
EasyChair Preprint
№ 2411

Performance Evaluation of Distributed Machine
Learning for Load Forecasting in Smart Grids

Dabeeruddin Syed, Shady S. Refaat and Haitham Abu-Rub

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 18, 2020

Performance Evaluation of Distributed Machine
Learning for Load Forecasting in Smart Grids

Dabeeruddin Syed∗, Shady S. Refaat†, Haitham Abu-Rub†
Department of Electrical & Computer Engineering

∗Texas A&M University, College Station, Texas, U.S.A.
†Texas A&M University at Qatar, Doha, Qatar

Emails: {dsyed}@tamu.edu,{shady.khalil,haitham.abu-rub}@qatar.tamu.edu

Abstract—Load forecasting in smart grid is the process of
predicting the amount of electrical power to meet the short,
medium and long term demands. Accurate load forecasting helps
electrical utilities to manage their energy production, operations,
control and management. Most of the state-of-the-art forecasting
methodologies utilize classical machine learning algorithms to
predict the electrical load. There is a need that big data platforms
and parallel distributed computing are utilized to their potential
in the available solutions. In this paper, the Apache Spark and
Apache Hadoop are utilized as big data platforms for distributed
computing in order to predict the load using available big
data. In this paper, MLib, Apache Spark library for machine
learning algorithms, is utilized for distributed computing. Using
MLib allows testing the classic regression algorithms such as
linear regression, generalized linear regression, decision tree,
random forest and gradient-boosted trees in addition to survival
regression and isotonic regression. The obtained results show that
Apache Spark produces high accuracy while parallelizing the
process of load forecasting in highly competent training and test
times. Actual big data are used in the load forecasting process.

Keywords—Apache Spark, Load Forecast, Distributed Machine
Learning, Smart Grids, Distributed Computing.

I. Introduction

With the prominence of information and communications
technologies, the traditional electrical grid is being transformed
to smart grid. Smart grid is supported by a huge number of
smart meters, sensors, measurement units, etc. Those elements
provide a continuous, massive amount of data at a high veloc-
ity, variety, and volume to support smart grid performance. The
success of the future smart grid depends mainly on the effective
utilization of the huge amount of the big data flow [1]. The data
obtained from different smart grid sources satisfy all the big
data characteristics. Owing to the peculiar characteristics of big
data in smart grid, the data requires specialized technologies
for proper management, storage, processing and visualization.

The data can reveal the hidden patterns and with the use
of big data analytics tools, the correlation between different
features and label can be revealed. Apache Hadoop is one
of the big data analytics and management platform which is
designed to overcome the challenges including scalability, stor-
age bottleneck, handling variety of unstructured data, handling
high rate of incoming data, etc. in big data analysis. It is
used for the batch processing of offline data and it has its
own inherent storage system called Hadoop Distributed File
System (HDFS). This makes Hadoop ecosystem highly fault-
tolerant by storing the data across several nodes in a systematic

order eliminating all possible data losses in the event of
system crash. Hence, applications using Hadoop framework
have capability of parallel processing. Apache Spark is an in-
memory, iterative and streams-processing platform that works
on top of Hadoop or other big data systems and can help in
the streams processing of data in real-time.

There are many aspects related to the management of
generation and consumption of energy which should be taken
care by electrical utilities. Load forecasting is a crucial deci-
sion support tool that allows for efficient energy management
in smart grid. Demand information can be utilized by the
customers in the near future, while the electrical utilities can
make important decisions based on it like purchase and sale
of electrical energy, load switching and capacity planning.
Even a little improvement in load forecasting accuracy for the
energy domain leads to big savings with great economic and
environmental benefits. Load forecasting can be divided into
three categories: short-term (ranges from an hour to 7 days),
medium-term (ranges from 7 days to 1 year) and long-term
(ranges longer than one year) forecasting, depending on the
period of forecasting. Highly accurate load forecasting will
enable the utilities to minimize the risks by understanding the
future long-term energy demand and planning their capacity
and infrastructure to meet the demand.

However, there are many challenges related to load forecast-
ing. Weather plays a prominent role in energy consumption and
could be unpredictable. Currently, load forecasting is based on
methodologies which are not sustainable. Moreover, acquiring
accurate data on consumer behavior is extremely difficult. It is
extremely difficult to accurately fit large number of complex
features into the forecasting model using classical modeling
methods. These challenges call for a real-time streaming load
forecasting platform that can predict load in real-time which
is the goal of this paper.

The effectiveness of the application of distributed machine
learning (ML) algorithms using Apache Spark is employed for
load forecasting in this paper. A cluster of Hadoop, managed
by HDFS and Yet Another Resource Negotiator (YARN)
along with Spark, is set up for executions and testing. MLib
library of Spark is utilized to implement the ML algorithms
and the datasets analyzed are the English smart meters data
[2]. Sequential forward search is used for feature selection.
Therefore, the main aim of this paper is to obtain the metrics of
application of ML techniques in distributed way using Apache
Hadoop and Spark. The paper proposes a big data management
platform to perform the load predictions while streaming the

data in real-time and it also evaluates the performance of MLib
library of the proposed platform.

The rest of the paper is organized as follows. Section II
describes the relevant literature while Section III presents the
different components of our work and how these relate to
each other. Furthermore, Section V illustrates the results of the
metrics of distributed computing using ML for load forecast.
Finally, Section VI discusses the conclusion and future work.

II. Related Work

Many ML techniques have been developed to provide effi-
cient load forecasting in smart grid. In [3], Zhang et al. applied
artificial neural network (ANN) for load forecasting. They
compared the mean square error (MSE) of load forecasting
with respect to the number of neurons in the three hidden
layers of the model. A 5.5% error (M.S.E.) has been achieved
with their model. Their work considered the energy demand
and weather data in Ontario province of Canada.

In [4], Dong et al. worked with the clustering of the load
datasets based on the k-means clustering algorithm. The differ-
ent clusters of datasets were passed to train the convolutional
neural network. This methodology performed well with the
dataset containing even 1.4 million of energy records in terms
of accuracy (with a Mean Absolute Percentage Error of 3.05
%). However, the execution times of the modeling for load
forecasting have not been provided.

In [5], Gajowniczek et al. proposed a short-term load
forecasting model using ANN and support vector machines
(SVM) for day-ahead predictions at individual household level.
The accuracy of the proposed ANN model and SVM has been
reported as 62% and 60% respectively. Edwards et al. [6]
reported that SVM performed better than ANN based methods
for predictions of hourly electrical consumption at residential
buildings level. Whereas, the ANN model performed better in
case of commercial buildings. The load in residential buildings
is more unpredictable than the load in commercial buildings.
Commercial buildings have occupancy during specific times
and those have more or less similar patterns of daily occupancy.
These might be the reasons for the differences in performance
of ANN based models and SVM. Other research [7], [8]
has also indicated that SVM based regression outperforms
ANN models in predicting load especially on smaller data
sizes. Also, SVM has lower running times than neural-network
based models on larger datasets because SVM are conceptually
simpler and yield better to post-hoc analysis [9].

Few of the methods utilized to enhance the forecasting
accuracy include detection of regular patterns using cluster-
based aggregate forecasting [10], neural-network based pre-
dictions after clustering of customers [11], consideration of
socio-economic features like population, inflation and national
energy statistics [12], etc. Indeed, most of the works have
focused on increasing the accuracy of the model, however, the
execution times (training time and testing time) have not been
given much consideration.

This paper is focused on the optimization of trade-off
between the accuracy of the model, execution time, and
computation resources. Considering the nature of load data
from smart grids, the proposed big data management platform

is intended to perform the load predictions while streaming the
data in real-time.

III. Methodology for Performance Evaluation

This section provides the information of the obtained data
and the applied methodologies. The first step in the method-
ology is the data acquisition and pre-processing of data. The
first subsection III-A describes the data and the pre-processing
steps in detail. Performing the load forecasting with distributed
and parallel computations, it is required that the methods are
performed on adequate and competent platforms. The subse-
quent subsection III-B describe the big data platforms that can
be used for distributed ML. The concluding subsection III-C
discusses the job schedulers that are generally used to optimize
the jobs executed on big data platforms.

A. Data Description

The smart meters energy consumption data from London
households [2] has been used in this work. The energy
consumption values have been recorded between November
2011 and February 2014 with frequency of half-hour for 5567
households. However, it was noted that the energy consumption
values for all the households are not available since the start
of November 2011. Hence, the data has been aggregated to
energy consumption values per day per household (which is
the label in our case). At data acquisition stage, the only
features in data are time and energy consumption values.
However, the weather data is a crucial factor for the energy
consumption. Thus, we scraped the weather data using a web
API darksky.net and merged it with the England dataset [13].
This gave us many helpful weather features. Next step was the
application of generalized forward feature selection algorithm
which helps to select the best features. The features finally used
in the analysis include the following: maximum temperature,
minimum temperature, dew point, UV Index, humidity, cloud
cover, visibility, wind speed, pressure, wind bearing, moon
phase, time, holiday index and censor (used only for survival
regression).

The weather data collected from weather API contained
missing values for the features such as dew point, pressure,
wind speed, etc. Dealing with missing values was one of
the steps in pre-processing of data. The imputation methods
like mean, mode, median imputation methods and forward or
backward fill are used to fill the missing values [14]. The pre-
processing steps on the data is illustrated in the Figure 1.

As seen in the Figure 1, feature selection is performed
to select the best features that return the least Root Mean
Square Error (RMSE). values after prediction. In this work,
Sequential Forward Search method is used for feature selection.
Also, outlier detection is performed to remove the records
which has zero value as energy consumption. The zero energy
consumption shows either mis-recording of energy values or
blackout. In any case, the zero values are ignored as the aim
is to generalize the correlation between features and label. For
this, specific events like faults, blackouts or mis-recording are
ignored. In the next step, one of the models among linear
regression (LR), generalized linear regression (GLR), decision
tree (DT), random forest (RF), gradient-boosted trees (GBT),
survival regression (SR) or isotonic regression (IR), is selected

for experiment. When an experiment is performed, the param-
eters, associated with the regression technique, are optimized.
The final step is the evaluation of the regression techniques
using performance metrics like RMSE, Mean Absolute Error
(M.A.E.), training time, prediction time, etc.

Fig. 1: Pre-processing steps in the load forecasting modeling

B. Software Platforms

1) Hadoop: Apache Hadoop is an open-source big data
management and computing platform useful for batch pro-
cessing of offline data [15]. It works on the MapReduce
programming paradigm. It is highly scalable, reliable and its
library is suited for distributed processing of large data sets
that can be partitioned across multiple nodes in a cluster which
suits smart grid data character. It has the following modules,
namely:

a) Hadoop Common: It is a common utility which
supports all the other modules of Hadoop through its inbuilt
libraries. It is also called Hadoop Core since it is the base of
the Hadoop framework through its essential services and base
processes like abstraction of the operating system, abstraction
of the file system, etc. It contains Java Archive (JAR) files and
scripts which are essential for the Hadoop startup.

b) Hadoop Distributed File System (HDFS): HDFS is
a distributed file system that furnishes high throughput access
to the data across different nodes in the cluster. HDFS is
a primary storage system for Hadoop and can also be used
with Apache Spark. It is based on master-slave architecture. A
master name node distributes the data across compute nodes
throughout the cluster, maintains the file system namespace
and also regulates the access to the data by clients.

c) Hadoop YARN: YARN is a resource manager and
job scheduler, which is part of Hadoop environment. It will be
discussed in detail in the subsequent section.

d) Hadoop MapReduce: MapReduce is a programming
paradigm of Hadoop environment. It is based on two functions
map and reduce. Here, map refers to a base function that
applies to each element in a data array and reduce refers to an
aggregate function on a data array. MapReduce paradigm is re-
sponsible for the distributed processing of datasets partitioned
across the data nodes. It provides fault tolerance and abstrac-
tion of data. It identifies data corruption and quickly applies

fix for an automatic recovery solution. Abstraction of data into
specific and appropriate data structure is fundamental to speed
up the execution of jobs in Hadoop and to take advantage of
internal optimizations provided by the data platform.

2) Spark: Spark is an open source java-based distributed
data processing framework that is useful for big data ap-
plications and as per the description, it is ten times faster
than Apache Hadoop MapReduce paradigm when used for in-
memory processing. The high speed of Spark is due to the
fact that the data processing happens in the main memory
of the worker nodes and thus, it completely avoids the I/O
operations from disk. The major components of Apache Spark
include library to build ML models called MLib, stream
processing component (Spark Streaming) and graph processing
component called GraphX. Apache Spark satisfies different
types of processing like batch processing, interactive queries,
iterative applications and streaming applications. These types
of processing previously were dealt by separate engines but
Spark provides these functionalities using one engine. When
it comes to big data, the speed and processing time are of high
importance and Spark ensures this with large datasets and its
ability to run computations in memory [16].

Spark uses Resilient Distributed Datasets (RDD) to renders
distributed datasets partitioned across computing nodes. The
information of the partition locations and metadata are also
stored in RDDs. RDDs are abstraction of distributed datasets.
When transformations are applied on RDDs, these are con-
verted to new RDDs in which the transformations are stored
as function object. The dependency is also registered in the
new RDDs. When multiple RDDs are joined together to form
new RDD, the new one will inherit all the dependencies from
the parent RDDs. The most often utilized transformations on
RDD are mapping, joining and filtering. These transformations
render parallel processing of the RDD partitions, joining
of RDD partitions and filtering of partitions based on any
conditions [17].

C. Job Schedulers

Usually, the job schedulers are classified into two families
namely, High Performance Computing (HPC) for long duration
simultaneous distributed simulation and modeling jobs and Big
Data schedulers (BD) for short running simultaneous high-
performance data processing jobs. The classical HPC sched-
ulers [18] [19] include Grid Engine, HTCondor, Load Sharing
Facility (LSF), OAR and Portable Batch System (PBS).

The newer high-performance computing schedulers are
Cray Simple Linux Utility for Resource Management
(SLURM) [20] and Application Level Placement Scheduler
(ALPS) [21]. Whereas the big data schedulers include com-
mercial schedulers [19] like Google Borg, Google Omega and
Google MapReduce, and open source schedulers like YARN
[22] and Mesos [23].

The most used job schedulers are described as below:

1) LSF: LSF is Load Sharing Facility resource manager
and job scheduler developed by Platform Computing for dis-
tributed computing processes [19]. It is a full-featured sched-
uler and has been succeeded by the open-source version of
itself called OPENLAVA.

2) Mesos: Apache Mesos is an open-source job scheduler
used as manager of resources in computer clusters [23]. It was
developed by University of Berkeley and it uses Linux Control
Group (cgroup) to isolate CPU, file system, I/O and memory.
Apache Mesos works on two levels - firstly, it partitions the
compute nodes into scheduling domains and each scheduling
domain is managed by Mesos framework which then allocates
the resources to each of the scheduling domains.

3) SLURM: SLURM is a free and open-source resource
manager for linux and unix-like kernels [20]. It is widely used
on about 60% supercomputers in the world. It is highly scalable
and can manage up to 1000 job submissions per second. It has
support for job profiling and job arrays.

4) YARN: YARN is job scheduler and cluster manager in
Hadoop environment [22]. The high efficiency and speed of
YARN exist due to the fact that it evokes different daemons
to perform the job scheduling and cluster management tasks.
For every application, there is a resource manager and applica-
tion master assigned. This improves scalability and utilization
efficiency in the cluster.

IV. Case Study with Experimental Model

The experiment cluster used in this case study of load
forecasting in smart grids, consists of fourteen nodes. The
hardware specifications of the cluster are described in the
Table I:

TABLE I: Cluster Setup

Hardware
Specification Value

Nodes 16
Interconnect Onmi-Path
CPU Architecture Intel Broadwell x86 64 CPU operating at 2.4 GHz
CPU cores 8 per node
Memory 16 GB RAM per node
Job scheduler Slurm

The operating system in all the nodes is CentOS Linux
7 (Core) and JAVA version installed is 1.8.0. The installed
version of Hadoop is 2.7.0 and the version of Apache Spark is
2.4.0. The architecture of Spark used with Slurm job scheduler
is shown in Figure 2. The master node will drive the Spark
Context which is the main program. The job scheduling and
cluster management are performed by Slurm. We specify the
number of nodes, the number of cores and the memory to be
utilized in the slurm job while the job scheduler assigns the
appropriate and desired resources from the cluster to the job.
The worker nodes are evoked and the job is performed.

The cluster of nodes described above provided a platform
for the performance evaluation of distributed load forecasting
using distributed ML. Also, the use of spark provides library
called MLib which has inherent capabilities for distributed ML.
The parallel processing is required in real-world forecasting
application as smart grids generate high volume of energy
consumption data at high velocity from variety of sensors
connected to them.

The checkpointing and profiling have been performed to
estimate time taken for reading, training, testing and evaluation
of the models, the results of which will be described in the
subsequent section.

Fig. 2: Spark architecture with Slurm Job Scheduler

A. ML Algorithms in Apache Spark

For the applications of regression, not all the ML al-
gorithms are implemented in the Apache Spark library. For
example, ANN, recurrent neural networks (RNN), etc. are
not available with MLib library. The following are the ML
algorithms available for regression with Spark MLib [24]:

1) Linear Regression (LR): LR is one of the most popular
methods of predicting values as a label. The output with LR
is assumed to follow a gaussian distribution. The hypothesis
function in LR is given by:

hθ(x) = θ0 + θ1x (1)

where x is a vector of features,
θ0 and θ1 are parameters of the model.

The cost function quantifying the error is given by:

J(θ0, θ1) =
1

2m

m∑
k=1

(hθ(x
(k) − y(k))2)) (2)

where m denotes the number of training samples and
yk denotes the vector of target variables.

The optimization objective of LR is given by the following:

Objective : minθ0,θ1J(θ0, θ1) (3)

2) Generalized linear regression (GLR): The output in
the GLR follows distribution from the exponential family of
distributions like normal, poison, exponential, gamma, chi-
squared, bernoulli, dirichlet, geometric, wishart, etc.

3) Decision tree: DT is a non-parametric supervised learn-
ing method which predicts the variables based on the splitting
conditions it has learned from the features of data. The deeper
the tree is, the complicated the decision rules are and the
fitter the model is. The advantages of DT are that it is simple
to interpret, visualize, requires little data preparation and can
handle both numerical and categorical features. The split points
or decision rules for DTs are given by the following equation:

h(x) ≤ 0 (4)

where h(x) is the hyperplane that specifies the split point
and h(x) is given by

h(x) : θTx+ b = 0 (5)

where θT represents the transpose of weight matrix and
b represents the bias.

At each of the split points, the binary partition which
gives the maximum purity as per the threshold set is finally
confirmed as the node of a DT. The purity of a region is defined
as the fraction of points with the majority label.

4) Random Forest: RF works well with larger datasets and
is a collection of trees which each yield predicted values. It
is aptly named random because it randomly selects a portion
of dataset for training. Each of the DTs in the forest makes
decision which is then voted to yield the final predictions. The
greater number of trees a model has, the higher the accuracy
of regression will be.

5) Gradient-boosted trees: GBT are bagging collection of
DTs. However, unlike RF, the predictions made by one tree
are not independent of predictions made by other trees. The
process of prediction is iterative i.e. predictions made by
one tree are picked by other trees to make their predictions.
Intuitively, this reduces the RMSE.

6) Survival regression: SR makes use of additional data
apart from the covariates that we regress against a variable. It
makes use of censoring vector that describes the event status
of an observation (value 1 indicates that the event has occurred
and value 0 indicates that the event is censored). In our work,
we have used all the values in censor vector to be 1 assuming
all the events have occurred. There are three major types of
models in SR namely, Aalen’s additive model, accelerated
failure model and Cox’s model.

7) Isotonic regression: IR is curve fitting technique closely
similar to LR. However, it is free-form curve fitting such that
the fit is not non-increasing or non-decreasing everywhere
and is as close to the actual observations. The advantage is
that IR does not constraint itself to present a target function
for the data such as LR presents linearity as a target function.

The Spark platform and its component MLib have been
evaluated for performance accuracy and execution time using
the following metrics:

1) Mean Absolute Error (MAE): It is given by the average
of the error values iterated over all the predicted values.
It does not represent error as good as RMSE under the
condition that data follows gaussian distribution.

M.A.E. =
1

m
∗

m∑
k=1

|ek| (6)

2) Root Mean Square Error (RMSE): It is a measure of
average error. However, it represents three characteristics
of set of errors namely, variance in the distribution of
inaccuracy values and with the square root of the number
of records (

√
m) and average-error. It is considered to be

very sensitive to outliers when compared to MAE.

R.M.S.E. =

√√√√ 1

m
∗

m∑
k=1

e2k (7)

V. Evaluation Results

In this section, we present and discuss the results of the
load prediction in smart grids. The models or predictors have
been evaluated in terms of RMSE, MAE, training time (s)
and testing time (s) using the smart meter energy consumption
dataset from England households.

TABLE II: RESULTS

ML
Algorithm RMSE MAE Training

time (s)
Prediction
time (s)

LR 0.3729 0.3135 1.6114 0.2288
GLR 0.3679 0.2865 0.8782 0.2362
DT 0.4825 0.3415 1.2334 0.2715
RF 0.3652 0.2821 1.6614 0.2780
GBT 0.5098 0.3554 6.2548 0.2873
SR 0.4279 0.3649 3.5008 0.3649
IR 0.6836 0.5123 0.8599 0.2741

In this work, we have assessed the performance of load
prediction models on big data processing platform and these
models are based on classical ML models namely LR, GLR,
DT, RF, GBT, SR and IR. The results of performance in terms
of RMSE, MAE, training and testing times are illustrated in
the Table II, Figure 3 and Figure 4.

It is evident that the RF performs better for load prediction
than all the other regression models. This is due to the fact
that the RMSE of RF is 0.3652 while the regressors like GLR
and LR have the RMSE of 0.3679 and 0.3792 respectively.
Although, GLR and RF have similar accuracy in terms of
RMSE, it is evident that GLR performs in less duration of
time. The training time is the least for IR (0.85 s) followed by
GLR which has training time of 0.878 s. And it is observed
that the most accurate RF regression has a higher training time
of 1.66 sec which is about 2 times greater than the fastest
regression models.

When it comes to the prediction time, the linear regression
is the fastest of all the regression models with a prediction
time of 0.228 sec. However, it is closely followed by GLR
with a prediction time of 0.236 sec. It is clear that the Apache
Spark platform provides a parallel and distributed computing
platform for the ML models to perform in faster times than
in standalone machines. However, it is to be noted that the
data size should be of larger size so that the time to distribute
the resources is less when compared to the actual processing
time. In such environment, Apache Spark with its distributed
computing and parallel processing abilities can provide real-
time processing platform for load prediction in smart grids.

VI. Conclusions and Future Work

This paper presents the performance of ML algorithms
using MLib library of Apache Spark. According to the results,
it is clear that the distributed computing of load forecasting
provides satisfactory performance in terms of accuracy and
computation times.

Fig. 3: Performance comparison in terms of RMSE and
Training time

Fig. 4: Performance comparison in terms of MAE and
Testing time

In future work, the experiments would be extended to deep
learning techniques in Apache Spark. However, currently there
are no in-house implementations of deep learning libraries in
MLib library of Apache Spark for regression. We would also
like to extend our analysis using different job schedulers like
Apache Mesos, YARN and LSF to improve the performance
of load forecasting in terms of computation time. Also, the
work can be further extended towards the optimization of the
number of nodes, number of cores and memory provided.
The comparison of performance in terms of accuracy and
computation times against different number of nodes, cores and
memory will help in the computation resource management for
distributed computing.

VII. Acknowledgment

This publication was made possible by NPRP grant
[NPRP10-0101-170082] from the Qatar National Research
Fund (a member of Qatar Foundation), the co-funding by
IBERDROLA QSTP LLC and sponsorship by Texas A & M
Energy Institute Fellowship. Portions of this research were
conducted with the advanced computing resources provided
by Texas A & M High Performance Research Computing.
The statements made herein are solely the responsibility of
the authors.

References
[1] Amira Mohamed, Shady S Refaat, and Haitham Abu-Rub. A review

on big data management and decision-making in smart grid. Power
Electronics and Drives, 4(1):1–13, 2019.

[2] London datastore. https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households.

[3] Hao-Tian Zhang, Fang-Yuan Xu, and Long Zhou. Artificial neural
network for load forecasting in smart grid. In 2010 International
Conference on Machine Learning and Cybernetics, volume 6, pages
3200–3205. IEEE, 2010.

[4] Xishuang Dong, Lijun Qian, and Lei Huang. Short-term load forecasting
in smart grid: A combined cnn and k-means clustering approach. In
2017 IEEE International Conference on Big Data and Smart Computing
(BigComp), pages 119–125. IEEE, 2017.

[5] Krzysztof Gajowniczek and Tomasz Zabkowski. Short term electricity
forecasting using individual smart meter data. Procedia Computer
Science, 35:589–597, 2014.

[6] Richard E Edwards, Joshua New, and Lynne E Parker. Predicting
future hourly residential electrical consumption: A machine learning
case study. Energy and Buildings, 49:591–603, 2012.

[7] Maheen Zahid, Fahad Ahmed, Nadeem Javaid, Raza Abid Abbasi,
Zainab Kazmi, Hafiza Syeda, Atia Javaid, Muhammad Bilal, Mariam
Akbar, and Manzoor Ilahi. Electricity price and load forecasting using
enhanced convolutional neural network and enhanced support vector
regression in smart grids. Electronics, 8(2):122, 2019.

[8] Changhao Xia, Mi Zhang, and Jin Cao. A hybrid application of soft
computing methods with wavelet svm and neural network to electric
power load forecasting. Journal of Electrical Systems and Information
Technology, 5(3):681–696, 2018.

[9] Hai-xiang Zhao and Frédéric Magoulès. A review on the prediction
of building energy consumption. Renewable and Sustainable Energy
Reviews, 16(6):3586–3592, 2012.

[10] Tri Kurniawan Wijaya, Matteo Vasirani, Samuel Humeau, and Karl
Aberer. Cluster-based aggregate forecasting for residential electricity
demand using smart meter data. In 2015 IEEE international conference
on Big data (Big data), pages 879–887. IEEE, 2015.

[11] Abbas Shahzadeh, Abbas Khosravi, and Saeid Nahavandi. Improving
load forecast accuracy by clustering consumers using smart meter data.
In 2015 international joint conference on neural networks (IJCNN),
pages 1–7. IEEE, 2015.

[12] Arnaud Grandjean, Jérôme Adnot, and Guillaume Binet. A review and
an analysis of the residential electric load curve models. Renewable
and Sustainable energy reviews, 16(9):6539–6565, 2012.

[13] Dark sky api - weather conditions. https://darksky.net/dev/.
[14] Jadran Sessa and Dabeeruddin Syed. Techniques to deal with missing

data. In 2016 5th international conference on electronic devices, systems
and applications (ICEDSA), pages 1–4. IEEE, 2016.

[15] Apache Hadoop. Apache hadoop & yarn, 2016.
[16] Wei Huang, Lingkui Meng, Dongying Zhang, and Wen Zhang. In-

memory parallel processing of massive remotely sensed data using an
apache spark on hadoop yarn model. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 10(1):3–19, 2016.

[17] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.
Learning spark: lightning-fast big data analysis. ” O’Reilly Media,
Inc.”, 2015.

[18] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill
Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew
Prout, Antonio Rosa, et al. Scheduler technologies in support of high
performance data analysis. In 2016 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2016.

[19] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill
Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew
Prout, Antonio Rosa, et al. Scalable system scheduling for hpc and big
data. Journal of Parallel and Distributed Computing, 111:76–92, 2018.

[20] C Hollowell, W Strecker-Kellogg, J Barnett, A Zaytsev, C Caramarcu,
and A Wong. Mixing htc and hpc workloads with htcondor and slurm.
In J. Phys. Conf. Ser., volume 898, page 082014, 2017.

[21] Travis Newhouse and Joseph Pasquale. Alps: An application-level
proportional-share scheduler. In 2006 15th IEEE International Con-
ference on High Performance Distributed Computing, pages 279–290.
IEEE, 2006.

[22] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing, page 5. ACM, 2013.

[23] Roger Ignazio. Mesos in action. Manning Publications Co., 2016.
[24] Apache Spark. Classification and regression. https://spark.apache.org/

docs/latest/ml-classification-regression.html.

