, 2003)) implies the following result.

Lemma 3.2. A language L is recursive decidable if and only if it is both recursively

enumerable and recursively coenumerable.

Recursive enumerability is naturally connected to recursive decidability.

Theorem 3.4. For any deterministic Turing machine T, the languages L+(T) and L-(T) are

recursively decidable if and only if all three languages L+(T), L-(T) and L0(T) are recursively

enumerable.

Proof. Sufficiency. Let us take a deterministic Turing machine T such that all three languages

L+(T), L-(T) and L0(T) are recursively enumerable. The union L-(T) L0(T) is a recursively

enumerable language because both L-(T) and L0(T) are recursively enumerable languages and the

union of two recursively enumerable languages is a recursively enumerable language (Hopcroft,

2001). Thus, L+(T) is a recursively coenumerable language because its complement L-(T) L0(T)

is a recursively enumerable language. By Lemma 3.2, the language L+(T) is recursively decidable.

The proof that the language L-(T) is recursively decidable is similar.

Necessity. Let us take a deterministic Turing machine T such that both languages L+(T) and L-

(T) are recursively decidable. The union L-(T) L+(T) is a recursively decidable language because

both L-(T) and L+(T) are recursively decidable languages and the union of two recursively

decidable languages is a recursively decidable language (Hopcroft, 2001). Then by Lemma 3.2, the

language L-(T) L+(T) is recursively coenumerable. It means that the language L0(T) is recursively

enumerable.

Theorem is proved.

Corollary 3.5. For any deterministic Turing machine T, the languages L+(T), L-(T) and L0(T)

are recursively decidable if and only if they are recursively enumerable.

Remark 3.2. The condition that both languages L+(T) and L-(T) are recursively decidable is

essential in Theorem 3.4 as the following result demonstrates.

Example 3.3. Let us consider a universal deterministic Turing machine U assuming that all its

states are positive. Then the language L+(U) is recursively enumerable, the language L-(T) is empty

and thus, decidable while the language L0(T) is not recursively enumerable.

Corollary 3.6. For any deterministic Turing machine T, if at least one of the languages L+(T),

L-(T) and L0(T) is not recursively decidable, then L0(T) is not recursively enumerable.

Corollary 3.7. For any deterministic Turing machine T, if at least one of the languages L+(T),

L-(T) and L0(T) is not recursively enumerable, then L0(T) is not recursively enumerable.

It is known that the sum and intersection of recursively enumerable languages are recursively

enumerable languages (Cohen, 1991; Sipser, 1997). Let us study this property for recursively

coenumerable languages.

Theorem 3.4. The sum of two recursively coenumerable languages is a recursively

coenumerable language.

Proof. Let us consider two recursively coenumerable languages L and M. By De Morgan’s

laws (Halmos, 1974), we have

L M = C(CL CM)

As the languages L and M are recursively coenumerable, their complements CL and CM are

recursively enumerable. The intersection of two recursively enumerable languages is recursively

enumerable, that is, CL CM is a recursively enumerable language and its complement L M is a

recursively coenumerable language.

Theorem is proved.

Theorems 3.3 and 3.4 imply the following result.

Corollary 3.8.The sum of two impartial languages L0(T) and L0(Q) of Turing machines T and

Q, correspondingly, is the impartial language L0(R) of some Turing machine R.

The intersection of languages has similar properties.

Theorem 3.5. The intersection of two recursively coenumerable languages is a recursively

coenumerable language.

Proof. Let us consider two recursively coenumerable languages L and M. By De Morgan’s

laws (Halmos, 1974), we have

L M = C(CL CM)

As the languages L and M are recursively coenumerable, their complements CL and CM are

recursively enumerable. The union of two recursively enumerable languages is recursively

enumerable, that is, CL CM is a recursively enumerable language and its complement L M is a

recursively coenumerable language.

Theorem is proved.

Theorems 3.3 and 3.5 imply the following result.

Corollary 3.9.The intersection of two impartial languages L0(T) and L0(Q) of Turing machines

T and Q, correspondingly, is the impartial language L0(R) of some Turing machine R.

The difference of languages can preserve linguistic properties only partially.

Theorem 3.6. The difference of a recursively enumerable language and recursively

coenumerable language is a recursively enumerable language.

Proof. Let us consider a recursively enumerable language L and recursively coenumerable

language M. Taking their difference, we have

L \ M = L CM

By definition, CM is a recursively enumerable language and the intersection of two recursively

enumerable languages is a recursively enumerable language. Thus, the difference L \ M is a

recursively enumerable language.

Theorem is proved.

Theorems 3.2, 3.3 and 3.6 imply the following result.

Corollary 3.9.The difference of the positive language L+(T) (negative language L-(T)) of a

Turing machines T and the impartial language L0(Q) of a Turing machines Q is the positive

language L+(R) (negative language L-(T)) of some Turing machine R.

When the classes of languages are changed, we obtain a similar result.

Theorem 3.7. The difference of a recursively coenumerable language and a recursively

enumerable language is a recursively coenumerable language.

Proof. Let us consider a recursively coenumerable language L and recursively enumerable

language M. Taking their difference, we have

L \ M = L CM

By definition, CM is a recursively coenumerable language and by Theorem 3.5, the

intersection of two recursively coenumerable languages is a recursively coenumerable language.

Thus, the difference L \ M is a recursively coenumerable language.

Theorem is proved.

Theorems 3.2, 3.3 and 3.7 imply the following result.

Corollary 3.10.The difference of the impartial language L0(T) of a Turing machines T and the

positive language L+(Q) (negative language L-(Q)) of a Turing machines Q is the impartial

language L0(R) of some Turing machine R.

Remark 3.3. The difference of recursively enumerable languages can be recursively

coenumerable while the difference of recursively coenumerable languages can be recursively

enumerable.

For nondeterministic Turing machines, their algorithmic languages are defined in a different

way. Let us consider a nondeterministic Turing machine T, in which all states are divided into two

groups: final or accepting states and rejecting states.

 The upper or positive language L+(T) of a nondeterministic Turing machine T consists

of all words w accepted (recognized) by T, i.e., when given the input w, all threads of

the computation of T stop in a final (accepting) state after making a finite number of

steps

 The lower or negative language L-(T) of a nondeterministic Turing machine T consists

of all words w rejected (negatively recognized) by T, i.e., when given the input w, all

threads of the computation of T stop not in a final, that is, in a rejecting state after

making a finite number of steps

 The impartial language L0(T) of a nondeterministic Turing machine T consists of all

words w such that T does not stop given w as its input

 The double language L±(T) of T consists of all words w such that given the input w,

each thread of the computation of T stops either in a final (accepting) state or in a

rejecting state after making a finite number of steps

 The positively mixed language L+0(T) of a nondeterministic Turing machine T consists

of all words w such that given the input w, each thread of the computation of T either

stops in a final (accepting) state after making a finite number of steps or does not stop

at all

 The negatively mixed language L-0(T) of a nondeterministic Turing machine T consists

of all words w such that given the input w, each thread of the computation of T either

stops in a rejecting state after making a finite number of steps or does not stop at all

 The lenient double language L±0(T) of T consists of all words w such that given the

input w, each thread of the computation of T either stops in a final (accepting) state or

stops in a rejecting state after making a finite number of steps or does not stop at all

We see that a nondeterministic Turing machine determines seven algorithmic languages. Let us

study properties of these languages.

As conditions determining seven algorithmic languages are incompatible, we have the

following result.

Lemma 3.4. For any nondeterministic Turing machine T, all seven algorithmic languages are

disjoint.

Remark 3.4. Assuming that the Turing machine T accepts words some of which are logical

statements, it is possible to suggest the following interpretation of the considered languages. The

positive language L+(T) consists of the statements the truth of which is proved. The negative

language L-(T) consists of the statements the falsehood of which is proved. The impartial language

L0(T) consists of statements the truth values of which are undefined. The double language L±(T)

consists of the statements for which it is proved that they are true and false at the same time. The

positively mixed language L+0(T) consists of the true statements the truth of which is not proved.

The negatively mixed language L+0(T) consists of the false statements the falsehood of which is not

proved. The lenient double language L±0(T) consists of the statements that are true and false at the

same time but this is not proved.

Remark 3.5. It is also possible to split all states of a nondeterministic Turing machine T into

three groups – positive states, negative states and indefinite states – obtaining much more

languages determined by T.

Definition 3.4. A nondeterministic Turing machine To is dual to a nondeterministic Turing

machine T if we have L+(To) = L-(T), L+0(T
o) = L-o(T), L-0(T

o) = L+0(T), and L-(T
o) = L+(T).

Properties of nondeterministic Turing machines imply the following result.

Theorem 3.8. For any nondeterministic Turing machine T, there is the dual nondeterministic

Turing machine To.

Note that the dual nondeterministic Turing machine is not defined in a unique way because

different machines can determine the same group of languages.

Theorem 3.9. For any nondeterministic Turing machine T, languages L+(T), L-(T), L±(T), and

L±(T) L±0(T) are recursively enumerable and languages L0(T) and L±0(T) L+0(T) L-0(T)

L0(T) are recursively coenumerable.

Proof. Let us consider a nondeterministic Turing machine T with the set D of states and assume

that q is an arbitrary element from D. We also assume that all states D of the machine T are divided

into two parts: the set B of accepting (positive) states and the set C of rejecting (negative) states.

For proving this theorem, we use the technique “making an infinite cycle at a state q,“ which is

described below.

Taking the Turing machine T, we build the Turing machine Tq by adding the new state r to D

and the system of new transition rules aq ar and ar aq for all symbols a from the alphabet .

As a result, when Tq reaches the sate q, it goes into an infinite cycle never stopping.

Now we build the Turing machine TC that has all states and transition rules of T plus one more

state r that does not belong to D by making an infinite cycle at all states from C. As the machine

TC never stops in the states from C, we have the following equalities

L+(TC) = L+(T)

L-(TC) = L±(TC) = L±0(TC) = L-0(TC) =

L0(TC) = L0(T) L-0(T)

L+0(TC) = L+0(T) L±0(T)

To continue, we consider two cases: one when the language L+0(TC) is empty and another when

the language L+0(TC) is not empty.

In the first case, we have

L+(TC) L0(TC) = *

Besides, in this case, L+(TC) is the conventional language of the Turing machine TC and thus, it

is recursively enumerable. Consequently, L0(TC) is recursively coenumerable.

Now we consider the second case when the language L+0(TC) is not empty. By the standard

technique in the theory of Turing machines described, for example, in Theorem 8.11 from

(Hopcroft, et al, 2001), it is possible to build a deterministic Turing machine DTC that simulates all

steps of the Turing machine TC and stops when TC stops. We modify this machine so that it does

not stop when there is at least one possible move of the machine TC . It means that given a word w

as the input to DTC , this machine never stops if there is at least one infinite thread in the

computation of the machine TC with the same input. This also means that the machine DTC stops if

and only if the lengths of all threads are bounded.

Let us prove that the lengths of all threads for computations of TC with any input w from L+(TC)

are bounded. Let us assume that this is not true, that is, for some w from L+(TC), there are threads

of arbitrary big length ending in the state q from B. In this case, by Kőnig's infinity lemma (Kőnig,

1927), there is an infinite thread starting with w because the graph of computational threads is

locally finite as any Turing machine has the infinite number of transition rules. However, by

definition, the word w must belong not to L+(TC) but to L+(TC). Thus, our assumption was not true

and all threads for computations of TC with any input w from L+(TC) are bounded.

As a result, the deterministic Turing machine DTC stops given the input from L+(TC) and does

not stop on all other inputs. It means that L+(TC) is the conventional language of the machine DTC

and thus, it is recursively enumerable.

As we know, L+(TC) = L+(T). Consequently, the language L-(Q) is also recursively enumerable.

Taking the dual nondeterministic Turing machine To instead of T and using the same technique,

we prove that the language L-(Q) is also recursively enumerable.

Let H be a nondeterministic Turing machine obtained from T by taking positive states as final

(accepting) states. The conventional language of the machine H is L+(T) L±(T) L±0(T)

L+0(T). Consequently, this language is recursively enumerable.

In a similar way, we build the nondeterministic Turing machine Z obtained from T by taking

negative states as its final (accepting) states. The conventional language of the machine Z is L-(T)

 L±(T) L±0(T) L-0(T). Consequently, this language is recursively enumerable.

The intersection of two recursively enumerable languages is a recursively enumerable language

(Hopcroft, et al, 2001). Thus, L±(T) L±0(T) = [L+(T) L±(T) L±0(T) L+0(T)] [L-(T) L±(T)

 L±0(T) L-0(T)] is a recursively enumerable language.

As it was explained, taking the machine H, we can build a deterministic Turing machine DH

simulating each step of H and working without stopping when there is at least one rule for making

the next step. Analyzing the work of DH, we see that its conventional language is equal to L+(T)

L±(T). Consequently, this language is recursively enumerable.

Taking the machine Z, we can build a deterministic Turing machine R simulating each step of

H and working without stopping when there is at least one rule for making the next step. This will

show that L-(T) L±(T) is a recursively enumerable language.

The intersection of two recursively enumerable languages is a recursively enumerable language

(Hopcroft, et al, 2001). Thus, L±(T) = [L+(T) L±(T)] [L-(T) L±(T)] is a recursively

enumerable language.

Let R be a nondeterministic Turing machine obtained from T by making all states final

(accepting) states. The conventional language of the machine R is L(R) = L+(T) L±(T) L±0(T)

L+0(T) L-(T) L-0(T). Consequently, L(R) L0(T) = * and the language L0(T) is recursively

coenumerable.

By definition, L+(T) L-(T) L±(T) L±0(T) L+0(T) L-0(T) L0(T) = *. Languages

L+(T), L-(T) and L±(T) are recursively enumerable. As the union of three recursively enumerable

languages is a recursively enumerable language, the language L±0(T) L+0(T) L-0(T) L0(T) is

recursively coenumerable because the union of three recursively enumerable languages is a

recursively enumerable language.

Theorem is proved.

In contrast to the languages L+(T), L±(T), L-(T) and L0(T), some of the languages L±0(T), L+0(T)

and L-0(T) can be recursively enumerable and some can be recursively coenumerable. Even more,

we have the following result.

Theorem 3.10. a) Any recursively enumerable language is equal to the positively mixed

language L+0(T) of some nondeterministic Turing machine T.

b) Any recursively enumerable language is equal to the negatively mixed language L-0(T) of

some nondeterministic Turing machine T.

c) Any recursively enumerable language is equal to the lenient double language L±0(T) of some

nondeterministic Turing machine T.

d) Any recursively coenumerable language is equal to the positively mixed language L+0(T) of

some nondeterministic Turing machine T.

e) Any recursively coenumerable language is equal to the negatively mixed language L-0(T) of

some nondeterministic Turing machine T.

f) Any recursively coenumerable language is equal to the lenient double language L±0(T) of

some nondeterministic Turing machine T.

Proof. a) Let us consider a recursively enumerable language L. By Theorem 3.2, L is equal to

the positive language L+(T) of some deterministic Turing machine T. We transform the machine T

into the nondeterministic Turing machine P using the following operations. At first, two new states

r and p are added to the states D of the machine T. Then for each symbol a from the alphabet and

for each state q from D, new transition rules aq ap, ap ar and ar ap are added to the

transition rules of the machine T.

As a result, the computation of the machine P contains an infinite thread for any input w

because from any state and any observed symbol on the tape, the machine P can go into an infinite

cycle. Consequently, we have L+(P) = and L+0(P) = L+(T). It means that L= L+0(P) and thus, part

a) of the theorem is proved.

b) The proof of part b) is similar to the previous proof only instead of positive languages, we

consider negative languages of Turing machines.

c) Let us consider a recursively enumerable language L. By Theorem 3.2, L is equal to the

positive language L+(T) of some deterministic Turing machine T. We transform the machine T into

the nondeterministic Turing machine Q using the following operations. At first, a new state r is

added to the states D of the machine T. Then for each symbol a from the alphabet and for each

state q from D, new transition rules aq ap are added to the transition rules of the machine T. In

addition, we extend the set of negative states of T by adding the new state r to this set.

As a result, the positive language L+(T) is transformed into the double language L±(Q). As the

double language L±(T) is empty, it means that L= L±(Q) and part c) is proved.

d) Let us consider a recursively coenumerable language L. By Theorem 3.3, L is equal to the

impartial language L0(T) of some deterministic Turing machine T. We transform the machine T

into the nondeterministic Turing machine R using the following operations. At first, the new states

r is added to the states D of the machine T. Then for each symbol a from the alphabet and for

each state q from D, new transition rules aq ar are added to the transition rules of the machine

T. In addition, we extend the set of positive states of T by adding the new state r to this set.

As a result, the computation of the machine R contains a finite thread for any input w, in which

the machine R stops in a positive state r. Consequently, we have L0(R) = and L+0(R) = L0(T). It

means that L= L+0(R) and thus, part f) of the theorem is proved.

e) The proof of part e) is similar to the proof of part e) only instead of positive languages, we

consider negative languages of Turing machines.

f) Let us consider a recursively coenumerable language L. By Theorem 3.3, L is equal to the

impartial language L0(T) of some deterministic Turing machine T. We transform the machine T

into the nondeterministic Turing machine P using the following operations. At first, the new states

r and p are added to the states D of the machine T. Then for each symbol a from the alphabet and

for each state q from D, new transition rules aq ar and aq ap are added to the transition rules

of the machine T. In addition, we extend the set of positive states of T by adding the new state r to

this set and the set of negative states of T by adding the new state p to this set.

As a result, the computation of the machine P contains a finite thread for any input w, in which

the machine P stops in a positive state r, and a finite thread for any input w, in which the machine

P stops in a negative state p. Consequently, we have L0(P) = and L±0(P) = L0(T). It means that

L= L±0(P) and thus, part f) of the theorem is proved.

Theorem is proved.

We remind that a formal language L is recursively decidable if it belongs to the class of all

recursively enumerable languages and recursively coenumerable languages.

Corollary 3.9. Each of the set of languages {L+0(T); T is a nondeterministic Turing machine},

{L-0(T); T is a nondeterministic Turing machine}, and {L±0(T); T is a nondeterministic Turing

machine} contains all recursively decidable languages.

The results of Theorem 3.10 bring us to a new class of formal languages.

Definition 3.6. A formal language L is recursively bienumerable if it belongs either to the class

of all recursively enumerable languages or to the class of all recursively coenumerable languages.

Corollary 3.10. Each of the set of languages {L+0(T); T is a nondeterministic Turing machine},

{L-0(T); T is a nondeterministic Turing machine}, and {L±0(T); T is a nondeterministic Turing

machine} contains all recursively bienumerable languages.

An interesting problem is to find which of the set of languages {L+0(T); T is a nondeterministic

Turing machine}, {L-0(T); T is a nondeterministic Turing machine}, or {L±0(T); T is a

nondeterministic Turing machine} coincides with all recursively bienumerable languages.

4. Conclusion

 While in the conventional theory of automata and algorithms, only one language is associated

with each automaton or algorithm, here it is demonstrated that each automaton or algorithm

determines several algorithmic languages. Properties of these languages were studied and in

addition to recursively enumerable and recursively coenumerable languages, we discovered a new

class of languages. The new languages are called recursively bienumerable comprising both

recursively enumerable and recursively coenumerable languages.

It is necessary to mention that recursively bienumerable languages are conventional languages

of certain classes of grammars with prohibition (Burgin, 2005a; 2013), learning correction

grammars (Carlucci, et al, 2009; Case and Jain, 2011; Case and Royer, 2016), and selective

machines (Burgin, 2021).

The obtained results stimulate new directions of research in the area of formal languages,

automata and computation. Thus, it would be interesting to study algorithmic languages

determined by inductive Turing machines (Burgin, 2005), by probabilistic Turing machines

(Salomaa, 1969; Sipser, 2006), by Turing machines with oracles, and by selective machines

(Burgin, 2021). Another related direction for future resarch is investigation of the impact of

operations with automata on operations with their languages.

References

1. Burgin, M. Super-recursive Algorithms, Springer, New York/Heidelberg/Berlin, 2005

2. Burgin, M. Grammars with Prohibition and Human-Computer Interaction, in “Proceedings of

the Business and Industry Simulation Symposium,” Society for Modeling and Simulation

International, San Diego, California, 2005a, pp. 143-147

3. Burgin, M. Basic Classes of Grammars with Prohibition, Preprint in Computer Science,

cs.FL/CL. 1302.5181, 2013, 15 p. (electronic edition: http://arXiv.org)

4. Burgin, M. Grammars with Exclusion, Journal of Computer Technology & Applications

(JoCTA), v. 6, No. 2, 2015, pp. 56 – 66

5. Burgin, M. Modelling distributive computation by selective machines, International Journal of

Parallel, Emergent and Distributed Systems, 2021, v. 36, No.5, pp. 395 - 411

6. Carlucci, L., Case, J., Jain, S. Learning correction grammars. J. Symb. Logic 74, 489-516

(2009)

7. Case, J., Jain, S. Rice and Rice-Shapiro theorems for transfinite correction grammars, Math.

Logic Quarterly 57(5), 504-516 (2011)

8. Case, J. and Royer, J. Program Size Complexity of Correction Grammars in the Ershov

Hierarchy, in 12th Conference of Computability in Europe (CiE 2016), Proceedings, lecture

notes in Computer Science, vol. 7921. Heidelberg: Springer; 2016. p. 240–250.

9. Chi, R. S. Y. (1969) Buddhist formal logic: a study of Dignāga's Hetucakra and K'uei-chi's

Great Commentary on the Nyāyapraveśa, The Royal Asiatic Society of Great Britain, London

10. Church, A. (1956) Introduction to Mathematical Logic, Princeton University Press, Princeton

11. Cohen, D.I.A. Introduction to computer theory, John Wiley & Sons, Hoboken, NJ, 1991

12. Dummett, M. (1973) The Philosophical Basis of Intuitionistic Logic, in Logic Colloquium

1973, North-Holland, pp. 5-40

13. Ganeri, J. (2004) Indian Logic. in: Gabbay, Dov& Woods, John (eds.),Greek, Indian and

Arabic Logic, Volume I of the Handbook of the History of Logic, Amsterdam: Elsevier,

pp. 309–396

14. Ganeri, J. (Ed.) (2001) Indian Logic. A Reader. Routledge Curzon, New York

15. Garfield, J.L. Empty Words: Buddhist Philosophy and Cross-Cultural Interpretation, New

York: Oxford University Press, 2002

16. Halmos, P.R. Naive Set Theory, Springer, New York, 1974

17. Hopcroft, J.E., Motwani, R., and Ullman, J.D. Introduction to Automata Theory, Languages,

and Computation, Addison Wesley, Boston/San Francisco/New York, 2001

18. Kőnig, D. (1927) Über eine Schlussweise aus dem Endlichen ins Unendliche, Acta Sci. Math., v. 3,

No. 2-3, pp. 121–130

19. Salomaa, A. Theory of Automata, v. 100 in International Series of Monographs on Pure and Applied

Mathematics, Pergamon Press,Oxford,1969

20. Shen, A. and Vereshchagin, N.K. Computable functions, AMS, Providence, RI, 2003

21. Sipser, M. Introduction to the Theory of Computation, PWS Publishing Co., Boston, 2006

