
EasyChair Preprint
№ 2468

Induction with Generalization in Superposition
Reasoning

Márton Hajdu, Petra Hozzová, Laura Kovács,
Johannes Schoisswohl and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 2, 2020

Induction with Generalization in Superposition
Reasoning

Márton Hajdú1, Petra Hozzová1, Laura Kovács1,2, Johannes Schoisswohl1,3,
and Andrei Voronkov3,4

1 TU Wien, Austria
2 Chalmers University of Technology, Sweden

3 University of Manchester, UK
4 EasyChair

Abstract. We describe an extension of automating induction in super-
position-based reasoning by strengthening inductive properties and gen-
eralizing terms over which induction should be applied. We implemented
our approach in the first-order theorem prover Vampire and evaluated
our work against state-of-the-art reasoners automating induction. We
demonstrate the strength of our technique by showing that many in-
teresting mathematical properties of natural numbers and lists can be
proved automatically using this extension.

1 Introduction

Automating inductive reasoning opens up new possibilities for generating and
proving inductive properties, for example properties with inductive data
types [21,4] or inductive invariants in program analysis and verification [13,14].
Recent advances related to automating inductive reasoning, such as first-order
reasoning with inductively defined data types [16], the Avatar architecture [26],
inductive strengthening of SMT properties [22], structural induction in superpo-
sition [10] and general induction rules within saturation [19], make it possible to
re-consider the grand challenge of mechanizing mathematical induction [5]. In
this paper, we contribute to these advances by generalizing inductive reasoning
within the saturation-based proof search of first-order theorem provers using the
superposition calculus.

It is common in inductive theorem proving, that given a formula/goal F , to
try to prove a more general goal instead [5]. This makes no sense in saturation-
based theorem proving, which is not based on a goal-subgoal architecture. As
we aim to automate and generalize inductive reasoning within saturation-based
proof search, our work follows a different approach than the one used in induc-
tive theorem provers. Namely, our methodology in Section 4 picks up a formula
F (not necessarily the goal) in the search space and adds to the search space new
induction axioms with generalization, that is, instances of generalized induction
schemata, aiming at proving both ¬F and a more general formula than ¬F . In
Section 3 we give a concrete example motivating our approach, illustrating the

2 M. Hajdú et al.

advantage of induction with generalization in saturation-based proof search. We
then present our main contributions, as follows:

(1) We introduce a new inference rule for first-order superposition reasoning,
called induction with generalization (Section 4). Our work extends [19] by prov-
ing properties with multiple occurrences of the same induction term and by
instantiating induction axioms with logically stronger versions of the property
being proved. Our approach is conceptually different from previous attempts to
use induction with superposition [15,10,11], as we are not restricted to specific
clause splitting algorithms and heuristics used in [10], nor are we limited to in-
duction over term algebras with the subterm ordering in [11]. As a result, we
stay within the standard saturation framework and do not have to introduce
constraint clauses, additional predicates or change the notion of redundancy as
in [11].

(2) We implemented our work in the Vampire theorem prover [17] and com-
pared it to state-of-the-art reasoners automating induction, including Acl2 [5],
Cvc4 [2], Imandra [18], Zeno [24] and Zipperposition [10] (Section 5). We
also provide a set of handcrafted mathematical problems over natural numbers
and lists. We show that induction with generalization in Vampire can solve
problems that existing systems, including Vampire without this rule, cannot.

(3) We provide a new digital dataset consisting of over 3,300 inductive bench-
marks, for which generalized applications of induction is needed (Section 5).
Our dataset is formalized within the SMT-LIB format using data types [3] and
available at: https://github.com/vprover/inductive_benchmarks

2 Preliminaries

We assume familiarity with multi-sorted first-order logic and saturation-based
superposition reasoning. For details, we refer to [17]. Throughout this paper
we denote fresh Skolem constants by σ, variables by x, y, z and terms by t, all
possibly with indices. We denote the equality predicate by = and consider = as
part of the language. Further, we write t1 6= t2 for the formula ¬(t1 = t2).

Given a set of formulas (including a negated conjecture), superposition-based
theorem provers run saturation algorithms on a set of clauses corresponding to
the clausal normal form (CNF) of the input set of formulas. We denote literals
by L and clauses by C, all possibly with indices. We use � to denote the empty
clause. In [16] we showed how superposition-based provers can be extended with
reasoning about the theory for finite term algebras.

We will denote term algebras corresponding to natural numbers by N and
lists of natural numbers by L. We refer to the elements of the signature of the
term algebras as constructors. We will use the same notations N and L for these
term algebras extended by additional function and predicate symbols shown in
Figure 1.

https://github.com/vprover/inductive_ benchmarks

Induction with Generalization in Superposition Reasoning 3

Natural numbers N Natural lists L
Constructors 0 : N s : N→ N nil : L cons : N× L→ L
Symbols + : N× N→ N ++: L× L→ L

≤: N× N→ bool prefix : L× L→ bool

Axioms ∀y.(0 + y = y) ∀l.(nil ++ l = l)
∀x, y.(s(x) + y = s(x+ y)) ∀x, l, k.(cons(x, l) ++ k = cons(x, l ++ k))
∀x.0 ≤ x ∀l.prefix(nil, l)
∀x.¬s(x) ≤ 0 ∀x, l.¬prefix(cons(x, l), nil)
∀x, y.

(
s(x) ≤ s(y) ∀x, l, y, k.

(
prefix(cons(x, l), cons(y, k))

↔ x ≤ y
)

↔ (x = y ∧ prefix(l, k))
)

Fig. 1. Term algebras of N and L, together with additional symbols and axioms.

Specifically, we will deal with + and ≤ for N having their standard meaning
and ++ and prefix for L, denoting the list concatenation and the prefix relation,
respectively. These additional symbols are axiomatized by first-order formulas
corresponding to their recursive definitions, shown in Figure 1.

While we use N and L for illustration, we however note that our approach
can be used for proving properties over any other theories with various forms of
induction.

Theorem proving of first-order properties of inductively defined data types
needs to handle the domain closure, injectivity, distinctness and acyclicity axioms
of term algebras – a detailed definition of these axioms can be found in [23,16].
The challenge we address in [16] is how to automate proving term algebras
properties given the fact that the acyclicity axiom is not finitely axiomatizable.

Throughout this paper, we will be using the structural induction axiom and
rule for N, introduced in [19], for illustrating our approach. Given a literal ¬L[t],
where t is chosen as an induction term, a structural induction axiom for N is:(

L[0] ∧ ∀x.(L[x]→ L[s(x)])
)
→ ∀y.(L[y]). (1)

Informally, the axiom expresses that if the base case holds, and if the induction
step holds, then the literal holds for all possible values. The structural induction
rule for N, given a clause ¬L[t] ∨ C, adds a clausified form of this axiom to the
search space:

¬L[t] ∨ C
(¬L[0] ∨ L[σ] ∨ L[y]) ∧ (¬L[0] ∨ ¬L[s(σ)] ∨ L[y]). (2)

After using the rule, the L[y] in both resulting clauses can be resolved against
the ¬L[t] in the premise clause.

3 Motivating Example

Let us now motivate our approach to induction with generalization, by consid-
ering the following formula expressing the associativity of addition over N:

∀x, y, z.(x+ (y + z) = (x+ y) + z), with x, y, z ∈ N. (3)

4 M. Hajdú et al.

(C1) σ1 + (σ2 + σ3) 6= (σ1 + σ2) + σ3 [input]
(C2) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) = (σ + σ2) + σ3 [induct. C1]
(C3) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) 6= (s(σ) + σ2) + σ3 [induct. C1]
(C4) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ s(σ + (σ2 + σ3)) 6= s((σ + σ2) + σ3) [C3 + axiom]
(C5) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) 6= (σ + σ2) + σ3 [injective C4]
(C6) 0 + (σ2 + σ3) 6= (0 + σ2) + σ3 [res. C2, C5]
(C7) σ2 + σ3 6= σ2 + σ3 [C6 + axiom]
(C8) � [trivial ineq. C7]

Fig. 2. Proof of associativity of + in a saturation-based theorem prover with induction

The induction approach introduced in [19] is able to prove this problem. The
main steps of such a proof are shown in Figure 2 and discussed next. First, the
negation of formula (3) is skolemized, yielding the (unit) clause C1 of Figure 2.
As already mentioned, the σi denote fresh Skolem constants introduced during
clausification. Next, the structural induction axiom (1) is instantiated so that its
conclusion can resolve against C1 using the constant σ1 as the induction term,
resulting in the formula:(

0 + (σ2 + σ3) = (0 + σ2) + σ3 ∧
∀x.(x+ (σ2 + σ3) = (x+ σ2) + σ3 → s(x) + (σ2 + σ3) = (s(x) + σ2) + σ3)

)
→ ∀y.(y + (σ2 + σ3) = (y + σ2) + σ3).

(4)

Then, the CNF of the induction axiom (4) is added to the search space using
the following instance of the structural induction rule (2):

σ1 + (σ2 + σ3) 6= (σ1 + σ2) + σ3

(0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) = (σ + σ2) + σ3∨
y + (σ2 + σ3) = (y + σ2) + σ3)

∧
(0 + (σ2 + σ3) 6= (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) 6= (s(σ) + σ2) + σ3∨

y + (σ2 + σ3) = (y + σ2) + σ3)

. (5)

The clauses from the inference conclusion are resolved against C1, yielding
clauses C2, C3 of Figure 2. Clause C4 originates by repeated demodulation into C3

using the second axiom of Figure 1 over N. Further, C5 is derived from C4 by
using the injectivity property of term algebras and C6 is a resolvent of C2 and
C5. Clause C7 is then derived by repeated demodulation into C6, using the the
first axiom of Figure 1 over N. By removing the trivial inequality from C7, we
finally derive the empty clause C8.

Consider now the following instance of the associativity property (3):

∀x.(x+ (x+ x) = (x+ x) + x). (6)

While (6) is an instance of (3), we cannot prove it using the same approach.
Let us explain why this is the case. By instantiating the induction axiom (1)
using (6), we get:(

0 + (0 + 0) = (0 + 0) + 0 ∧
∀x.(x+ (x+ x) = (x+ x) + x→ s(x) + (s(x) + s(x)) = (s(x) + s(x)) + s(x))

)
→ ∀y.(y + (y + y) = (y + y) + y).

(7)

Induction with Generalization in Superposition Reasoning 5

After resolving this axiom with the skolemized negation of (6), we get the fol-
lowing two clauses5:

0 + (0 + 0) 6= (0 + 0) + 0 ∨ σ + (σ + σ) = (σ + σ) + σ (8)

0 + (0 + 0) 6= (0 + 0) + 0 ∨ s(σ) + (s(σ) + s(σ)) 6= (s(σ) + s(σ)) + s(σ) (9)

While the first literals of (8) and (9) are easily resolved using axioms of +,
not much can be done with the latter literals. We can only apply repeated
demodulations over the second literal of (9) using axioms of + and the injectivity
property of term algebras, yielding σ+s(σ+s(σ)) 6= (σ+s(σ))+s(σ). No further
inference over this formula can be applied, in particular it cannot be resolved
against the second literal of (8). Hence, the approach of [19] fails proving (6).

The existing approaches to induction also suffer from the same problem.
For example [5,18,2,24,10], can prove property (3) but fail to prove its weaker
instance (6). The common recipe in inductive theorem proving [5] is to try to
prove (3) in addition to trying to prove (6).

Interestingly, in saturation-based theorem proving we can do better. If we
follow the common recipe, we would add a generalized goal and then an induction
axiom for it. Instead, we only add the induction axiom instance corresponding
to the generalized goal without adding the extra goal, which results in a smaller
number of clauses. More precisely, in addition to the instance of the induction
schema corresponding to (6), we also add instance (4) corresponding to (3). We
call this new inference rule induction with generalization.

4 Induction with Generalization

Following [19], we consider an induction axiom to be any valid formula of the
form premise→ ∀y.(L[y]), in the underlying theory, such as the theory of term
algebras. An example of an induction axiom is the structural induction axiom (4).
An induction schema is a collection of induction axioms. Each induction schema
we consider is the set of first-order instances of some valid higher-order formula.
The work [19] introduces a rule of induction where a ground literal ¬L[t] appear-
ing in the proof search triggers addition of the corresponding induction axioms
premise→ ∀y.(L[y]) to the search space:

¬L[t] ∨ C
CNF(premise→ ∀y.(L[y]))

(induction)
, (10)

where L[y] is obtained from L[t] by replacing all occurrences of t by y. An
example of an instance of the induction rule is (5).

While addition of a large number of such formulas may seem to blow up the
search space, in practice Vampire handles such addition with little overhead,
resulting in finding proofs containing nearly 150 induction inferences [19]. The
reason why the overhead of adding structural induction axioms is small is ex-
plained in [20]: the added clauses only contain one variable (the y in L[y]), and

5 These clauses are instances of C2 and C3 from Figure 2.

6 M. Hajdú et al.

the clauses containing this literal are immediately subsumed by a ground clause.
The net result is adding a small number of ground clauses, which are especially
easy to handle in the Avatar architecture implemented in Vampire.

Induction with generalization. In a nutshell, given a goal, we add an induc-
tion axiom corresponding to a more general one. The rule can be formulated in
the same way as (10), yet with a different conclusion:

¬L[t] ∨ C
CNF(premise′ → ∀y.(L′[y]))

(IndGen)
, (11)

where L′[y] is obtained from L[t] by replacing some occurrences of t by y, and
premise′ is the premise corresponding to L′[y]. Both induction rules are obvi-
ously sound because their conclusions are constructed such that they are valid
in the underlying theory.

To implement IndGen, if a clause selected for inferences contains a ground
literal ¬L[t] having more than one occurrence of t, we should select a non-empty
subset of occurrences of t in L[t], select an induction axiom corresponding to
this subset, and then apply the rule.

Motivating example, continued. Suppose that t is σ1 and ¬L[t] is σ1+(σ1+
σ1) 6= (σ1 + σ1) + σ1, which is obtained by negating and skolemizing (6). Then
by applying IndGen we can add the following induction axiom:(

0 + (σ1 + σ1) = (0 + σ1) + σ1 ∧
∀x.(x+ (σ1 + σ1) = (x+ σ1) + σ1 → s(x) + (σ1 + σ1) = (s(x) + σ1) + σ1)

)
→ ∀y.(y + (σ1 + σ1) = (y + σ1) + σ1),

(12)

which is different from (7). When we add this formula, we can derive the empty
clause in the same way as in Figure 2.

Saturation with induction with generalization. The main questions to
answer when applying induction with generalization is which occurrences of the
induction term in the induction literal we should choose.

Generally, if the subterm t occurs n times in the premise, there are 2n − 1
ways of applying the rule, all potentially resulting in formulas not implying each
other. Thus, an obvious heuristic to use all non-empty subsets may result in too
many formulas. For example, σ1 + (σ1 + σ1) 6= (σ1 + σ1) + σ1 would result in
adding 63 induction formulas.

Another simple heuristic is to restrict the number of occurrences selected
as induction term to a fixed number. This strategy reduces the number of ap-
plications of induction at the cost of losing proofs that would need subsets of
cardinality larger than the limit. Finding possible heuristics for selecting specific
subsets for common cases of literals can be subject of future work, especially
interesting in proof assistants in mathematics.

Note that some of the conclusions of (11) can, in turn, have many children
obtained by induction with generalization. Our experiments in Section 5 show
that, even when we generate all possible children, Vampire can still solve large

Induction with Generalization in Superposition Reasoning 7

examples with more than 10 occurrences of the same induction variable, again
thanks to the effect that, for each application of induction, only a small number
of ground clauses turn out to be added to the search space.

We therefore believe that our work can potentially be also useful for larger ex-
amples, and even in cases when the inductive property to be proved is embedded
in a larger context.

5 Experiments

Implementation. We implemented induction with generalization in Vampire,
with two new options:

– boolean-valued option indgen, which turns on/off the application of induc-
tion with generalization, with the default value being off, and

– integer-valued option indgenss, which sets the maximum size of the subset
of occurrences used for induction, with the default value 3. This option is
ignored if indgen is off.

Our implementation of induction with generalization is available at: https:

//github.com/vprover/vampire.
In experiments described here, if indgen is off, Vampire performs induction on
all occurrences of a term in a literal as in [19]. In this section

– Vampire refers to the (default) version of Vampire with induction rule (10)
(i.e., the option -ind struct)

– Vampire* additionally uses the IndGen rule of induction with generaliza-
tion (11) (i.e., the options -ind struct -indgen on).

– Vampire** uses the same options as Vampire* plus the option -indoct

on, which applies induction to arbitrary ground terms, not just to constants
as in Vampire or in Vampire*.

SMT-LIB experiments. We evaluated our work using the UFDT and
UFDTLIA problem sets from SMT-LIB [3], yielding all together 4854 prob-
lems. Many of these problems come from program analysis and verification and
contain large numbers of axioms, so they are different from standard mathemat-
ical examples used in many other papers on automation of induction. Given the
nature of the benchmarks, we were interested in two questions:

1. What is the overhead incurred by using induction with generalization in
large search spaces, especially when it is not used in proofs? If the new
rule is prohibitively expensive, this means it could probably only be used in
smaller examples used in interactive theorem proving.

2. Is the new rule useful at all for for this kind of benchmarks? While the new
rule can be used in principle, should it (or can it) be used in program analysis
and verification?

https://github.com/vprover/vampire
https://github.com/vprover/vampire

8 M. Hajdú et al.

Our results show that the overhead is relatively small but we could not solve
problems not solvable without the use of the new rule.

Induction (10) in Vampire was already evaluated in [19] against other solvers
on these examples. Hence, we only compare how Vampire*/Vampire** per-
forms against Vampire, using both the default and the portfolio modes. (In
the default mode, Vampire/Vampire*/Vampire** uses default values for all
parameters except the ones specified by the user; in the portfolio mode, Vam-
pire/Vampire*/Vampire** sequentially tries different configurations for pa-
rameters not specified by the user.) Together, we ran 18 instances: Vampire,
Vampire* with indgenss set to 2, 3, 4 and unlimited, and Vampire** with
the same four variants of indgenss; each of them in both default and portfolio
mode. We ran our experiments on the StarExec cluster [25].

The best Vampire*/Vampire** solved 5 problems in the portfolio mode
and 1 problem in the default mode not solved by Vampire. However, the proofs
found by them did not use induction with generalization. This is a common
problem in experiments with saturation theorem proving: new rules change the
direction of the proof search and may result in new simplifications that also
drastically affect the search space. As a result, new proofs may be found, yet
these proofs do not actually use the new rule. There were no problems solved by
Vampire that were not solved by any Vampire*/Vampire**.

The maximum number of IndGen applications in proofs was 3 and the max-
imum depth of induction was 4. Vampire*/Vampire** used generalized in-
duction in proofs of 10 problems. However, these problems are also solvable by
Vampire (without generalized induction). Thus, we conclude that SMT-LIB
problems (probably as well as other typical program analysis and verification
benchmarks) typically do not gain from using generalization.

Experiments with mathematical problems. We handcrafted a number of
natural problems over natural numbers and lists and tested the new rule on these
problems. Our benchmarks are available at: https://github.com/vprover/

inductive_benchmarks.
Table 1 lists 16 of such examples using the functions defined in Figure 1. Some

examples were taken from or inspired by the TIP benchmark library [9]: e.g., the
seventh benchmark in Table 1 is adapted from the TIP library and the second
problem is inspired by a symmetric problem from the TIP library, ∀x.(s(x)+x =
s(x+x)). While they are handcrafted, we believe they are representative since no
attempt was done to exclude problems not solvable by Vampire using induction
with generalization.

We evaluated and compared several state-of-the-art reasoners supporting
standard input formats and, due to the nature of our work, either superposition-
based approaches or approaches to generalization. It was not easy to make these
experiments since provers use different input syntaxes (see Table 2). As a result,
we also had to design translations of our benchmarks.

Except for Imandra (which is a cloud-based service), we ran our experi-
ments on a 2,9 GHz Quad-Core Intel Core i7 machine. We ran each solver as
a single-threaded process with a 5 second time limit. Our results are summa-

https://github.com/vprover/inductive_benchmarks
https://github.com/vprover/inductive_benchmarks

Induction with Generalization in Superposition Reasoning 9

Table 1. Experiments with 16 handcrafted benchmarks. “X” denotes success, “–”
denotes failure.

T
he
or
y

Va
m
pi
re
*

Va
m
pi
re
**

Va
m
pi
re

C
vc
4

Zi
pp
er
po
si
ti
on

Ze
no

Im
an
dr
a

A
cl
2

C
vc
4-
G
en

Zi
pR
ew
ri
te

∀x, y.(x + y = y + x)

N

X X X X X X X – X X
∀x.(x + s(x) = s(x + x)) X X – – – – – – X X

∀x, y, z.(x + (y + z) = (x + y) + z) X X X X X X X X X X
∀x.(x + (x + x) = (x + x) + x) X X – – – X – – X X

∀x.((x+x)+((x+x)+x) = x+(x+((x+x)+x))) X X – – – X – – X X
∀x, y.(y + (x + x) = (x + y) + x) X X – – – – – – – X

∀x.(x ≤ x) X X X X X X X X X X
∀x, y.(x ≤ x + y) X X X X X X X X X X
∀x.(x ≤ x + x) X X – – – – – – – –

∀x.(x + x ≤ (x + x) + x) X X – – – X – – – –
∀l, k, j.(l ++ (k ++ j) = (l ++ k) ++ j)

L

X X X X X X X X X X
∀l.(l ++ (l ++ l) = (l ++ l) ++ l) X X – – – – – – – X

∀l, k.(l ++ (k ++ (l ++ l)) = (l ++ k) ++ (l ++ l)) X X – – – – – – – X
∀l, k.prefix(l, l ++ k) X X X X X X X X X X
∀l.prefix(l, l ++ l) X X – – – – – – – –

∀l : L, x : N.(cons(x + s(x), l) ++ (l ++ l)
= (cons(s(x) + x, l) ++ l) ++ l)

N,L X X – – – – – – – –

rized in Table 1, where Cvc4-Gen refers to the solver Cvc4 with the automatic
lemma discovery enabled. ZipRewrite refers to Zipperposition with function
and predicate definitions encoded as rewrite rules instead of ordinary logical for-
mulas, in order to trigger its generalization heuristics [10]. Configurations used
for running all solvers are listed in Table 2.

Table 1 shows that Vampire*/Vampire** (with indgenss=3) outperforms
all solvers, including Vampire itself. When considering solvers without fine-
tuned heuristics, such as in ZipRewrite and Cvc4-Gen, Vampire** solves
many more problems. Interestingly, ZipRewrite heuristics work well with ad-
dition and list concatenation, but not with orders. Further, Cvc4-Gen heuristics
prove associativity of addition, but not the list counterpart for concatenation.
We believe our experiments show the potential of using induction with general-
ization as a new inference rule since it outperforms heuristic-driven approaches
with no special heuristics or fine-tuning added to Vampire.

Experiments with problems requiring associativity and commutativ-
ity. The (x+ x) + x = x+ (x+ x) is a special case of a family of problems over
natural numbers. The problems can be formulated as follows.

Let t1 and t2 be two terms built using variables, + and the successor function.
Then the equality t1 = t2 is valid over natural numbers if and only if they have
the same number of occurrences of the successor function and each variable of
this equality has the same number of occurrences in t1 and t2. For example, the
following equality is valid over natural numbers:

10 M. Hajdú et al.

Table 2. Configurations and input format of solvers for the mathematical problems.

Solver Configuration Input format

Vampire -ind struct SMT-LIB

Vampire* -ind struct -indgen on SMT-LIB

Vampire** -ind struct -indgen on

-indoct on

SMT-LIB

Cvc4 --quant-ind SMT-LIB

Cvc4-Gen --quant-ind

--conjecture-gen

SMT-LIB

Zipperposition default mode .zf (native input format)

ZipRewrite default mode .zf with definitions as rewrite rules

Zeno default mode functional program encoding

Imandra default mode functional program encoding

Acl2 default mode functional program encoding

s(x+ (x+ s(y + z))) + s(z) = (z + s(x)) + (x+ s(s((z + y)))).

To prove such problems over N, one needs both induction and generalization.
Without the successor function, they can be easily proved using associativity and
commutativity of +, but associativity and commutativity are not included in the
axioms of N. When the terms are large, the problems become highly challenging.

We generated a set of instances of these problems (with and without the
successor function, and also other functions and predicates) by increasing term
sizes. We also generated similar problems for lists using concatenation and re-
verse functions, and prefix predicate. Some of the terms were, e.g., variations
of (6) with 20 occurrences of x. Our entire dataset, containing over 3,300 exam-
ples, is available at the previously mentioned URL.

We were again interested in evaluating and comparing various reasoners and
approaches on these problems. The interesting feature of these problems is that
they are natural yet we can generate problems of almost arbitrary complexity.

We evaluated and compared Vampire*, Vampire**, Cvc4-Gen, Zeno and
ZipRewrite, that is the best performing solvers on inductive reasoning with
generalization according to Table 1, using the same experimental setting as al-
ready described for Table 1. Table 3 lists a partial summary of our experiments,
displaying results for 2,007 large instances of four simple properties with one
variable, corresponding to the fourth, ninth, twelfth and fifteenth problem from
Table 1. (Due to space constraints, we chose these problems as a representative
subset of our large benchmarks, since the solvers’ performance was very similar
for the whole benchmark set.)

In Table 3, we use the following notation. By nx = nx we denote formulas
of the form x ◦ ... ◦ x = x ◦ ... ◦ x with n occurrences of x on both sides of the
equality, and parentheses on various places in the expressions, with ◦ being +, or
++ for the datatypes N and L, respectively. By mx ≤ nx and prefix(mx, nx) we

Induction with Generalization in Superposition Reasoning 11

denote formulas of the form x+...+x ≤ x+...+x and prefix(x ++ ... ++ x, x ++
... ++ x), respectively, with m occurrences of x on the left and n occurrences of
x on the right hand side of the ≤ or prefix predicates, and with parentheses on
various places in the expressions. Result N%(M) means that the solver solved
M of the problems from this category, which corresponds to N%.

From Table 3, we conclude that Vampire** scales better than Cvc4-Gen
on a large majority of benchmarks, and scales comparably to Zeno. While
ZipRewrite can solve more problems than Vampire**, Vampire** is more
consistent in solving at least some problems from each category. ZipRewrite
can solve many problems thanks to treatment of equalities as rewrite rules. We
are planning to add an option of using recursive definitions as rewrite rules in
Vampire in the future too.

6 Related Work

Research into automating induction has a long history with a number of tech-
niques developed, including for example approaches based on semi-automatic
inductive theorem proving [5,7,18,8], specialized rewriting procedures [12], SMT
reasoning [22] and superposition reasoning [15,10,19,11].

Previous works on automating induction mainly focus on inductive theorem
proving [7,8,24]: deciding when induction should be applied and what induction
axiom should be used. Further restrictions are made on the logical expressive-
ness, for example induction only over universal properties [5,24] and without
uninterpreted symbols [18], or only over term algebras [15,11]. Inductive proofs
usually rely on auxiliary lemmas to help proving an inductive property. In [8]
heuristics for finding such lemmas are introduced, for example by randomly
generating equational formulas over random inputs and using these formulas if
they hold reasonably often. The use of [8] is therefore limited to the underlin-
ing heuristics. Other approaches to automating induction circumvent the need
for auxiliary lemmas by using uncommon cut-free proof systems for inductive
reasoning, such as a restricted ω-rule [1], or cyclic reasoning [6].

The work presented in this paper automates induction by integrating it
directly in superposition-based proof search, without relying on rewrite rules
and external heuristics for generating auxiliary inductive lemmas/subgoals as
in [7,8,24,5,18]. Our new inference rule IndGen for induction with generaliza-
tion adds new formulas to the search space and can replace lemma discovery
heuristics used in [7,8,22]. Our work also extends [19] by using and instantiating
induction axioms with logically stronger versions of the property being proved.
Unlike [10], our methods do not necessarily depend on Avatar [26], can be
used with any (inductive) data type and target induction rules different than
structural induction. Contrarily to [11], we are not limited to induction over
term algebras with the subterm ordering and we stay in a standard saturation
framework. Moreover, compared to [5,7,8,22], one of the main advantages of our
approach is that it does not use a goal-subgoal architecture and can, as a result,
combine superposition-based equational reasoning with inductive reasoning.

12 M. Hajdú et al.

Table 3. Experiments on 2,007 arithmetical problems.

Theory Vampire* Vampire** Cvc4-Gen Zeno ZipRewrite

3x = 3x

N

100% (1) 100% (1) 100% (1) 100% (1) 100% (1)
4x = 4x 90% (9) 100% (10) 100% (10) 20% (2) 100% (10)
5x = 5x 30% (15) 50% (25) 100% (50) 12% (6) 100% (50)
6x = 6x 8% (4) 18% (9) 100% (50) 22% (11) 100% (50)
7x = 7x – 10% (5) 100% (50) 2% (1) 100% (50)
8x = 8x – 2% (1) 100% (50) 4% (2) 100% (50)
9x = 9x – 2% (1) 100% (50) 8% (4) 84% (42)

10x = 10x – – 100% (50) 8% (4) 90% (45)

3x = 3x

L

100% (1) 100% (1) – – 100% (1)
4x = 4x 70% (7) 90% (9) – – 100% (10)
5x = 5x 46% (23) 48% (24) – – 100% (50)
6x = 6x 6% (3) 26% (13) – 6% (3) 100% (50)
7x = 7x 2% (1) 6% (3) – – 100% (50)
8x = 8x – – – – 90% (45)
9x = 9x – – – – 88% (44)

10x = 10x – – – – 68% (34)

3x ≤ 3x

N

100% (2) 100% (2) 100% (2) 100% (2) 100% (2)
4x ≤ 4x – 15% (3) 100% (20) 20% (4) 100% (20)
5x ≤ 5x – 4% (2) 100% (50) 12% (6) 100% (50)
1x ≤ 2x 100% (1) 100% (1) – – –
2x ≤ 3x 50% (1) 50% (1) – 100% (2) –
3x ≤ 4x – 30% (3) – 40% (4) –
4x ≤ 5x – 8% (4) – 16% (8) –
5x ≤ 6x – 6% (3) – 10% (5) –
1x ≤ 3x 100% (2) 100% (2) – 100% (2) 100% (2)
2x ≤ 4x – 40% (2) – 40% (2) 100% (5)
3x ≤ 5x – 14% (4) – 28% (8) 100% (28)
4x ≤ 6x – 10% (5) – 18% (9) 100% (50)
5x ≤ 7x – 4% (2) – 18% (9) 100% (50)
1x ≤ 4x 100% (5) 100% (5) – 80% (4) 100% (5)
2x ≤ 5x – 35% (5) – 42% (6) 100% (14)
3x ≤ 6x – 18% (9) – 38% (19) 100% (50)
4x ≤ 7x – 6% (3) – 16% (8) 100% (50)
5x ≤ 8x – – – 6% (3) 100% (50)
1x ≤ 5x 100% (14) 100% (14) – 85% (12) 100% (14)
2x ≤ 6x – 33% (14) – 26% (11) 100% (42)
3x ≤ 7x – 14% (7) – 32% (16) 100% (50)
4x ≤ 8x – 4% (2) – 18% (9) 100% (50)
5x ≤ 9x – – – 14% (7) 100% (50)

prefix(3x, 3x)

L

100% (2) 50% (1) – – 100% (2)
prefix(4x, 4x) – 25% (5) – – 100% (20)
prefix(5x, 5x) – 2% (1) – 4% (2) 100% (50)
prefix(1x, 2x) 100% (1) 100% (1) – – –
prefix(2x, 3x) – 50% (1) – 50% (1) –
prefix(3x, 4x) – 20% (2) – 20% (2) –
prefix(4x, 5x) – 8% (4) – 8% (4) –
prefix(5x, 6x) – – – – –
prefix(1x, 3x) 100% (2) 100% (2) – 50% (1) 100% (2)
prefix(2x, 4x) 20% (1) 40% (2) – 20% (1) 100% (5)
prefix(3x, 5x) – 14% (4) – 14% (4) 100% (28)
prefix(4x, 6x) – 6% (3) – 8% (4) 100% (50)
prefix(5x, 7x) – 2% (1) – 2% (1) 100% (50)
prefix(1x, 4x) 100% (5) 100% (5) – 40% (2) 100% (5)
prefix(2x, 5x) – 35% (5) – 21% (3) 100% (14)
prefix(3x, 6x) – 14% (7) – 12% (6) 100% (50)
prefix(4x, 7x) – 4% (2) – 4% (2) 100% (50)
prefix(5x, 8x) – – – 4% (2) 100% (50)
prefix(1x, 5x) 100% (14) 100% (14) – 42% (6) 100% (14)
prefix(2x, 6x) – 33% (14) – 21% (9) 100% (42)
prefix(3x, 7x) – 16% (8) – 16% (8) 100% (50)
prefix(4x, 8x) – 10% (5) – 12% (6) 100% (50)
prefix(5x, 9x) – – – – 100% (50)

Induction with Generalization in Superposition Reasoning 13

Normally, generalization in theorem proving means that given a goal F , we
try to prove a more general goal. In logic, a statement F ′ is more general than
F if F ′ implies F . Thus, by proving F ′ we also prove F . One way to generalize
is to replace one or more occurrences of a subterm by a fresh variable, using the
fact that ∀x.(F [x]) implies F [t]. This is essentially the idea behind approaches
to generalization in all systems we compared with. While our approach is su-
perficially similar, it does something fundamentally different. Instead of (or in
addition to) adding an instance I of the induction schema that can be used to
prove F [t], we add an instance I ′ that can be used to prove ∀x.(F [x]). An in-
teresting observation is that, in general, neither I implies I ′, nor I ′ implies I, so
neither of I and I ′ is more general.

The second fundamental difference is that, because induction in Vampire is
not based on a goal-subgoal architecture, we can add both induction formulas
I and I ′ at the same time. While this may seem inefficient, for some induction
schemata, including structural induction, the overhead is very small (as also
confirmed by our experiments).

7 Conclusions

We introduced a new rule for induction with generalization in saturation-based
reasoning based on adding induction axioms for proving generalizations of the
goals appearing during proof-search. Our experiments show that we solve many
problems that other existing systems cannot solve. Future work includes design-
ing heuristics to guide proof search, using rewriting approaches, and performing
other kinds of generalization and induction.

Acknowledgements

We thank Giles Reger for discussions related to the work. We acknowledge fund-
ing supporting this work, in particular the ERC starting grant 2014 SYMCAR
639270, the EPSRC grant EP/P03408X/1, the ERC proof of concept grant 2018
SYMELS 842066, the Wallenberg Academy fellowship 2014 TheProSE, the Aus-
trian FWF research project W1255-N23, and the Hungarian-Austrian project
101öu8.

References

1. Baker, S., Ireland, A., Smaill, A.: On the Use of the Constructive Omega-Rule
within Automated Deduction. In: Proc. of LPAR. pp. 214–225 (1992)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. of CAV. pp. 171–177. Springer (2011)

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

14 M. Hajdú et al.

4. Blanchette, J.C., Peltier, N., Robillard, S.: Superposition with Datatypes and Co-
datatypes. In: Proc. of IJCAR. pp. 370–387 (2018)

5. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in com-
puting, vol. 23. Academic Press (1979)

6. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

7. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: A
Heuristic for Guiding Inductive Proofs. Artif. Intell. 62(2), 185–253 (1993)

8. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: HipSpec: Automating In-
ductive Proofs of Program Properties. In: Proc. of ATx/WInG. pp. 16–25 (2012)

9. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: Tons of Inductive
Problems. In: Proc. of CICM. pp. 333–337. Springer (2015)

10. Cruanes, S.: Superposition with Structural Induction. In: Proc. of FRoCoS. pp.
172–188 (2017)

11. Echenheim, M., Peltier, N.: Combining Induction and Saturation-Based Theorem
Proving. J. Automated Reasoning 64, 253–294 (2020)

12. Falke, S., Kapur, D.: Rewriting Induction + Linear Arithmetic = Decision Proce-
dure. In: Proc. of IJCAR. pp. 241–255 (2012)

13. Gleiss, B., Kovács, L., Robillard, S.: Loop Analysis by Quantification over Itera-
tions. In: Proc. of LPAR. pp. 381–399 (2018)

14. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on Demand. In: Prof. of ATVA.
pp. 248–266 (2018)

15. Kersani, A., Peltier, N.: Combining Superposition and Induction: A Practical Re-
alization. In: Proc. of FroCoS. pp. 7–22 (2013)

16. Kovács, L., Robillard, S., Voronkov, A.: Coming to Terms with Quantified Rea-
soning. In: Proc. of POPL. pp. 260–270 (2017)

17. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Proc. of
CAV. pp. 1–35 (2013)

18. Passmore, G., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kani-
shev, K., Maclean, E., Mometto, N.: The Imandra Automated Reasoning System.
In: Proc. of IJCAR (2020), to appear

19. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: Proc. of
CADE. pp. 477–494 (2019)

20. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. EasyChair
Smart Slide (2020), https://easychair.org/smart-slide/slide/hXmP

21. Reynolds, A., Blanchette, J.C.: A Decision Procedure for (Co)datatypes in SMT
Solvers. In: Proc. of IJCAI. pp. 4205–4209 (2016)

22. Reynolds, A., Kuncak, V.: Induction for SMT Solvers. In: Proc. of VMCAI. pp.
80–98 (2015)

23. Rybina, T., Voronkov, A.: A Decision Procedure for Term Algebras with Queues.
ACM Trans. Comput. Log. 2(2), 155–181 (2001)

24. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An Automated Prover for
Properties of Recursive Data Structures. In: Proc. of TACAS. pp. 407–421 (2012)

25. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A Cross-Community Infrastructure
for Logic Solving. In: Proc. of IJCAR. pp. 367–373 (2014)

26. Voronkov, A.: AVATAR: The Architecture for First-Order Theorem Provers. In:
Proc. of CAV. pp. 696–710. Springer-Verlag (2014)

https://easychair.org/smart-slide/slide/hXmP

	Induction with Generalization in Superposition Reasoning

