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Abstract—Tracking users is a ubiquitous practice in the web
today. User activity is recorded on a large scale and analyzed
by various actors to create personalized products, forecast future
behavior, and prevent online fraud. While so far HTTP cookies
have been the weapon of choice, new and more pervasive
techniques such as browser fingerprinting are gaining traction.
Hence, in this paper, we describe how users can be empowered
against JavaScript fingerprinting by showing them when, how,
and who is tracking them. To this end, we conduct a systematic
analysis of various JavaScript fingerprinting tools. Based on this
analysis, we design and develop FPMON: a light-weight and
comprehensive fingerprinting monitor that measures and rates
JavaScript fingerprinting activity on any given website in real-
time. Using FPMON, we evaluate the Alexa 10k most popular
websites to i) study the pervasiveness of JavaScript fingerprinting;
ii) review the latest fingerprinting countermeasures; and iii)
identify the major networks that foster the use of fingerprinting.
Our evaluations reveal that i) fingerprinters are privacy-invasive
and subvert current regulations; ii) they are present on many
websites with sensitive contents (health insurance, finances, news,
NGOs, etc.); and iii) current countermeasures can not sufficiently
protect users. Hence, we publish FPMON as a free browser
extension to empower web users against this growing threat.

I. INTRODUCTION

Fingerprinting web users is a pervasive technique that lies
at the intersection of good and evil. On the one hand, large
amounts of device data are extracted by services to authenticate
web users more securely and tackle the rampant amount of
online fraud [38, 32], e.g., due to leaked credentials and
automated attacks [19]. Likewise, large amounts of user data
are used to optimize and improve web applications or study
their usability [18]. On the other hand, the same device data
is used to identify and track users across the web for targeted
marketing and user profiling [17, 20].

To enable fingerprinting, various techniques have been
created over the years to extract more and more device-specific
data from the user’s browser. At the same time, researchers
have studied the various aspects of browser fingerprinting,
especially after the first large-scale study by Eckersley et al.
and the Electronic Frontier Foundation [9, 10]. Multiple studies
have uncovered the prevalence of fingerprinting [1, 2, 9, 23, 41]
by narrowing down on specific fingerprinting techniques, e.g.,
Acar et al. [1], discovered in 2013 that 5.5% of the 100k most
popular websites use canvas fingerprinting and 1.5% of the
10k most popular websites use font-based fingerprinting [2].

Furthermore, other researchers have concentrated their ef-
forts on creating new fingerprinting techniques, e.g. by using
canvas [24] and audio objects [30] or via CSS [37]. Others
have significantly improved known techniques with machine
learning [42] or by extracting fingerprinting features more
passively via extension activity tracking [36].

The sheer diversity of fingerprinting techniques available
to us begs the question of which techniques are really being
used and which ones are not? So far, large scale studies have
only uncovered specific instances of fingerprinting and these
are over 5-10 years old [1, 2]. In particular, we currently lack
a comprehensive view of fingerprinting activity on the web
today. This is an important point because when it comes to
protecting users against such malicious techniques, counter-
measures need to be designed according to this so that they
can effectively block fingerprinting techniques.

To thwart such privacy-invasive behavior different stake-
holders have adopted different solutions to the problem.
Mozilla [26] and the most popular privacy extensions namely,
PrivacyBadger and DuckDuckGo, use blacklists. Apple’s Sa-
fari uses a simplified JavaScript API to reach some form of
“herd immunity” and reduce the attack surface [4]. Black-
lists have the major drawback that they are not effective
against websites absent in the blacklist. Furthermore, the
only means to establishing the effectiveness of such coun-
termeasures is to obtain a report from privacy tools such
as amiunique.org [35], panopticlick.eff.org [10], or browser-
leaks.com [5]. But, those tools do not cover all possible
fingerprinting techniques and can not detect fingerprinting
activity occurring on real websites visited by the user while
browsing the web.

The situation is further exacerbated by the increasing
functionality being introduced into browsers [34]. In fact,
modern browsers give websites access to so many low-level
device interfaces (GPU, Audio, USB, etc.) that it has opened
the gates for high-precision side-channel fingerprinters [43, 31,
24]. This development is a particularly troubling matter as the
lines between using these features for benign operations and
tracking are very blurry. It may even prove to be impossible to
make the distinction between the two and hence allow tracking
without the user’s consent even in the face of regulatory policy
such as the General Data Protection Regulation (GDPR) or
California Privacy Protection Act (CPPA) [15, 13, 6].

Motivated by i) the lack of a method to obtain a com-
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prehensive and accurate estimate of all possible fingerprinting
activity occurring on a real website and; ii) the inability of
privacy tools to effectively thwart JavaScript fingerprinting as
well as the lack of visibility into the presence of fingerprinting
has led us to the creation of FPMON. FPMON empowers users
to identify who, when and how JavaScript fingerprinting is
executed on their devices. Rather than distinguishing finger-
printing based on single features we take a holistic approach
to identifying fingerprinting as our view is that fingerprinting is
more effective when features are combined. By classifying and
rating an extensive JavaScript feature set, and quantifying the
number of features accessed by a website, FPMON accounts
for not only any type of JavaScript fingerprinting activity but
also any combination of fingerprinting features. Our key idea
to achieve this is to leverage popular fingerprinting tools to
construct and classify a real-world feature set which can then
be used by a browser extension to intercepts, analyzes and rate
the JavaScript fingerprinting activity in real time. We believe
FPMON has the potential to enhance the privacy of web users
by making fingerprinting activity visible on every website
and hence give people the power to uncover, understand, and
discuss this emerging technology.

In this paper, we make the following contributions:

• We construct an extensive Javascript feature set based
on real fingerprinting tools (closed- and open-source)
that enables us to more techniques than any previous
solution to the best of our knowledge.

• Based on a novel interception mechanism, we intro-
duce FPMON to quantitatively measure and rate the
presence of fingerprinting activity in real-time.

• Using FPMON we measure the widespread presence
of obfuscated and concealed fingerprinting scripts for
the Alexa 10k most popular websites as of March
2020. We conclude that roughly 19% of these websites
collect user data via fingerprinting techniques without
user consent.

• We demonstrate that most of today’s popular coun-
termeasures (Firefox, Privacy Badger, DuckDuckGo
Privacy Ext.) are ineffective and explain why they fail
to protect users against fingerprinting.

• We introduce a novel fingerprinting signature gener-
ation and matching scheme which when combined
with FPMON enables us to identify the most prevalent
networks that deploy fingerprinting scripts on the
Alexa 10k most popular websites.

• Ultimately, we publish a browser extension based on
FPMON. It can be accessed and installed in your
browser at the below URL.

https://fpmon.github.io/fingerprinting-monitor/

II. BACKGROUND

What is browser fingerprinting? Browser fingerprinting is
the process of collecting a well-defined set of device features
via the browser and generating a unique identifier, known as
the fingerprint, of the user’s device. The device features that
are used to generate a fingerprint can be categorized as follows.

Feature Example
User agent Mozilla/5.0 (Intel Mac OS X 10 12 6)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/79.0.3945.130 Safari/537.36

Timezone -60 (UTC+1)
Language de, en-US, en, es
Fonts Al Bayan, Al Nile, Al Tarikh, American

Typewriter, Andale Mono & 182 more fonts
Plugins Chrome PDF Plugin; Chrome PDF Viewer,

Native Client, Flash, ...
Screen 1920 x 1080 x 24
Permissions accelerometer:granted; camera:prompt;

geolocation:prompt; background-sync:granted;
magnetometer:granted; microphone:prompt;

Video format video/mp4 flac; video/ogg theora; video/ogg
opus; video/webm vp9, opus

Battery charging; chargingTime: 0; level: 1
Connection downlink : 10; downlinkMax : undefined;

effectiveType : 4g; rtt : 100; type : undefined

TABLE I: A subset of device-specific features that can be col-
lected with JavaScript and used to create a device fingerprint.

Technical features relate to the software and hardware of the
user device, e.g., screen size, CPU vendor, or memory size.
Sociocultural features convey social, economic, geographic,
and cultural information, e.g., languages, high-end or low-
end device, timezone, etc. These features can either be long-
lived and remain stable over time, e.g., browser vendor or
content language or short-lived and change more frequently,
e.g., browser version. The best features for fingerprinting offer
a precise representation of the user’s device and persist over
time whereas features that change frequently are ill-suited.
Regardless of what type of features is used, the uniform
interface of JavaScript enables access to this data.

Fingerprinting with JavaScript: JavaScript (JS) is a just-in-
time compiled programming language that is used to enable
dynamic and interactive webpages in the World Wide Web.
Therefore every browser has a dedicated JavaScript engine
that executes the embedded scripts of a webpage on the user’s
machine. These scripts can interact with their environment,
e.g., to adjust items to the screen size (window.screen) or
show text in a specific language (navigator.language).
By collecting large amounts of this device-specific data, a
digital fingerprint of the device that runs the fingerprinting
script can be created. A unique identifier for a device can be
computed by hashing the concatenated data that is collected.
Examples of what data can be used for this process are shown
in Table I.

Advanced fingerprinting techniques: In addition to the naive
approach of merely collecting device features, more advanced
techniques that offer precise device identifiers also exist. In
general, these techniques leverage the variations in hardware
and software processing of the same instructions to generate
a device fingerprint. For example, Mowery and Shacham [24]
proposed a new fingerprinter that uses the JavaScript WebGL
API. Using a 3D object in the browser and applying a set
of textures and different ambient lights to it, the resulting
picture slightly differs on every device thereby generating a
fingerprint. Cao et al. [7] have shown that this technique alone
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can identify 99% of 1,903 tested devices. Another technique,
called Canvas fingerprinting, is discussed by Acar et al. [1] and
Englehardt et al. [12]. Hereby a specific picture is rendered
with a fixed set of instructions using the HTML5 Canvas API.
Depending on the operating system and the browser used, the
created picture contains small variations. A unique identifier
can be created by using the toDataURL() function to get a
Base64 encoded representation of the rendered picture. Finally,
a fingerprint can also be generated using the Web Audio API as
described by Engelhardt et al. [12]. To use this, a sound signal
of zero volume or the response of a dynamic compression
applied on a sine wave is measured. A device-specific identifier
can be derived by examining the resulting signal and compute
a hash sum of this data.

III. THE THREAT OF BROWSER FINGERPRINTING

To paint an accurate picture of the JavaScript fingerprinting
ecosystem we first studied multiple public and private fin-
gerprinting tools and several websites that use them. Among
others, we examined the following fingerprinting tools: finger-
printjs.com, iovation.com, seon.io, datadome.co and sift.com.
Based on this study, we have generalized the common business
model and identified the main entities and their relationships,
as illustrated in Figure 1. The fingerprinting ecosystem is
composed of web users, content providers, fingerprinting tool
suppliers, but also browser vendors and web developers. The
main advocates that push the distribution of fingerprinting
technologies are the tool suppliers and website owners that
fuel the demand and want to better understand their users or
secure their services. As shown in Figure 1, web users play
only a passive role: they have no access to their profiles nor
do they have the power to control how the data is used. The
interactions between these parties can be described as follows:

1) The website owner embeds the fingerprinting script
into the content of the website by embedding external
scripts or adding inline code snippets.

2) When a user visits the webpage, the browser executes
every script included in the loaded page source. As a
result, the fingerprinting script executes and collects
the device features.

3) Either all the collected data is sent to the fingerprint-
ing or a unique identifier, e.g. a hash value, is created
and sent to the fingerprinting service provider.

4) The service provider matches the received identifier
against a database of known profiles. Either a profile
matches or a new profile is created in the database.

5) In the end, the website owner can either access the
results of the analysis or immediately receives in-
sights, e.g., the user can be trusted or not. The service
provider is paid by volume, license, or monetize the
service in other ways.

In reality, many things can differ from our generalized
model. For example, a website owner can unwittingly add a
fingerprinter to its website by adding a 3rd-party plugin that
includes a fingerprinting script. In other cases, the data is sent
directly to the content provider, and not to a 3rd-party service.
However, we never know if this data is shared with 3rd-parties
via backend communication later on or not [22].

Threat Model: We assume that some webpages contain
fingerprinting scripts that extract user data to construct a

3.	The	script	sends	the	fingerprint	
				results	to	the	service	provider.

1.	The	user	requests	a	
				website.	It	includes
				a	fingerprinting	script.

Content	Provider
Webserver

Fingerprinting
Service	Provider

2.	User	Device	is	fingerprinted.

Content	provider	receives
data,	analytics	or	insights.

5.	Service	provider	offers			
					technology	and	monetize	it.	

FP	Hash:

264e36b1e0897d5

c47aabbbbeb7900

4.	The	user	is	matched
				against	the	service	
				database	and	the
				the	profile	is	stored.

Web	User

Fig. 1: The fingerprinting ecosystem: Users access content
that embeds fingerprinting scripts from 3rd-parties; those

collect, analyze and monetize the user profiles.

model of the user. Depending on the perspective, this model
can be used for benign or malicious applications, e.g. user
tracking, targeted advertising, product improvements, or better
security. We assume, not every website includes fingerprinters
intentionally or follows the purpose of user identification
directly, even if the data collected will allow this. In other
words, we assume that websites have been deployed to respect
user privacy laws such as GDPR or CCPA. We assume users
do not want to be tracked and identified without their consent.
Specific user groups will deliberately use protections, e.g.
privacy extensions, to circumvent tracking and user profiling.
According to previous research, only 2% of users disable
JavaScript completely, which will break most of today’s web
functionality and hence is not a practical solution [44]. With
respect to detecting fingerprinting, it is impossible for the
client to say that the data extracted via JavaScript is definitely
used for fingerprinting. Hence, we assume that a website
that uses more features than necessary for its application is
conducting some form of fingerprinting. We elaborate on this
in Section IV.

Fingerprinting Protection: To protect users against finger-
printing major browser vendors such as Mozilla and Apple
have introduced countermeasures. Mozilla’s Firefox offers a
feature that is intended to block fingerprinting and crypto-
mining scripts by blacklisting domains that serve fingerprint-
ing scripts [26]. Apple’s approach to combat fingerprinting
in Safari is different and is promoted as a type of “herd
immunity” [4]. By presenting a simplified version of the
system configuration, such as installed fonts and plugins, to
trackers it makes more devices look identical. This reduces the
capability of fingerprinters to identify a single device without
breaking web functionality [4]. For Google’s Chrome Browser,
the most popular one in recent years, Google announced to
block fingerprinting in the future [29]. So far, it’s unclear
how their solution will work. As long as no protections are
available, privacy extensions such as the EFF Privacy Badger
and the DuckDuckGo Privacy Extensions can be installed for
every major browser [14, 8]. These extensions follow the same
approach as Mozilla, which is to blacklist domains that are
known to be privacy-invasive. The ultimate solution to thwart
JavaScript fingerprinting is to disable JavaScript completely.
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However, this is not a practical solution as it breaks most
of today’s web functionality and less than 2% of users do
this [44]. Academics have identified this problem and a couple
of solutions have been recently proposed. In 2019, Wu et
al. proposed a uniform shader language execution to prevent
WebGL fingerprinting [43] and Trickel et al. introduced to
mitigate the fingerprinting of browser extensions [39].

IV. CLASSIFYING FINGERPRINTING FEATURES

The first step on our mission to empower users against
browser fingerprinting requires us to understand and classify
the JS functions that are typically used to fingerprint a device.
To this end, we have systematically analyzed the commercial
and public fingerprinting tools mentioned in Section III as
well as the following privacy tools amiunique.org, panop-
ticlick.eff.org and browserleaks.com. By reverse-engineering
the proprietary and obfuscated tools using Chrome Dev-
Tools [16] and the Burp Web Security Suite [28] we obtained a
collection of 115 JavaScript functions and properties that were
used by the fingerprinting tools. Indeed not every JS function is
individually responsible for fingerprinting, but when combined
in a specific order, these functions are indicative of fingerprint-
ing activity.

Next, we classified the 115 functions and properties into
features based on the capability of the functions to analyze a
certain device feature. This classification yielded 40 features
where each feature represents an individual vector to finger-
print a user, e.g., Screen, Window, Language, etc. as shown in
Table II. The complete set of features are shown in the X-axis
in Figure 5. We note that features can contain multiple ways
to perform the same operation because of browser differences
or syntactic shortcuts, e.g., DoNotTrack and msDoNotTrack
as shown in Table II. Since our analysis is based on the
tools we analyzed, our specified feature set may miss single
functions that are used by fingerprinting tools that we did not
study. Nonetheless, the feature set is designed to represent real
vectors and not hypothetical corner cases.

To account for the different capabilities of the feature, we
apply simple weighting mechanism by labeling each feature
with a severity rating: sensitive or aggressive. The rating is cal-
culated based on the similarity ratio from amiunique.org [35]
and the entropy research from Panopticlick [11, 10]. We
determined the severity of each feature in three steps: i) we
tagged all features that contain functions with a similarity ratio
≤ 30% ii) we tagged all features that contain functions with
a an entropy value ≥ 5 bits iii) each feature that have been
tagged twice is rated aggressive, all others are rated sensitive.
If we could not obtain a similarity ratio or entropy value for a
feature, we estimated the rating based on the type or quantity
of data accessible via the feature under question. We decided to
not weight each feature individually to reduce the risk of over-
and underweighting of the features with unequal cardinality.

Sensitive features have high similarity ratios (>30%) and
low entropy (< 5 bit) making them inaccurate when used in-
dividually. They are necessary to enhance the user experience,
e.g., to show the correct language or current time. To identify
a user with high accuracy, a fingerprinter needs to use many
sensitive features simultaneously.

Feature JavaScript functions Rating
Screen colorDepth, width, height,

availWidth, deviceXDPI, ...
sensitive

Window devicePixelRatio, innerWidth,
colorDepth, outerWidth, ...

sensitive

Flags doNotTrack, msDoNotTrack sensitive
Audio createAnalyser, createOscillator,

createGain, createScriptProc., ...
aggressive

Language languages, userLanguage sensitive
Storage sessionStorage, localStorage,

indexedDB, openDatabase, ...
sensitive

Battery getBattery, charging, ... aggressive
WebGL getShaderPrecisionFormat,

shaderSource, createBuffer, ...
aggressive

TABLE II: Examples of JavaScript functions with their associ-
ated feature name and rating. In total, we classified 40 different
features for 115 individual JS functions.

Aggressive features have low similarity ratios (≤ 30%) and
high entropy (≥ 5 bit) making them precise. They can generate
a high bit of entropy and make use of browser functionality
that is questionable for most application, e.g., battery level
or audio oscillators. Some aggressive features can potentially
identify users with high precision and do not necessarily need
many additional features to do so, e.g., Canvas and Audio.

Clearly, not every classified JS function is directly related
to fingerprinting. More importantly, it is fundamentally im-
possible for a user who visits a webpage to know whether
she is being fingerprinted or not unless it is explicitly stated.
Hence, we argue that the combined use of the JS function
set is a strong indicator of fingerprinting activity, especially
when several aggressive features are used. When a website uses
many of the sensitive and aggressive features in a particular
composition and in a short time frame, it becomes likely that
a fingerprinter is active on the website.

V. FPMON - A FINGERPRINTING MONITOR

Having studied existing tools and classified the JavaScript
features, our next step is to design and develop a tool that can
record and analyze all the classified features. The high-level
workflow on how this can be done is described in Figure 2.

Idea and benefits: The core idea of FPMON is to dynamically
add an interception mechanism in front of the classified JS
functions before the real webpage context is executed. By mod-
ifying the JavaScript runtime environment with code injections,
we can intercept and record the functions without altering the
default runtime behavior. The major benefit of this approach
is browser independence, i.e., the fingerprinting monitor can
be easily imported into any up-to-date browser.

Challenges: To realize our idea, we have to first overcome
three main challenges. First, the JavaScript runtime environ-
ment needs to be modified on-the-fly and without hampering
functionality, e.g., the page should still be rendered correctly.
Second, the evaluation of the recorded data needs to be
quick and light-weight, so that the results can be displayed
as soon as the page is loaded. Third, the results need to be
communicated in an intuitive manner, i.e., it should not require
technical expertise, background, or a particular language. In
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<!DOCTYPE	html>
<html>
<head>
		<script	src="fpmon">
		<script	src="script.js">
</head>
		<body>
				Great	web	content!
		</body>
</html>

2.	The	Webpage	with	all	scripts	
will	be	rendered	on	the	clients	

machine.	FPMON	is	executed	first	
to	install	its	function	wrappers.

1.	FPMON	injects	its	code	into	
the	loaded	webpage	context	using
	the	browser	extensions	API.

4.	Extension	shows	insights
about	the	fingerprinting	
activity	to	the	user.

3.	All	other	scripts	are	executed	
and	the	monitor	can	record	
any	fingerprinting	activity.

Fig. 2: The workflow of FPMON to measure and analyze the
fingerprinting activity of a webpage.

the following, we elaborate on how we address the above
challenges, our system architecture and inner workings of
FPMON as well as the applications that have been built on
top of this.

A. Intercepting Feature Access

The interception mechanism of FPMON is similar to a
man-in-the-middle proxy in that it i) observes and records
every function access attempt; and ii) it is transparent to the
function caller which preserves runtime behavior. Since there
is no such interface, we developed a mechanism to intercept all
the classified JS functions discussed in Section IV. This proxy
monitors every access attempt and intercepts each function
call and its associated arguments and return values, completely
during run-time.

To implement this proxy in JavaScript, we made use of the
defineGetter() operation of the object prototype. Using
that operation, we can override an object’s property to execute
our custom code in addition to the original functionality. The
custom code performs two main tasks: i) it records the object
that is accessed; and ii) it records the return values that are
passed to the function caller at the end. By implementing this
for various JavaScript objects, e.g., Window, Audio, WebGL,
Canvas, and many of their sub-properties we can track and
examine each individual function call with its arguments and
return values. In addition, we can record the script host and
filename by tracing the call stack via Error.stack which
can aid in pinpointing the script source of suspicious behavior.

To ensure that we capture all JavaScript executions be-
ginning with the first script embedded into the webpage, we
introduce the following two steps. First, we load the monitor
script code into the page context with the help of the browser
extension API. Second, we design the monitor as a self-
executing script to ensures that the intercepting functions are
in place before anything else is executed. In particular, we
use the content_script option to execute our script at
document_start. This content script injects the monitor
code that modifies the webpage’s load process as follows:

Algorithm 1 Rating the Fingerprinting Activity
Require: featuresall and featuresaggro, amount of all features,

and all aggressive features enabled on a webpage.
rating = low
if featuresall > 27% or featuresaggro > 16% then

rating = medium
if featuresall > 42% or featuresaggro > 33% then

rating = high

1) The webpage is loaded from the server and the
FPMON script will be injected via the browser ex-
tension API.

2) When the browser attempts to render the page, the
injected code is executed first and overwrites the orig-
inal JavaScript functions with our wrapper functions.

3) Afterwards, every script from the webpage that tries
to access a monitored function will unintentionally
call the wrapper function, which logs the access,
executes the intended operation, and pass through the
return values.

4) Finally, the recorded results are passed back to the
browser extension for the subsequent analysis and
rating.

B. Rating of Fingerprinting Activity

After the webpage is loaded we analyze the collected
data and rate the page the user has just visited. In particu-
lar, FPMON rates the page based on a quantitative measure
which is described as follows. If a page script uses one
of the functions that are assigned to a feature, we register
this feature as enabled. For every enabled feature, the page
score increases by one. Recall Section IV, we identified 115
functions and classified them into 40 distinct features. Hence,
for the quantitative measurement we perform three steps: i)
count the number of functions accessed; ii) enumerate how
many of the 40 features are enabled and; iii) check how
many of these features are labeled aggressive. To translate
the intermediate results into a final score, we need to apply
appropriate thresholds as shown in Algorithm 1. The threshold
values are based on our evaluation of the Alexa 10k popular
websites (Section VI-C). In particular, using data from the
evaluation, we calculated the median fingerprinting activity and
the mean absolute deviation (MAD) for all features, including
the aggressive ones. Based on how much activity we find to
be normal on a relative scale, we rate the webpage behavior
to be low (≤ median), medium (≤ median+MAD), or high (>
median+MAD). In Section VI-C, we describe how we obtain
concrete threshold values based on empirical data from the 10k
most popular websites.

There are two main weakness with such a methodology.
First, FPMON does not monitor all JS functions related to
fingerprinting (recall Section IV), hence, some features may go
undetected. Second, if special conditions need to be satisfied
to trigger fingerprinting, FPMON will falsely rate a page
even though fingerprinting conditionally occurs on the page.
For example, i) fingerprinting is deactivated for users with
valid cookies (see Section VI-A); and ii) enable fingerprinting
only on specific pages, e.g., login pages or business client
portals. On the positive side, a single feature used in a benign
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Fig. 3: The icons to indicate the fingerprinting score in the
browser extension. The color guides the user to understand if
a page scores low, medium or high. The badge text tells the

user how many of the tracked features are accessed.

way will falsely influence the overall rating by only a small
fraction (1/40). Likewise, a missing component in the monitor
can distort the result by only a small fraction (< 1/40). We
believe these properties make our approach very resistant
against false positives, compared to previous solutions that
only discriminate based on a single feature [2, 1]. As we
will see from our evaluations on real websites in the next
sections, our measurements based on this scheme will provide
a conservative estimate.

C. Empower Users Against Fingerprinting

Leveraging the monitoring logic presented above, we cre-
ated a comprehensive browser extension that can be used to
evaluate one’s favorite websites. The extension is built for
Chrome, but can be imported easily into any browser support-
ing a similar extension API such as Safari and Firefox. For the
extension, we designed two visualizations to present the results
to the user. First, we created a simplified way to signal the
ongoing fingerprint activity. Depicted in Figure 3, we designed
a browser extension icon that shows a human fingerprint. The
color of the icon changes according to the level of fingerprint
activity detected, i.e., based on the thresholds described in
Algorithm 1. In addition, the total number of detected features
is also shown using the icon badge text. Second is a technical
view of the overall analysis that is only visible to the user if
the extension icon is clicked on. In this view, we summarize
the exact number and the name of all JavaScript features that
have been enabled on the loaded webpage. In addition, we list
the top 3 script files that enabled most fingerprinting features
to aid the user to find out which scripts are analyzing them.
To create the user extension, FPMON was extended with a lot
of functionality to encode, transmit, and update the data that
is shown in the user interface. The extension can be installed
via the URl specified at the end of Section I.

VI. EVALUATION

We now shift our focus to evaluating the effectiveness of
FPMON in monitoring fingerprinting on real websites. Hence,
we designed a set of experiments to answer the following
questions: i) how widespread is the use of JS fingerprinting
and in what context can we find it; ii) how effective are
existing countermeasures; and iii) what are the most prevalent
networks that foster the use of fingerprinting? To answer these
questions, we conducted two types of studies. In the first,
we curated a set of 20 websites that we analyze in great
detail and in the second, we conduct a large scale evaluation
on the 10k most popular websites listed by alexa.com [3].
In the first study, the small data set allows us to carefully

evaluate FPMON to obtain a deep and detailed understanding
of the context of JS fingerprinting and how it is applied.
In our second study, we carry out a large scale evaluation
of the 10k most popular websites to statistically describe
the fingerprinting landscape and investigate the widespread
use of this technology. Furthermore, the large data set also
enables us to uncover any networks that may exist behind the
fingerprinting scripts. In the following, we elaborate on each
of those studies.

A. Real-World Abuse of JavaScript Fingerprinting

In this study, we evaluated a self-curated list of 20 popular
websites that cover a large range of representative topics:
financial services, online search, news, file-sharing, govern-
ments, NGOs, healthcare, pornography, etc. The objective of
this preliminary set of websites is to show how FPMON can
identify the presence of fingerprinting scripts in detail and
to evaluate the effectiveness of fingerprinting countermeasures
introduced in Section III.

Methodology and setup: For each website, we recorded
the number of functions used by the fingerprinting script
in a database. Based on the collected data, we counted the
number of enabled features, the number of aggressive features
(recall Section IV) and afterwards calculated the final score
for each webpage. The score shows how many fingerprinting
features are enabled for each website and is measured relative
to the total number of monitored features. For repeatability,
we visited every website multiple times. Almost every page
consistently scored the same. For a few cases, the results
have varied slightly (within ± 5% score), which we did not
investigate further. For the sake of easy interpretation, we only
show the scores from individual runs. The data was recorded
on 13. April 2020. We note that results can change over
time due to changes on websites. For the first part of the
evaluation, we used Chrome version 81 with default settings
that was extended with the FPMON browser extension. The
experiments are executed on a 2017 MacBook Pro.

Results: Table III shows the data we collected from our first
study. Starting from left to right, we listed the fine-grained
results for each of the websites tested. The functions detected
column shows the number of functions that are used by the
webpage. Next, we show how this relates to the enabled
features and how many of those are considered aggressive.
Next, is the final score depicted as, #, G#, and  which
correspond to the simplified score of FPMON annotated with
the relative score calculated. The data is sorted in descending
score order for ease of reading.

Baseline comparison: Our baseline is represented by panop-
ticlick.eff.org. The Panopticlick website is a privacy test and
measures if one can be uniquely identified based on the data
extracted from the browser. As shown in table III, panop-
ticlick covers around half of the functions (64/115) that are
monitored by FPMON. These 64 functions relate to a total
score of 53%, because 21 features are enabled of which 10 are
labeled aggressive. Similar services, namely fingerprintjs.com
and amiunique.org achieve very similar scores of 48% and 58%
respectively. Although these websites already cover many fin-
gerprinting techniques, we note that they fall short on several
functions that FPMON covers (almost half of the features) and
which are actually used by higher-scoring websites.
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metacafe.com video sharing 95 / 115 38 / 40 17 / 18  95%  95%  95%  95%  95% # 18%  50% 7

nypost.com news media 66 / 115 35 / 40 14 / 18  88%  43%  45%  43%  48% G# 40% # 18% 7

addthis.com tracking tool 62 / 115 34 / 40 13 / 18  85% # 20% # 18% # 5% # 23% # 23% # 18% 3

nasdaq.com stock data 53 / 115 29 / 40 12 / 18  73%  70%  70%  73%  45% G# 35%  45% 7

easyjet.com flight booking 62 / 115 27 / 40 11 / 18  68%  50%  50%  48%  50%  48%  45% 7

bankofamerica.com financial services 58 / 115 25 / 40 8 / 18  63%  63%  63%  63%  55%  55% G# 35% 7

nytimes.com news media 49 / 115 24 / 40 12 / 18  60%  60%  60% # 18%  60%  60% G# 38% 7

coinbase.com crypto exchange 68 / 115 23 / 40 11 / 18  58%  58%  58%  58%  58%  58% # 25% 7

savethechildren.org non-profit orga. 72 / 115 23 / 40 11 / 18  58%  58% G# 35% # 20%  58%  58%  45% 7

alibaba.com e-commerce 64 / 115 21 / 40 9 / 18  53%  53%  53%  53%  53%  53% G# 28% 7

panopticlick.eff.org privacy test 62 / 115 21 / 40 10 / 18  53%  53%  53%  53%  53%  53% G# 28% 7

healthcare.gov healthcare 43 / 115 20 / 40 10 / 18  50%  50%  43% G# 40%  48%  45% G# 35% 7

vyprvpn.com privacy tool 64 / 115 19 / 40 6 / 18  48%  48% # 25% # 23% # 25% # 25% G# 30% 3

theguardian.com news media 41 / 115 15 / 40 4 / 18 G# 38% G# 30% G# 28% # 23% G# 33% # 15% # 15% 3

google.com search engine 22 / 115 13 / 40 7 / 18 G# 33% G# 33% G# 33% G# 33% # 25% # 25% # 15% 3

pornhub.com pornography 19 / 115 9 / 40 2 / 18 # 23% # 18% # 18% # 18% # 23% # 18% # 15% -
wikipedia.org encyclopedia 12 / 115 7 / 40 0 / 18 # 18% # 18% # 18% # 18% # 18% # 18% # 13% -
nsa.gov security agency 11 / 115 6 / 40 2 / 18 # 15% # 15% # 10% # 10% # 15% # 10% # 13% -
europarl.europa.eu goverment 15 / 115 5 / 40 0 / 18 # 13% # 13% # 13% # 13% # 8% # 8% # 5% -
torproject.org anti-censorship 4 / 115 1 / 40 0 / 18 # 3% # 3% # 3% # 3% # 3% # 3% # 3% -
wikileaks.org whistleblowing 0 / 115 0 / 40 0 / 18 # 0% # 0% # 0% # 0% # 0% # 0% # 0% -

TABLE III: Calculated fingerprinting scores for popular websites from different topics. On the left half, we list the intermediate
and final results of FPMON. Higher numbers indicate that high number of fingerprinting techniques were detected. #, G#,  
indicate if the webpage is rated low, medium, or high. In the right half of the table, we see the results of the tested countermeasures.
The last column summarizes if at least one solution for each browser can reach a medium or low rating (3) or not (7).

The scoring spectrum: The highest score measured is 95% on
metacafe.com. The website uses 95/115 monitored functions,
which relates to 38/40 features including 17 aggressive ones.
Next, we found many websites with privacy sensitive content
that also make use of a high number of fingerprinting features.
For example, financial service websites such as bankofamer-
ica.com (63%), nasdaq.com (73%) and bloomberg.com (68%)
using more than half of the aggressive features we monitor.
News and media websites such as nypost.com, nytimes.com
and wsj.com also yield very high scores, 88%, 60% and
58% respectively. Equally alarming are the results for health
insurance services like healthcare.gov (48%) and medicare.gov
(53%). Furthermore, a lot of device data is also collected
by more privacy promising organizations like coinbase.com
(58%) or vyprvpn.com (48%). In contrast to this, websites
such as wikipedia.org and europarl.europa.eu receive very low
scores and seem to respect their users’ privacy: they do not use
aggressive features and limit the number of device information
extracted. Websites that scored the least are torproject.org and
wikileaks.org, they hardly use any of the monitored features.
Ultimately, we note that many of the websites reach a similar
or higher score than the baseline (approx. 50%) [35, 10]. If
a user can be identified in the baseline case, it appears likely
that user can also be identified by another entity collecting a
similar amount of device data. In contrast, other websites offer
similar contents without the need for this amount of data.

User consent and dealing with cookies: A key observation

from our study is that most websites extract device data
even before the user accepts a cookie banner or agrees to
any kind of privacy policy. In our opinion, this behavior is
very problematic when considering regulations such as the
General Data Protection Regulation (GDPR) introduced by the
European Union in early 2018 [13]. As argued by the EFF,
browser fingerprinting clearly falls under the broad definition
of personal data [15], hence, the observed behavior appears
to subvert GDPR regulations. The only website we found to
respect the user’s consent is addthis.com. Although it is not so
easy to adjust the privacy settings, fingerprinting only occurs
if the user allows the page to do so (85% vs. 8% score).
Another noteworthy observation was made on nasdaq.com.
The fingerprinting on this website is much stronger if the
user is not recognized by a cookie (73% vs. 38% score). In
fact, only two of our test cases behave differently when a user
provides a valid cookie.

Key takeaways: The key takeaways from this evaluation are i)
JavaScript fingerprinting is used and applied in many sensitive
contexts where privacy is important; and ii) many websites
seem to disrespect the user’s consent and hence might subvert
current privacy regulations.

B. Effectiveness Of Privacy Countermeasures

Having observed the dominance of JavaScript finger-
printing on various websites, we evaluated whether privacy
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tools and fingerprinting countermeasures are effective against
this threat. The majority of tools blacklist (known) tracking
providers to block content and functionality from their do-
mains, including fingerprinting scripts.

Methodology and setup: We followed the same methodology
described previously (Section VI-A), hence, here we limit
our description to the countermeasures. Using Chrome we
evaluated the EFF Privacy Badger [14] and the DuckDuckGo
Privacy Extension [8]. Both extensions claim to protect users
against fingerprinting. In addition, we included the AdBlock
extension in our evaluation to i) show how a default ad blocker
performs in comparison and; ii) see how much fingerprinting is
introduced by ad networks. For Mozilla Firefox, we evaluated
Mozilla’s Enhanced Tracking Protection with standard and
strict settings. According to Mozilla, the strict mode is meant
to offer more privacy and block fingerprinting and other
tracking techniques less carefully which might break some
web functionality [25]. For Apple Safari, we used an out-
of-the-box Safari browser that includes Apple’s fingerprinting
protection by default [4]. For a fair comparison, we firstly had
to evaluate how well Apple’s unification approach works [4].
Hence, we compared the data collected by four fingerprinting
tools ([35, 40, 5, 10]) across three different Apple devices
to find all the unified functions. We found 11 functions that
are not supported by Safari, e.g., CPU, memory, or battery
information and 20 that do not differ across the devices.
However, numerous functions still return different data across
devices such as user agent, screen, timezone, language, and
even so the list of fonts and plugins. We also found that some
advanced fingerprinting techniques have either been thwarted
or never worked for Safari. For example, there is different
audio and WebGL context data (e.g. different GPU vendors),
but the audio signal and WebGL image hashes are the same
across all devices in our test. For a fair comparison, we did not
track the functions that are unified by Apple and hence look
identical across all tested devices. In total, we did not track 31
functions out of 15 features that are monitored by FPMON.
The total number of functions and features used to calculate
the results with FPMON is the same for all experiments. The
data was recorded in the third week of April 2020 using the
following browser versions: Chrome 81.0, Firefox 75.0, Safari
12.1.

Results: On the right side of Table III we present the results
from our evaluation. As with the page score, the higher the
value, the more fingerprinting features are accessed and the
more data is extracted. Starting from the Chrome score, what
follows are the results for the Chrome privacy extensions.
Following that, we have Firefox in the standard and strict
mode. Next, we have Apple Safari and finally, a column to
summarize if at least one solution for each browser can reach
a medium or low rating. In general, an effective protection
should considerably reduce the number of features in absolute
terms and in comparison to an unprotected browser. The
Chrome score can serve as a reference since each solution
has been evaluated based on the same number of features. In
absolute terms, it is not clear how much and what type of
data is required to identify a user. However, by reference to
our baseline (panopticlick.eff.org) we assume that scores of
around 50% and more will facilitate the identification of users
with high probability. Depending on the underlying model and
the feature types, fewer or more features can be required.

Privacy Extensions for Chrome: For the three privacy ex-
tensions installed in Chrome, we can see that the scores
for many websites remain the same whereas the score for
some reduced drastically. For example, the extensions reduced
the scores for nypost.com, addthis.com, savethechildren.org
and vyprvpn.com by more than half or even three-quarters.
Although the score reduced by a considerable amount for some
websites, the reduced score remains high and is still close to
the baseline (e.g., nypost.com) which means that fingerprinting
is still feasible. For more than 30% of the tested websites, the
protections did not impair fingerprinting. A noteworthy result
here is that the AdBlock extension produced results similar
to the two other privacy extensions we evaluated by merely
blocking 3rd party ad networks. In summary, both privacy
extensions give users a false sense of security in the context of
fingerprinting. Although the extensions may be useful against
other ways of tracking, they are not sufficiently effective
against fingerprinting. Finally, the results from evaluating
AdBlock suggest that invasive fingerprinting code occasionally
occurs via 3rd-party ad networks.

Mozilla Firefox: To begin with, Firefox has a slightly smaller
attack surface compared to Chrome, since a few functions
are not supported. In total numbers, Firefox standard perform
similar to Chrome with Privacy Badger . When it comes to
Firefox in the strict mode (highest privacy setting), we observe
that only in 7 out of 15 relevant cases shown in Table III, the
fingerprinting has been thwarted. For approximately half of
these cases, the user is not protected at all and can potentially
be identified with the amount of data extracted.

Apple Safari: We observe that the websites score considerably
lower when loaded via Safari. The total page score, for all
test cases, has been nearly halved (47,8% less) compared to
an unprotected Chrome. In addition, for many webpages we
tested, the scores were far below the 50% baseline of panop-
ticlick.eff.org. However, in 4 out of 15 relevant cases shown
in Table III, the number of fingerprinting features accessed
might still be problematic. Despite the great efforts, many
fingerprinting techniques still work, e.g., canvas fingerprinting
with PNGs and also the general collection of all features. This
explains why fingerprinting tests such as amiunique.org can
still uniquely identify our full fingerprint among their two
million collected profiles. In summary, the limited feature set
available in Safari coupled with Apple’s unification strategy
reduces the possibilities to fingerprinting users significantly.
While the protection is not bulletproof, it becomes provable
more difficult to identify individual users.

Key takeaways: In summary, the popular privacy extensions
and Firefox do not sufficiently protect users from being pro-
filed via JavaScript fingerprinting. However, they still offer
protections against other forms of tacking and cryptomining.
Furthermore, Apple has implemented a simple yet effective
approach: Reducing and unifying the JavaScript interface to
considerably protect the user against the various fingerprinting
techniques.

C. Large-Scale Website Analysis

The objective of this study is to evaluate the presence of
JavaScript fingerprinting and to what degree it is present on
popular websites. Hence, we crawled the 10k most popular
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Fig. 4: Distribution of enabled features and how many
websites use more than 3 aggressive features (red).

websites listed by alexa.com with FPMON to demonstrate how
it can be efficiently used for large-scale fingerprinting analysis.

Methodology and setup: To automate the experiment we
designed and built a crawler to scan the 10k most popular
websites from alexa.com in early 2020. The crawler scans the
list of websites within a dockerized chrome and is controlled
via the selenium framework in python. Each browser instance
is loaded with a modified version of our FPMON extension
that can handle timeouts and sends the collected data to a
local server that stores the data in a database. Each browser
instance uses a clean and new profile for each website crawled.
It was configured with a 45 seconds implicit timeout and
a maximum timeout of 90 seconds, after which the chrome
process terminated. We greatly improved the scanning process
over time by adding signaling between browser and crawler to
handle corner cases (timeouts, HTTP errors, etc.). A scan of
the 10k websites using 20 parallel dockerized chrome instances
takes about 5.5 hours on our dedicated server setup using an
AMD EPYC 7272 12-Core CPU, 48 GB RAM, and a 1 Gbps
uplink. The full results are available in our GitHub repository.

Results: The websites we scanned are listed as the 10k most
popular websites by alexa.com in early 2020. We successfully
collected data from 9,192 pages: we did not receive responses
from 674 pages for various reasons, e.g., country restrictions.
In addition, we removed 134 obvious duplicates that occurred
due to language and protocol redirects. In Figure 4 we show
the distribution of website scores and in Figure 5 we show the
distribution of features used across the websites we crawled.

Baseline comparison: As in Section VI-A, we can use panop-
ticlick.eff.org as a baseline reference. In total, we found 9.66%
of the 10k websites use more than or a similar amount of
fingerprinting features compared to this fingerprinting demo,
which can uniquely identify users with high probability.

The scoring spectrum: The highest scores (see Fig. 4) are
achieved by breitbart.com, foursquare.com and politifact.com:
each of them used 36 features (95% score) by calling around
100 JavaScript features and using nearly all the aggressive
features we classified. In our data set, no website was found
that uses all the features, however, we observe that each
feature is indeed used several times. On the lowest end of the
distribution, around 5.3% of all websites do not use any kind
of fingerprinting feature that we monitor. Moreover, we found
that the majority of websites (56.8% of all websites tested) lie

at the center of this distribution and use 11± 4 features. The
1st, 2nd and 3rd quartiles of the distribution are 7, 11, and
14 features respectively. The median amount of features is 11
with an absolute deviation of 5.2. Accordingly, we found i)
55.72% of the websites use 11 or fewer features; ii) 26.89%
apply 11-16 features; and iii) 17.38% use 17 or more features.

Aggressive feature usage: From a privacy perspective, it is
the use of aggressive features that is concerning (recall Sec-
tion IV). As illustrated in Figure 4, the number of aggressive
features is lower and less frequent compared to the non-
aggressive features. We calculated the global median usage
of aggressive features to be 3 with an absolute deviation of
2.49. Accordingly, we found i) 62.16% of the websites use
a maximum of 3 aggressive features; ii) 23.22% use 4 or 5
aggressive features; and iii) 14.62% websites use 6 and more
aggressive features. Looking in particular only at websites that
are rated low, medium, or high by FPMON, we find the average
amount of aggressive features used is 1.34, 3.5, and 11.47 resp.
Hence, websites that generally collect lots of user data, also
tend to use a notable amount of aggressive features.

Determining thresholds for FPMON: Based on the distri-
bution of features we collected, we adjusted the thresholds
that are used by FPMON to rate a webpage. As shown
in algorithm 1, we distinguish between aggressive and non-
aggressive features because their distributions are so different.
We rate the recorded fingerprinting activity of a webpage
as low if the number of features is ≤ the median behavior.
A website is rated medium if it scores above the median
but is still below the upper bound of the absolute deviation
(Median+MAD). Every website scoring above this range is
rated high. Accordingly, we found 52.90% of the websites
score low, 28.09% medium, and 19.01% high. We discuss the
tradeoffs of this approach in Section VII.

Distribution of JS features: Figure 5 shows the distribution
of all the features that FPMON tracked for the 10k websites.
We can draw two main observations from this data. First, it is
clear that four features namely, User-Agent, Screen, Content
Language, and Plugin List, are used by nearly all the websites
regardless of their fingerprinting score. Second, websites with
high fingerprinting activity (red) in contrast to websites with
low activity (green) use more features: We find that around 20
features are used by websites with high fingerprinting activity,
but they are almost never used by low scoring websites. Hence,
we strongly question the use of those features on such websites
as they do not seem to serve a benign purpose. For example,
why do these websites need to know specific GPU, memory,
connection, and battery information about the user’s device?

Font fingerprinting: In 2013 researchers summarized that
close to 1.5% of the top 10k websites track users using font
fingerprinting [2]. Our data shows that 1,360 pages have a
medium or high rating and use font fingerprinting features via
JavaScript. This relates to 14.79% of the 10k most popular
websites. Hence, we estimate a 10x growth in the use of font
fingerprinting within the last 7 years.

9

https://www.alexa.com/
https://www.alexa.com/
https://www.alexa.com/
https://panopticlick.eff.org/
https://panopticlick.eff.org/
https://www.breitbart.com/
https://de.foursquare.com/
https://www.politifact.com/


Fig. 5: Distribution of feature usage for websites with low, medium and high fingerprinting activity. (* = aggressive features)

Canvas fingerprinting: In 2014 Acar et al. [1], analyzed the
most popular 100k websites and concluded that around 5.5%
of websites apply canvas fingerprinting. According to our data,
we found 1,641 websites with a medium or high rating that
make use of Canvas fingerprinting features, which relates to
17.85% of the 10k pages. Hence, we approximate a 3x growth
in about 6 years.

Top level domains: We filtered the data by top-level domains
(TLDs) to calculate the average scores by country and types
of organizations. For fairness, we removed underrepresented
TLDs with less than 40 entries and tested for sample size
issues. The top scoring TLD was .ru with an average score
of 15.7%, followed by .uk, .vn, .au, .de and .br all of
which scored approx. 13.2%. The most popular .com domain,
is in the mid-range of this ranking with an average score of
11.8%. The .gov TLDs have an average score of 10.6% and
the .org domains score 9.7%. Both can be found in the last
third of the ranking. One of the lowest scoring TLDs in the
list is the .edu domain with an average score of 8.1%, almost
half as much as the top-scoring TLD. The ranking illustrates
that JS fingerprinting is i) most common on Russian domains;
and ii) more adopted by private entities compared to public
entities such as governments, NGOs, and universities.

Key takeaways: Our conclusions from analyzing the 10k most
popular websites with FPMON are the following. First, finger-
printing has grown tremendously in the past 5 years. Second,
around 19% of websites make massive use of fingerprinting
features and approx. 28% of websites collect an above-average
amount of user device data. Third, around half of the features
we identified are questionable and tend to be used against the
interest of users.

D. Fingerprinting Networks

In our final study, we aim to answer the following ques-
tions: i) What are the most aggressive fingerprinting scripts? ii)
Who are the main distributors of these scripts? And iii) How
widespread are their networks? We do so by investigating the
individual fingerprinting scripts from our data set and looking
for common patterns in their behavior.

Methodology: Based on the data collected on the 10k most
popular websites, we consolidated the data for each of the
occurring scripts in the following way. Instead of a page score
we calculated a script score. The score still indicates the
amount of unique fingerprinting features, but now the value
is measured for each script. Next, we evaluated the scripts
from four different points of view: the host domain, filename,
script score, and the fingerprinting signature. We separated the
script filename and host domain but also removed irrelevant
paths and cache busters (e.g. script.js?v=123). In addition, we
regrouped all scripts that have the same name but a different
score, because they are most likely not the same scripts.
Then we calculated a fingerprinting signature for each script.
This signature represents the concatenation of all features
that have been called in their order of occurrence, e.g.,
UserAgent;Geolocation;Memory;CPU;CPU;...
With the help of this signature, we can match all scripts that
have an equivalent behavior but have obfuscated filenames
and source code or scripts that are bundled with other scripts.
If a scripts randomize its function calls it can still be grouped
based on the host domain, filename and script score.

Results: On the 10k most popular pages we found 72,457
scripts that are hosted on 6,896 unique domains. Scripts that do
not use any JS function tracked by FPMON are not included.
The large majority of scripts scored very low. One third
(33.6%), use only a single monitored feature, while 97.6%
of the scripts use 10 or fewer features. Hence, the absolute
majority of scripts does not use many of the tracked features.
We found 2,769 scripts to score at least 25%; 291 score at
least 50%; and only 93 scripts reach a score of 75% and
above. The data clearly shows that the majority of aggressive
fingerprinting attempts are caused by less than 1% of the
scripts on the 10k most popular websites. With respect to our
baseline (panopticlick.eff.org), only around 300 scripts score
similar or higher as the tool that can identify users with high
probability. Moreover, we see that the script scores are in
general lower than the page scores used in the previous studies.
Since page scores are based on the concurrence of multiple
scripts, it is likely that many of the high page scores are caused
by multiple fingerprinting scripts that run concurrently.
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Network Score Size Data Sink Examples of domain affected
Moatads 80% 58 3rd-party breitbart.com, wsj.com, westernjournal.com, motor1.com, inquirer.net, nypost.com, . . .
Sift 50% 45 3rd-party udemy.com, scribd.com, patreon.com, kickstarter.com, wayfair.com, flickr.com, . . .
Lalaping 88% 17 3rd-party clipconverter.cc, shahid4u.net, swatchseries.to, o2tvseries.com, maxseries.tv, . . .
Datadome 50% 16 3rd-party nytimes.com, hepsiburada.com, leboncoin.fr, encuentra24.com, fnac.com, oui.sncf, . . .
Adform 48% 31 3rd-party freepik.com, coursehero.com, freepik.es, idnes.cz, tim.it, worldoftanks.eu, . . .
Akamai 65% 232 1st party adobe.com, rakuten.co.jp, foxnews.com, hulu.com, tokopedia.com, ikea.com, . . .
fingerprint.js 48% 64 1st party zhihu.com, agoda.com, olx.com.br, coinmarketcap.com, baixing.com, fmovies.to, . . .
Google 20% 1343 3rd-party reddit.com, okezone.com, twitch.tv, ebay.com, tribunnews.com, nytimes.com, . . .

TABLE IV: The most prevalent script distributors with fingerprinting score and network size found with FPMON

Fingerprinting networks: We evaluated the scripts in our data
set for matching signatures and identified 383 networks of
different sizes. To reduce the results, we filtered the data by
removing very small networks (size < 10) and by manually
merging those networks that obviously belong to the same
entity, e.g., siftscience.com and sift.com, etc. Due to the limited
space, Table IV shows only the most prevalent networks that
we identified and analyzed more closely.

Most harmful networks: We find Sift [32] and Moat [27]
to be the two most threatening networks due to their high
number of fingerprinting features extracted and their relatively
large distribution. Moat, owned by Oracle, is an ad-analytics
platform. On their client’s websites, they collect large amounts
of user device data that are then sent to the Oracle net-
work. Their scripts used 80% of the fingerprinting techniques
monitored by us, 12 of those are labeled aggressive. Sift, as
mentioned in the New York Times in 2019 [17], collects and
builds reputation profiles of every Internet user. Overall, their
scripts reach a score of 50% with 6 aggressive features and
hence score similar to our baseline. Furthermore, we also
found various smaller networks, e.g. created by companies
like DataDome and Adform. DataDome scores 50% with 11
aggressive features and is present on 16 websites. Adform
scores 48% with 4 aggressive features but affects almost twice
as many websites. In all cases, the user data is collected on
the client’s website and sent to the network of the 3rd-party
script provider.

Less harmful networks: We also found various networks that
we believe to be less harmful. One of those is the Akamai
network, which seems to be part of their bot detection service.
Its distribution is surprisingly large and covers 232 websites,
4-5× more than Sift and Moat. Based on our analysis, the
Akamai script appears to send the collected data diretcly to the
website owner and not to Akamai itself, which might indicate
benign behavior. Furthermore, we found the extremely large
network of Google and its subsidiary DoubleClick with at least
1,343 websites. However, despite its huge distribution, they do
not extract as much data as the other networks. Their scripts
only score around 20% (with 2 aggressive features), not even
one-third of what other services extract.

Miscellaneous networks: In our data set there are various
other networks that share a common fingerprinting behavior.
For example ’Lalaping’, is a network of (illegal) streaming
websites that share a common fingerprinting signature with
a score of 88%. The script includes 13 aggressive features
and is present on 17 websites within the 10k most popular
pages. Likewise, some smaller networks are formed by other
organizations that collect user data in the same way across

all their brands and subsidiaries. Related to this are the 64
websites that include a version of fingerprintjs.com. In most
cases the data is sent to the visited websites (1st party),
however, we are unaware of why all this data is collected.
One reason could be that contents are tailored based on the
user profiles [20].

Key takeaways: Using FPMON, we were able to chart the
landscape of fingerprinting networks and find it to be diverse
and multi-dimensional. Many fingerprinting scripts are part of
specific online services that ultimately collect vast amounts of
user data. While Oracle’s Moat and Sift have already cast a
wide and threatening network of fingerprinting scripts, we can
observe that smaller organizations are following their lead.

VII. DISCUSSION

Having unraveled some of the key characteristics of
JavaScript fingerprinting in the wild using FPMON, we now
discuss the broader implications of our findings as well as
highlight the limitations of our approach.

A widespread and hidden threat: In general, we noticed that
fingerprinting scripts are designed to be stealthy: i) they do
not interact with the user; ii) they do not ask for permission;
and iii) they are explicitly not shown to the user (no GUI,
no console log). They collect the device features, generate a
fingerprint, and send it away within milliseconds, often before
the page is even fully visible to the user. Moreover, a few
scripts are even loaded and removed dynamically from the
page (DOM) and others conceal the data transmission from the
user using web sockets or ciphers. Ultimately, in many cases
(e.g., the Moat and Sift networks) the amount of collected
user device data is so extensive, that user identification is
highly possible. This practice of concealed data collection
heavily subverts current regulations on user’s privacy such as
the GDPR [13, 15]. To our knowledge, FPMON is the first
tool that comprehensibly and reliably exposes this threat.

The need for better countermeasures: In Section VI-A
we demonstrated that popular countermeasures are inadequate
against JS fingerprinting, especially when the fingerprinting
scripts are bundled within the scripts of the (1st party) website
(as observed in Section VI-D). Hence, the blacklisting ap-
proach, as used in Firefox, DuckDuckGo, and Privacy Badger,
cannot protect a user from fingerprinting scripts sufficiently.
By reducing and unifying the JS interfaces without breaking
functionality, as implemented by Apple, appears to be a
more effective and sustainable solution against the problem.
We hope, that FPMON and our findings will help to better
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understand the problem and build more effective protections
against fingerprinting.

True intention of fingerprinting on websites: In Sec-
tion VI-D we used FPMON to identify some of the networks
that distribute fingerprinting scripts. None of the networks
who reached a high score are present on a sufficiently large
number of pages to reliably track users across the Internet.
However, some organizations are on the edge of becoming
a real threat to Internet users. Their network sizes might be
comparatively small at the moment (typically ≤ 1% of the
10k most popular websites), but they often include high-profile
pages and hence can analyze millions of users every day. Based
on this evaluation, we also question the capacity in which
owners know the practices and true power of the 3rd-party
(fingerprinting) services used on their websites. For some of
these networks, fingerprinting seem to be part of the tools
that are used by the website administrator to maintain their
services (e.g. bot detection, analytics, security). For example,
archive.org, which has almost no fingerprinting activity (7%),
however, their donation page scores 90% because of a single
3rd-party fingerprinting script. On the other side, nytimes.com
scores usually 60% across their website, but deliberately
disables all data collection on their dedicated whistleblowing
subpage (0%).

Script vs Page Score: Another observation in our studies is the
discrepancy between script and page scores in Section VI-C
and VI-D. Although one could rate the webpage based on the
highest script score, we believe that a comprehensive page
score is more effective at judging data extraction caused by
fragmented, dynamically loaded, and obfuscated scripts. For
example, 41.7% of the 10k most popular websites include more
than one script from a single 3rd-party domain. This kind of
fragmentation can easily distort a script based score.

Performance: We evaluated potential slowdowns to page
load times caused by FPMON and found the impact to be
negligible. Under optimal test conditions, e.g. when there is
no network transmission and all the monitored features are
called, the overall slowdown is ≤ 20ms (≤ 5% of the page
load time). Under real-world conditions, e.g. when loading a
webpage from a remote host with high fingerprinting activity
such as metacafe.com, it took 4.760 ± 200ms on average
(10 measurements) to finish. Compared to the max. 20ms
overhead, FPMON only adds under 0.5% to the total execution
time under real-world conditions. Hence, we conclude that the
user cannot perceive the tiny increase in execution time since
network delays and rendering time are much larger than any
slowdown caused by FPMON.

Limitations: In general, our findings suffer from the un-
derlying problem that we cannot ascertain if a feature has
been used for fingerprinting or not. For this reason, we chose
a quantitative measure that covers all the components that
are most typically used for fingerprinting. From our point
of view, it is highly unlikely that a webpage uses all those
features at once in a benign way. This is especially true for
aggressive features such as CPU and memory information or
the specific Canvas and Audio operations. In additions, user
device fingerprinting can also be done without JavaScript, e.g.
via Plugins [9], CSS [37] or with HTTP and TCP/IP data [33].
These techniques are beyond the scope of FPMON.

VIII. RELATED WORK

In the following, we summarize related work in the domain
of web browser fingerprinting. In 2009, Mayer [23] was able to
identify 96% of 1,328 web clients, by hashing the concatenated
contents of a set of four JavaScript objects [23]. Later on,
Eckersley introduced the Panopticlick project [10]. In this
experimental study, the team analyzed nearly half a million
browsers with an extended set of features including the list
of fonts, timezone, and various HTTP headers. This technique
could identify 94.2% of the tracked devices. In addition, they
published a novel way to extract the list of supported fonts by
measuring the size of the rendered text and described this as
one of the most accurate ways for device identification.

A few years later, mainly two studies have started to
analyze the large scale adoption of fingerprinting techniques
that are most closely related to FPMON. In 2013, FPDetec-
tive [2] introduced a crawler framework to study the use of
font fingerprinting in the wild. The framework consists of an
automated browser, a network proxy, and a flash decompiler.
Using predetermined regular expressions, FPDetective can find
the presence of 19 different font fingerprinters for JavaScript
and Flash and concluded that nearly 1.5% of the Alexa 10k
popular websites track users with font fingerprinting. Our
analysis in Section VI-C shows that this has grown by an order
of magnitude since then. In addition, their evaluation revealed
that former protections (DoNotTrack, Mozilla Firegloves, and
the Tor browser) can be bypassed in various ways and can
make the user even more identifiable. Compared to FPDe-
tective, FPMON adopts a broader approach, i.e., we detect
the combined use of the most typically used fingerprinting
techniques. Similar to FPDetective, we found the existing
countermeasures to be ineffective against JS fingerprinting.

One year later, Acar et al. [1] analyzed the top 100k
webpages and concluded that around 5.5% of the evaluated
websites use canvas fingerprinting. To detect the canvas finger-
printing they modified the Firefox source code to log certain
methods that are executed when a webpage uses the Canvas
API. FPMON follows the same approach but does this for a
comprehensive set of fingerprinting features and in a browser-
independent way that does not require to modify the browser
source code. In their study, Acar et al. discovered that the
majority of the scripts (95%) belong to the same provider: ad-
dthis.com. As we have seen in our study (Section VI-A), their
research probably had great impact, since addthis.com was the
only provider found that respects user consent nowadays.

In 2016, Lerner et al. have published an archaeological
study of web tracking from 1996 to 2016 [21]. The researchers
created a tool called TrackingExcavator to make a longitudinal
measurement though the Internet Archive’s Wayback Machine.
While their work focus on third-party tracking via cookies,
they also measured the growing adoption of 37 fingerprinting
API calls on the 500 most popular websites listed by Alexa. In
comparison to FPMON, their interception approach is similar
to ours, but the total function set is much smaller and the
data shows almost no quantitative effects. Until 2016, almost
half of the pages did not used more than 4 functions and less
than 20 pages used 16 or more JS functions. Nevertheless, the
study shows the historic adoption of JS functions and tracking
networks.
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In conclusion, several researchers have focused on specific
functions, e.g. Font or Canvas fingerprinting, and typically
with small function sets. With FPMON we take a broader
perspective on the problem, i.e., we quantify the combined
use of functions that are most typically used for fingerprinting
to identify even unknown fingerprinting scripts.

IX. CONCLUSION

This paper was motivated by the increasing number of
privacy violations posed by websites that apply JavaScript
fingerprinting on their users. To that end, we conducted a
systematic analysis of various popular fingerprinting tools to
obtain an accurate understanding of the fingerprinting ecosys-
tem. We found that JS fingerprinting is often well-hidden in
the background and is usually done without user consent.
Based on our classification and rating of JavaScript functions
that are closely related to fingerprinting, we designed and
developed FPMON, a light-weight and comprehensive finger-
printing monitor that can measure and rate JS fingerprinting
on any given website in real-time.

Our evaluations using FPMON on real websites and with
major browsers revealed the following. Several websites collect
sprawling amounts of user data regardless of privacy regula-
tions. Moreover, current countermeasures can not sufficiently
protect users. The most practical and effective solution to
thwart JS fingerprinting seems to be the reduction and uni-
fication of JS interfaces, as present in the Safari browser.
In our study of the Alexa top 10k websites, we found that
i) fingerprinting has grown tremendously in the past years
(by an order of magnitude for font fingerprinting); ii) nearly
one in five websites aggressively collects user data via JS
fingerprinting; and iii) half of the identified JS features that
are closely related to fingerprinting are unlikely used in benign
applications. Finally, using FPMON we identified the diverse
networks that foster the use of JS fingerprinting. Some of
these networks openly admit to profile users, others integrate
fingerprinting into complex services for website owners such
as bot detection, analytics, and security tools, that collect huge
amounts of user data on their client’s websites. On many
affected websites, the amount of data collected is so extensive,
that precise user identification becomes very likely with regard
to previous research [10, 35]. We believe that harvesting such
vast amounts for device data without user consent does not
justify its purpose and poses a damaging threat to web user
privacy [15, 4, 29].

We hope this paper and FPMON helps to empower web
users to uncover how and where their data is collected while
browsing the web. Beyond that, we find FPMON to have
three more contributions to the web ecosystem. First, using
FPMON, website owners can scrutinize 3rd-party components
for concealed fingerprinting behavior to improve the privacy
of their websites. Second, browser vendors can test when
and why their protections fail and improve their solutions.
Third, FPMON can be integrated continuously, e.g. into search
engines: websites with poor privacy behavior can be ranked
lower in the search results to counter the adoption of JS
fingerprinting and protect user’s privacy on a large scale.
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