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Abstract. Mitral valve segmentation specifies a crucial first step to es-
tablish a machine learning pipeline that can support practitioners into
performing the diagnosis of mitral valve diseases, surgical planning, and
intraoperative procedures. To this end, we propose a totally automated
and unsupervised mitral valve segmentation algorithm, based on a low-
dimensional neural network matrix factorization of echocardiography
videos. The method is evaluated in a collection of echocardiography
videos of patients with a variety of mitral valve diseases and exceeds
the state-of-the-art method in all the metrics considered.
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1 Introduction

The mitral valve (MV) is a valve of the heart that regulates the blood flow
between two heart chambers, namely the left atrium and the left ventricle. It is
formed by two leaflets, the anterior and the posterior leaflet, that are attached to
a fibrous ring known as the mitral annulus. In healthy patients, the left atrium
contracts during diastole and the blood flows through the open MV into the left
ventricle that is dilating. During systole the left ventricle contracts and pushes
the blood into the aorta through the aortic valve, and the MV closes so that
the blood does not flow back into the atrium. Various diseases concern the MV
causing an alteration of the healthy blood flow between left atrium and left
ventricle. Briefly, two possible scenarios are possible. i) In case of a reduction
of the valve surface or leaflets mobility, a decline of the blood flow to the left
ventricle occurs, with an increase of the pressure on the MV. This condition is
better known as mitral stenosis and it is most often secondary to inflammatory
conditions, such rheumatic cardiac disease. ii) Conversely, if the integrity of the
coaptation line between the two leaflets is affected, blood can flow back to the
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left atrium during systole in what is called mitral regurgitation. This condition
defines the second most common cardiac valvular defect amenable of surgical
intervention and might be caused by inborn abnormalities of the valvular tissue,
geometric disparities between the left ventricle and the MV, various connective
tissue disorders and valve infections [6].

Echocardiography (echo), a minimally invasive medical imaging technique,
produces 2D and 3D pictures and videos using ultrasound waves generated by a
transducer, scattered/reflected by biological tissue and read by a detector. Echo
is the standard imaging tool in the clinical routine to perform the diagnosis
of most of heart diseases and dysfunctions, including MV diseases [14,1,6] since
echo is inexpensive, non-invasive and it enables both qualitative and quantitative
assessment of the myocardium and of the MV functions. The current clinical
protocol requires practitioners to manually measure a plethora of diagnostic
parameters of the cardiac valves as well as of the cardiac chambers.

In this paper we propose NN-MitralSeg, an unsupervised MV segmentation
algorithm that supports a systematic and fast evaluation of MV health status
for the medical practitioners. Our method improves on the Robust Non Negative
Matrix Factorization method (R-NNMF) proposed in [4] and it outperforms R-
NNMF on a dataset of 38 patients affected with MV dysfunction and mitral
regurgitation.

2 Related work

MV segmentation in 2D and 3D echo enables automatic diagnosis and person-
alized prognosis and, therefore, it has received a lot of attention recently. Many
early methods are based on active contour algorithms or on other methods that
depend heavily on human-in-the-loop contributions. Active contour algorithms
[8,2] require practitioners to initialize the segmentation algorithm, placing man-
ually a contour close to the desired position in a given frame or on multiple
frames [9,12]. Then the MV is segmented on the given frames optimizing a fixed
energy function, and the mask is propagated over time with the support of the
optical flow [10] and/or of a dynamical model of the MV [11]. In [3] the au-
thors proposed a method that leverages both an active contour algorithm that
segments the myocardial walls and a thin tissue detector that finds the valve
leaflets. Also in [13] medical practitioners initialize the segmentation denoting
multiple points that are then connected using J-splines.

The first attempts to design a fully automated MV segmentation algorithm
are proposed in [15,4]. The 2D echo video is factorized using (robust) non-
negative 2-rank matrix factorization. Every frame of the video is decomposed
as a non negative linear mixture of two frames and a sparse signal. The low-rank
factorization captures most of the myocardium wall motion, while the high di-
mensional sparse signal represents the echo noise and the MV movement. Then
the MV is segmented using simple diffusion and thresholding of the sparse sig-
nal. Despite producing satisfactory results on high quality echos, these methods
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performs poorly on noisy low quality videos, due mostly to the misplacement of
the region of interest (ROI).

We propose Neural Network Mitral Segmentation (NN-MitralSeg) 3, a method
that improves on [4] with a two-fold contribution: (i) we use a neural network
matrix factorization [5] (also know as neural collaborative filtering in [7]) to ac-
count for both linear and non-linear contributions of the myocardial wall motion,
in combination with a parametrized threshold operator to learn the high dimen-
sional sparse signal that captures the MV, and (ii) we leverage the information
of both the sparse signal and of the dense optical flow to delineate the ROI.

3 Method

3.1 Model

Each echo is initially represented as a tensor T ∈ Rh×w×T , where h and w are
respectively the height and the width of a single frame and T is the number of
frames in the video. We reshape each frame of the echo into a column vector and
concatenate each column to get a matrix X ∈ RN×T

+ where N = h ·w. Given the
matrix X we build a low dimensional embedding of it as follows. For each row
(pixel) n ∈ N and each column (frame) t ∈ T , we associate the latent feature
matrices with non-negative entries Un,Vt,∈ RD×K

+ . Let fθLD
denote the low

dimensional network with weights θLD and fθT denote the threshold network
with weights θT . The low dimensional network reconstructs the inputs as

X̂n,t = fθLD
(un,1 · vt,1, . . . ,un,D · vt,D).

where un,j ·vt,j is the inner product between the j-th row vectors of Un and Vt.
It is easy to see that the input of the fθLD

is equivalent to diag(UnV
T
t ), hence it

is a D-dimensional latent feature vector. Notice that K-rank non-negative matrix
factorization is obtained enforcing fθLD

= 1 and D = 1, where 1 is the identity
function (see [7]). The non-negativity of the latent features is imposed using a
non-negative activation function. Given the reconstruction X̂n,t, the difference

between Xn,t and X̂n,t serves as the scalar input to the threshold network and
is transformed to get a single output:

Ŝn,t = fθT (Xn,t − X̂n,t).

The threshold network is composed by just one node and a ReLu activation func-
tion and acts as a parametrized threshold operator. A diagram for the general
architecture is given in fig. 1.

3.2 Learning

The training of this model occurs in three stages. In the first stage we train
the low-dimensional network to provide an accurate approximation X̂. Subse-
quently, we train both the low-dimensional network and the threshold network

3 code is available at https://github.com/jprovost14/NN-MitralSeg

https://github.com/jprovost14/NN-MitralSeg
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diag(UnV
T
t ) X̂n,t

Xn,t

Ŝn,t

fθT

fθLD

Fig. 1: Diagram of the model used in NN-MitralSeg. The network fθLD
maps

the pixel and frame latent features Un, Vt to the reconstruction X̂n,t. Then the

threshold operator fθT is applied to the difference X̂n,t−Xn,t to give the sparse

signal Ŝn,t.

iteratively such that the threshold network fully reconstructs X− X̂. The final
stage of the training consists of imposing the sparse structure on the Ŝ using a
`1-norm regularizer.
Pre-training the Low-Dimensional and Threshold Networks. Pre-training
the parameters θLD and {(Un,Vt)}n,t of the low-dimensional network ensures

that the network can produce an accurate approximation of X̂, which is used as
input into the threshold operator. The pre-training of the low-dimensional net-
work is done in the same way as in [5]; freezing the latent (pixel and frame) fea-
tures {(Un,Vt)}n,t while updating θLD, and then freezing the low dimensional
network θLD while updating {(Un,Vt)}n,t. The objective that is optimized dur-
ing this stage is given by:

‖X− X̂‖2F + β

[∑
n

‖Un‖2F +
∑
t

‖Vt‖2F

]
,

where β is a regularization parameter and ‖ · ‖F is the Frobenius norm. In the
second stage also the threshold network is trained in an iterative fashion: update
θT while freezing θLD and {(Un,Vt)}n,t; then updating θLD and {(Un,Vt)}n,t
as described above while freezing θT according to the loss function given by:

‖X− X̂− Ŝ‖2F + β

[∑
n

‖Un‖2F +
∑
t

‖Vt‖2F

]
.

Training on the full objective. The goal of pre-training is to obtain two
networks that can fully reconstruct the echo. The low-dimensional network cap-
tures the myocardium movement and the threshold operator captures the echo
noise and the mitral valve movement. Sparsity is enforced by regularizing the
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loss function with the `1-norm:

‖X− X̂− Ŝ‖2F + β

[∑
n

‖Un‖2F +
∑
t

‖Vt‖2F

]
+ λ‖Ŝ‖1,

where λ is the sparsity coefficient and ‖ · ‖1 denotes the `1-norm. Network spec-
ifications and other details of the learning procedures are given in appendix B.

3.3 Mitral Valve Window Detection and Segmentation

The sparse matrix Ŝ captures the motion of the mitral valve. In [4] the authors
compute the Frobenius norm on all possible 3D window of the sparse matrix
Ŝ and define the MV ROI as the window with the maximum Frobenius norm.
However, it often occurs that part of the myocardium movement is also captured
in the sparse matrix due to low quality of the echos and then the ROI does not
contain the mitral valve or it captures it only partially.

We propose an alternative method for MV window detection that leverages
also movement information. The motion of the MV is much faster compared to
the myocardium, even when the myocardium appears in the sparse matrix. The
norm of the dense optical flow can measure the motion in a video and a large
norm is indicative of fast motion. First the sparse signal Ŝ is reshaped into a
3D array of the same shape of the original video Rh×w×T and then threshold-
ing is applied in order to retain only the p percent high intensity pixels. The
dense optical flow is then computed for every frame of Ŝ and is denoted as
optical flow(Ŝ)t. Similar to the window detection method in [4,15], the ROI of
the MV is then identified as the window with largest sum among the frames of
the optical flow norms. The selection is made between windows spanning the
whole 2D frame, with a fixed stride. Denoting by Wl ∈ {0, 1}w×h the window
as a binary mask, the ROI selection can be summarized as

Wl = max
l

T∑
t=1

‖optical flow(Ŝ)t ·Wl‖22

The segmentation is consequently performed on the sparse signal enclosed in the
ROI similarly to [4] using simple isotropic 2D diffusion on each frame.

4 Experiments and results

4.1 Dataset description

A total of 38 transthoracic echos were obtained from the MitraSwiss Registry, a
Swiss-wide prospective registry which includes patients undergoing percutaneous
mitral valve repair using the MitraClip system. All patients had moderate-to-
severe (3+) or severe (4+) mitral regurgiation of functional or degenerative origin
as graded according to current recommendations of the American Society of
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Echocardiography [17]. Imaging data were processed in an anonymized way and
all patients provided written informed consent to be entered into the database.
Only 4-chamber echo views are used, and for every echo, a rectangular box
around the MV and three selected frames were densely annotated by an expert
medical doctor.

4.2 Window detection

A comparison of the sparse signal according to R-NNMF [4] and our method
NN-MitralSeg is showed in fig. 2 for a R-NNMF failure case. As it can be seen
the failures of the R-NNMF window detection method are due to a strong pres-
ence of the myocardium movement in the sparse signal, as a consequence of the
low expressiveness of the linear model used in R-NNMF. We compare the perfor-

Fig. 2: A failure case for the window detection method of R-NNMF [4]. The
sparse signal (in blue) is given for both our method (NN-MitralSeg, top row)
and R-NNMF (middle row) with reference to the original frames (bottom row)
for three consecutive frames. The mitral valve region is always highlighted as the
shaded area. The region is misplaced by R-NNMF due to a strong myocardium
movement contribution in the sparse signal.
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Fig. 3: A comparison of window detection accuracies I between our method and
the R-NNMF [4]. (a) shows the accuracies sorted in descending order by our
method. (b) shows the difference of accuracies Idiff between our method and
R-NNMF sorted in ascending order.

mance of the mitral valve window detection according to the percentage of pixels
in the computed ROI that intersect with the ground truth window. The window
detection accuracy (I) is sorted in descending order according to our method
in fig. 3a. In fig. 3b the difference between the window detection accuracies of
our method and of R-NNMF is sorted in ascending order, alongside the average
accuracy difference over all echos µ and the p-value of the one-sided t-test. In
table 1 we also report the number of success cases where the accuracy reached
by the window detection algorithm is higher then a given threshold, and the
Intersection over Union score (IoU) averaged over all echos.

Table 1: Number of success cases and Intersection over Union score for the
window detection algorithm. The total number of echo is 38.

Accuracy > 0.65 Accuracy > 0.85 IoU

NN-MitralSeg 35 31 0.35132
R-NNMF [4] 32 25 0.30883

4.3 Mitral Valve segmentation

The output of the segmentation algorithms are compared with the ground truth
in fig. 4 according to the Dice coefficient (DC). TheDC is reported for every echo
and it is sorted in descending order according to the score of our method. The
DC difference DCdiff between the two methods is also reported in fig. 4b sorted
in ascending order. We observe that NN-MitralSeg outperforms the state-of-the-
art in both window detection and in the dense MV annotation by a statistically



8 L. Corinzia et al.

significant margin. A detailed comparison of the MV segmentations produced by
the two algorithms is documented in appendix A. In particular figs. 5a and 5b
show the masks compared to the ground truth respectively for the highest and
lowest five scoring echos (according to our method) and fig. 6 shows the time
coherence of the masks.
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Fig. 4: A comparison of Dice coefficient measures between our NN-MitralSeg
method and the R-NNMF method in [4]. (a) shows the Dice coefficients sorted
in descending order according to our method. (b) shows the difference of the Dice
coefficients between NN-MitralSeg and R-NNMF sorted in ascending order.

5 Conclusion and future work

We proposed NN-MitralSeg, a fully automated and unsupervised mitral valve
segmentation algorithm based on non-linear matrix factorization. An echocar-
diography video is decomposed into a low dimensional signal that captures the
linear and non-linear myocardial wall motion, and a high dimensional sparse
signal that accounts for the echocardiography noise and mitral valve movement.
The mitral valve is then segmented from the sparse signal using thresholding
and diffusion algorithms. This method outperform the state-of-the-art fully au-
tomated algorithm in a data-set of 38 videos with patients suffering various
mitral valve dysfunctions, in both the task of positioning the rectangular region
of interest, and in the accuracy of the dense mitral valve mask.

A possible future development includes the use of both the sparse ground
truth segmentation masks and the dense (inaccurate) annotation generated by
unsupervised algorithms (like NN-MitralSeg) to train segmentation deep net-
works in a weakly-supervised-learning scenario [16]. This concept would also
provide practitioners with an online segmentation algorithm that could be de-
ployed in the real-time echocardiography during mitral valve intraoperative pro-
cedures.
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A Mitral valve masks comparison

(a) (b)

Fig. 5: The mitral valve segmentation masks for the echos with the (a) five highest
and (b) lowest Dice coefficients according to NN-MitralSeg are given. From left
to right: NN-MitralSeg (yellow), R-NNMF (green) and ground truth (white).
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Fig. 6: The mitral valve segmentation masks for 8 consecutive frames and for
3 different echos. NN-MitralSeg (top row, yellow) and R-NNMF (bottom row,
green).
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B Hyperparameters and network specifications

The RMSProp optimizer is used with a learning rate of 0.005 and a batch size
of 200, 000. The dimensions of the latent features is kept constant across all
echos with D = 10, and K = 2. The sparsity coefficient and regularization
parameter are also kept constant across all videos at λ = 0.2 and β = 0.1.
The window size used in optical flow is chosen to be roughly the same size as
the width of the mitral valve, and it varies across echos since the echos are
not height and width standardized. The standard deviation of the Gaussian to
smooth the temporal derivatives in the optical flow algorithm is set to 3.5. The
low dimensional network consists of three fully connected (FC) layers with 10
units each. The latent features and the first two FC layers have ReLU activation
and the last FC layer has sigmoid activation to give X̂n,t ∈ [0, 1]. The number
of training epochs is held constant for each stage of the training. The first pre-
training stage is extended for 10 epochs, the second pre-training stage for 5
epochs, and the final training on the full objective for 5 epochs.
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