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Abstract—Wearable wristbands have become prevailing in the
recent days because of their small and portable property. How-
ever, the limited size of the touch screen causes the problems of fat
fingers and screen occlusion. Furthermore, it is not available for
users whose hands are fully occupied with other tasks. To break
this bottleneck, we propose a portable, hand-free and secure text-
entry system, called FaceInput, which firstly uses a single small
form factor sensor to accomplish a practical user input via facial
vibrations. To sense the tiny facial vibration signals, we design
and implement a double-stage amplifier whose maximum gain is
225. To enhance the input accuracy and robustness, we design a
set of novel schemes for FaceInput based on the Mel-frequency
cepstral coefficient (MFCC) concept and a hidden Markov model
(HMM) to process the vibration signals, and an online calibration
and adaptation scheme to recover the error due to temporal
instability. Extensive experiments have been conducted on 30
human subjects during the period of one month. The results
demonstrate that FaceInput can be successful to sense the tiny
facial vibrations and robust to fight against various confounding
factors. The average recognition accuracy is 98.2%. Furthermore,
by enabling the runtime calibration and adaptation scheme that
updates and enlarges the training data set, the accuracy can
reach 100%.

I. INTRODUCTION

Wearable devices have become prevailing in recent days. It
is forecast that the shipments of wearable devices worldwide
would reach 453.19 million units by 2022 [24]. Wearable
devices such as smartwatches and smart wristbands are widely
used. More and more applications such as short message
service(SMS) and mobile payment are adopted on the smart
wristbands instead of mobile phones. Among these applica-
tions, the realization of an available typing/text entry system is
essential [1]. For better user experience, the smart wristbands
have become tinier and lighter, while the touch screen is
getting smaller. As a result, it is difficult for users to type
the correct keys.

This grand challenge has prompted considerable research
efforts in the context of the mobile text entry. Several novel
text-entry methods, such as FingerIO [2] and LLAP [3],
have realized millimeter-scale position accuracy for fingertip
tracking. As a result, users can write letters on ubiquitous
surfaces instead of a tiny touch screen. However, writing letters
requires operation from the non-wearing hand, which may
not be available when the non-wearing hand operates other
tasks. FingerT9 [4] leverages the finger segments of a user to
realize the action of thumb-to-finger, which enables users to
type with the same-side-hand(SSH) on the smartwatches. For

Fig. 1. A sample example of FaceInput.

the same reason, it is not available for users whose hands are
fully occupied with other tasks (e.g., operating a machine or
carrying objects). Furthermore, those who suffer from diseases
(e.g., quadriplegic or Parkinson) have difficulty in operating
their hands. Although speech recognition [9] is an alternative
input method, it is sensitive to noise levels, prone to replay
attacks and easy to be impersonated.

Suffering from these pain points, we would like to seek
a method to tackle the problems inherently. Especially, we
have observed that the voice speech of a user can cause facial
vibrations. Inherently, the facial vibration signals propagate
through the face in a closed channel, which is hard to be
impersonated and robust against replay attacks. The facial
vibrations can resist acoustic noise and ambient dynamics.
Furthermore, the facial vibration produced by voice speech
is a signal source caused by a hand-free manner. One more
important observation is that the facial vibrations produced by
the same word exhibit highly consistent vibration fading pat-
terns, due to vibration reflections cancelling or strengthening
each other. Such patterns depend on the vibration frequency
or wavelength, which can be conveniently used as vibration
signatures.

Therefore, we propose FaceInput, as shown in Fig. 1, a
lightweight wearable input system which enables users to input
through facial vibration. This is implemented by relating a
T9 keyboard layout to different numbers (e.g., 0,1,2,...,9). We
leverage a vibration sensor on a piece of glasses to collect
the facial vibration signals by speaking different numbers.
Using FaceInput system, all kinds of wearable devices (e.g.,
smart watch) are able to receive the human text input contents
through wireless transmission techniques such as Bluetooth.

Motivated by this, we have implemented a text input system,



Fig. 2. (a) Vibration sensor attached to a pair of eyeglasses. (b) A sample
prototype of FaceInput.)

as shown in Fig. 2(b). To realize such a reliable and usable
system, we encounter the following several key challenges.
First, to collect facial vibration signals produced through
speech, we have to design a sensitive hardware system since
the facial vibration signals on the face are too difficult to
detect. Second, we have observed that users may speak with
different length of the same number, which is difficult to train
the constructed classification model. Thirdly, as an available
system, FaceInput should not only work with high accuracy in
an ideal environment but also in many practical situations. For
example, FaceInput is a training system to learn the location
of glasses, but user glasses could be displaced while being
worn in daily life. Fourthly, FaceInput should work well too
when users walk or shake their heads, which may produce
vibration noise to the system.

To cope with these challenges, we design a double-stage
amplifier whose maximum gain is 225. With the amplifica-
tion by this amplifier, we can successfully collect the tiny
facial vibration signals. We then studied the facial vibration
propagation mechanisms on different facial vibration patterns
produced by speaking operation of different numbers. We find
that facial vibration propagation is a dynamic process related
to the facial vibration frequency, which can be described by
the Mel-frequency cepstral coefficient (MFCC) [27]. There-
fore, MFCCs are able to distinguish different types of facial
vibrations and can be reliably used as a vibration signature.
To remove the noise signal caused by human mobility, we
leverage a filter to eliminate the noise. We then use an
online dual-threshold endpoint detection algorithm to detect
facial vibration signals. Also, we find that the Hidden Markov
Model(HMM) [28] is a suitable technique to classify vibration
signals, which can address different length of voice speech.
Last but not the least, to enhance the robustness in practical
situations such as positional variation of glasses or different
strength of voice speech, we design a runtime calibration and
adaptation system and offer a special scheme to update and
enlarge the training set.

We use a small form factor piezoelectric ceramic to imple-
ment FaceInput as a prototype on a Raspberry Pi in a real
time manner. A demonstration video is shown in the link1.
Our baseline experiment indicates that vibration classification
accuracy is 98.2% on average for 30 experimenters with an
initial training sample size of 10 for each number. Further-

1https://youtu.be/9IGplVsWWZs

more, we have conducted a series user studies in terms of
several realistic cases such as positional variation of glasses
and different voice strength. The result shows that FaceInput
is able to recover the degradation with the runtime calibration
and adaptation scheme.

To summarize, the contributions of this work consist of the
following aspects.

• To the best of our knowledge, FaceInput is the first
attempt in the literature to achieve text entry for wearable
devices via the facial vibration signals which are collected
by a single small size vibration sensor. It detects the
facial vibrations in a closed channel to recognize the text,
which is more secure and robust compared to the speech
recognition schemes in an open channel.

• We implement the prototype of FaceInput, then leverage
MFCC and HMM to recognize the facial vibrations, and
adopt a runtime calibration and adaptation scheme to
achieve a robust recognition system.

• We extensively evaluate the performance of FaceInput
under different scenarios. The results show that FaceInput
achieves an average classification accuracy of 98.2% and
is robust in the different practical situations.

The remainder of this paper is structured as follows. In
Section II, we first provide the background information and
the related work in the context of this work. Then, Section
III indicates the vibration model for facial expression. Section
IV presents the system workflow and hardware prototype of
FaceInput while showing the design goals and challenges.
Section V describes the detection of the facial vibration sig-
nals. Section VI explains the recognition technique for facial
vibrations. Section VII shows the detailed implementation of
the runtime calibration and adaptation scheme, followed by a
comprehensive experimental evaluation of our system. Finally,
Section IX concludes this paper.

II. RELATED WORK

Text input for wearable devices:
1) Opposite-side interaction on wearable devices: Nowa-

days, the most existing smart wristband interaction techniques
leverage the input from the non-wearing hand, namely the
Opposite-Side Interaction. Traditionally, text entry techniques
for smart wristbands leverage QWERTY-like soft keyboards
[6]. Several novel text-entry methods, such as FingerIO [2] and
LLAP [3], have realized millimeter-scale position accuracy
for fingertip tracking. As a result, users can write letters on
ubiquitous surfaces instead of a tiny touch screen. Moreover,
ViType [8] enables user to input typing on the back of the
hand. However, typing on screen or the back of the hand and
writing letters require operation from the non-wearing hand,
which may not be available when the non-wearing hand is
operating other tasks. On the contrary, FaceInput leverages
the facial vibration to input, which can be available when the
non-wearing hand is operating other tasks.

2) One-handed interaction on wearable devices: Most cur-
rent smart wristband interaction methods require the input



Fig. 3. The architecture of FaceInput.

from the non-wearing hand, but there is more and more re-
search interest in the same-side-hand(SSH) interaction, which
leverages the abilities of wrist-worn devices using the devices-
worn arm/wrist. For example, Float [7] enables users to
achieve one-handed and touch-free target selection on smart-
watches via combining the photoplethysmogram (PPG) sig-
nal with accelerometer and gyroscope in the smartwatches.
FingerT9 [4] leverages users’ finger segments to realize the
action of thumb-to-finger, which enables users to type with the
same-side-hand on the smartwatches. However, these works
are not available for users whose hands are fully occupied with
other tasks(e.g., operating a machine or carrying objects). So
FaceInput proposes a novel technique which enables users to
input via the facial vibration signals.

3) Hands-free interaction on wearable devices: Speech
recognition [9] is a pervasive method for text input on
wearable devices. However, voice as an input scheme is
inherently insecure, as it is easy to replay attacks, sensitive
to noise and prone to be impersonated in an open channel.
Nowadays, studies have indicated that intruders can inject their
voice commands stealthily and remotely with mangled voice
[10], wireless signals [11] or through public radio stations
[12] without causing users’ attention. Different from speech
recognition, FaceInput using the facial vibration signals for
input works in a closed channel, which is difficult to inject
the vibration signals stealthily and remotely.

Sensing technologies for facial activity: Nowadays, there
are various techniques proposed to sense facial expressions. In
the following, we offer a brief overview of these techniques.

1) Optical sensing: The most existing technique is using
a vision-based camera to track users’ facial expressions [13].
However, a vision-based camera tracking technology is prone
to be affected by lighting conditions. In addition, camera-based
detection systems are usually bulky or stationary. Furthermore,
they are prone to be invaded for personal information. FaceIn-
put uses facial vibration signals for text input, which can
not be affected by ambient environment and does not let out
personal information.

2) Electromyography(EMG): The most essential action is
a binary on/off-switch, that can be conducted by sensing an
emerging action potential, such as produced by contracting
muscles. It has been indicated by San Agustin using an EMG
headband that senses a frowning or a tightening of users’ jaw
[14]. However, these works have to attach extra devices to the
users’ skin, which is invasive, obtrusive and unacceptable. In
contrast, FaceInput senses the facial vibration signals via a

piezoelectric ceramic vibration sensor which can be attached
to the glasses of a user.

3) Electroencephalography(EEG): With EEG technology,
we can measure neuro-activity signals on the cortical surface
or within the brain, namely Brain Computer Interfaces (BCIs).
Matthies et al. [15] used eye winking, ear wiggling, and head
gestures to operate a handheld via an Emotiv’s mobile EEG
headset. However, an EEG headset is bulky and hardly accept-
able in realistic situations. Furthermore, EEG technology also
requires users to attach EEG sensors to their skin, which is
obtrusive.

4) Electrooculography(EOG): With EOG Glasses, we can
basically detect eye-movements, which can control smart envi-
ronments [16]. Ishimaru et al. [17] utilized EOG technology to
roughly recognize chewing, talking, eating, and reading with
an average accuracy of 70%. As described above, EOG sensors
only can roughly identify the facial activities, which can not
sense the tiny facial vibration signals created by speaking
words.

5) Capacitive sensing(CS): Rantanen et al. [18] proposed
a CS-based glass which could detect eyebrows’ frowning
and lifting to perform click-events. Furthermore, Rantanen
et al. [19] presented a face-hugging device consisting of 12
electrodes. They observed that the activation of four different
muscle groups could be sensed via a proximity sensing.
However, it requires users to wear a face-hugger that covers
the entire face of a user, which is rather obtrusive.

6) Electromagnetic sensing: Fagan et al. [20] attached 7
magnets onto the lips, teeth, and tongue which could create a
significant change in the magnetic field when users conducted
mouth-movements. And there were 6 Dual axis magnetic sen-
sors mounted on the glasses, which could detect 13 phonemes
and 9 words. However, the experiment setup was quite bulky
and obtrusive.

7) NAM microphone(stethoscopic microphone): Chen Jou
et al. [21] utilized a throat microphone to recognize whisper
words. Panikos Heracleous et al. [22] presented the use of
a stethoscope and silicon NAM (nonaudible murmur) micro-
phones in automatic speech recognition. However, these works
had to use NAM Microphone to detect the voice signals, which
could be affected by ambient noise.

III. VIBRATION MODEL FOR FACIAL EXPRESSION

Human speech: The production of human speech is widely
referred to as the source-filter model [26], which consist of
two separate processes: 1) The original sound source is first
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Fig. 4. Example of the extracted MFCC features.

Fig. 5. A sample piezoelectric ceramic.

generated through the vibration of vocal folds. 2) Then the
sound source will be filtered and modulated when traveling
through the vocal tract. The output sound will be shaped into
different spectrum when the structure of vocal tract varies (e.g.,
the tongue movement).

Multipath channel profile-based signature: Fig. 7(a) plots
the facial vibration signals captured by the piezoelectric ce-
ramics when a user speaks a word (i.e., “taps”). The magnitude
and duration of different phases(e.g., s1, s2, s3) show obvious
dissimilarity. Further, we can see from Fig. 4 that the corre-
sponding MFCC profiles of voice “zero” and “one” exhibit
different values across the frequency bands and time. Hence,
the MFCC features can be utilized to characterize the user’s
facial vibrations.

IV. FaceInput SYSTEM DESIGN

A. Design goals and challenges:

The main objective of this work is to propose a hand-
free and secure text input system through the facial vibration
signals. Thus FaceInput is designed to meet the following
goals.

1) Availability: FaceInput should function properly in most
of the daily user scenarios while inputting text. It should be
resilient to the surrounding acoustic noise and the human-
motion noise while walking or shaking the head.

2) Robustness: The users may pronounce the same word
with different volume, tone, and duration, which results in
variation of facial vibration signals with respect to amplitude,
frequency and length. Therefore, FaceInput should be robust
enough to give the correct output when this regular variation
of input signals occurs.

3) Efficiency: FaceInput should be efficient with low time
and computation overhead. Specifically, we have to make sure

Fig. 6. The design of the AC amplifier circuit.

that users do not require to rebuild the vibration profile each
time when they launch the system. Such time overhead is
catastrophic to the user when the usage duration is short.
Further, the computation overhead should also be as low as
possible for a low latency text-input system.

B. System workflow:

In Fig. 3, FaceInput records the vibration signals using a
small form factor piezoelectric ceramic which is small enough
to be embedded into the glasses. After receiving the vibration
signals in the time domain, the system applies a series of
signal processing operations to obtain a useful segment of
facial vibration signals (Section V). Then, the segmented
signals are transformed to matrices with unique features (i.e.,
Mel-Frequency cepstral coefficient), which corresponds to the
vibration characteristics of the input number. In the profiling
stage, these features are labeled and saved to build the vi-
bration profiles of each number (i.e., 0-9), which is used to
construct a Hidden Markov Model. In the recognition stage,
the subsequent facial vibration samples are taken as inputs to
the pre-trained Hidden Markov Model. The model compares
the new input with the vibration profiles and provides the
recognition result based on statistical calculation. Finally,
FaceInput has a runtime adaptation mechanism to calibrate
the occasional recognition errors.

C. Hardware prototype

In Fig. 2(a), a piezoelectric ceramic vibration sensor is
attached to a pair of eyeglasses, which is used to sense the fa-
cial vibration signals. The piezoelectric ceramic is a vibration
sensor that uses the piezoelectric effect, to measure the facial
vibrations, by converting it to an electrical charge. Fig. 5(a)
shows a standard dielectric in a capacitor. In a piezoelectric
device, mechanical stress, instead of an externally applied
voltage, causes the separation of charge in the individual atoms
of the material. Thus, the vibrations caused by talking can be
converted to an electrical charge. Fig. 5(b) shows a sample
piezoelectric ceramic whose external diameter D is 20mm and
thickness T is 0.35mm. The small size allows us to embed it
to wearable devices like smart glasses. We place the sensor at
the position as shown in Fig. 2(a) as this area has consistent
contact with the face of a user.

Besides, if we desire to extract facial vibrations in the
presence of noise caused by body movements while walking or
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Fig. 7. Sample raw input signals of a word(i.e., “taps”).

shaking the head, the amplifier should be kept small enough to
avoid the noise of body movement. On the other hand, we are
limited by the resolution of the ADC unit, especially that with
low-cost. If the amplification is too small, it becomes hard to
correctly detect facial vibration due to a combination of low
signal amplitude and low ADC resolution (i.e., quantization
error becomes dominant). We have configured the amplifier
circuit carefully to ensure FaceInput is sensitive enough to
detect even the tiny input command from the user. To this
end, we require to make sure that the facial vibration signals
caused by human speech stay within the range of the amplifier
circuit output after amplification, i.e., 0-5V in our case.

Fig. 6 shows the design of the AC amplifier circuit, which
is a double-stage amplifier whose maximum gain is 225. To
filter the system noise by a hardware circuit, both the stages
of the amplifier circuit have an RC bandpass filter in the
15.9Hz to 12.9kHz range. Also, the maximum gain of both the
stages is 15. When the signal is amplified by the first stage,
the amplification of the signal can be adjustable by turning
the adjustable resistor R7 shown in Fig. 6. Therefore, the
maximum gain of this amplifier circuit is 225. The amplified
signal is in the range from 0 to 5V, which is quantized to 1024
levels (10 bits) using an MCP3008 A/D converter [25]. The
ADC output signal is thus transmitted to a laptop for further
processing of signal and extraction of facial vibration.

V. DETECTION OF FACIAL VIBRATION SIGNAL

A. Denoising

Unlike a microphone-based acoustic system using the vibra-
tion signals, FaceInput is capable of resisting environmental
acoustic noise. Fig. 7(a) and Fig. 7(c) show the facial vibration
signals and voice signals of a word (i.e., “taps”) with 50dB
ambient noise. In addition, Fig. 7(b) and Fig. 7(d) show the
facial vibration signals and voice signals of a word (i.e.,
“taps”) with 90dB ambient noise. Fig. 7 shows that although
piezoelectric ceramic sensors are not sensitive to detect the
speech as good as microphones, they are naturally against the
surrounding noise. We will introduce that FaceInput is able
to recognize speech via the facial vibrations in section VI.
Through the recognition of vibrations in a closed channel,
FaceInput is more secure, which is against to impersonate
and replay attacks. However, piezoelectric ceramic sensors are

sensitive to human mobility, such as walking or shaking the
head.

We adopt the Fast Fourier Transform (FFT) technique to
analyze the frequency between human mobility and facial
vibrations. The result shows that the frequency of human
mobility is always under 10 Hz while the frequency of facial
vibrations is in the 10 to 1000 Hz range. We observe that
there is a clear separation between facial vibrations and body
movements in the frequency domain. Therefore, we use a
Butterworth bandpass filter to denoise body movement and
high-frequency noise in the 10 to 1000 Hz range.

B. Segmentation

After denoising the vibration signals, FaceInput adopts an
energy-based dual-threshold scheme [5] to detect the start and
end points of the useful facial vibration signals. Specifically, it
calculates the energy levels by accumulating the square of the
amplitudes of received vibration signals in a sliding window
in the time domain as follows.

Energy(t) =

t+L∑
i=t

s2(i) (1)

where L is the length of the sliding time window and s(i) is
the amplitude of the received vibration signals. As for the low
threshold TL and high threshold TH , we calculate the mean
of noise energy and standard deviation of signal energy as µ
and σ respectively, while setting TL = µ+σ, TH = µ+3σ.

VI. VIBRATION CLASSIFICATION

A. Feature extraction

Due to represent the dynamic features of the signals with
both linear and nonlinear properties, the Mel-frequency cep-
stral coefficient (MFCC) is widely applied to represent the
short-term power spectrum of acoustic or vibration signals
[27]. While the MFCCs are preferred choice for researchers
to tackle the voice recognition task, we observe that they
can also characterize the facial vibration signals caused by
speaking, as the vibration signals generate different vibration
energy at different frequencies and propagate over different
distances on the face. Specifically, we calculate the MFCCs
of the received vibration signals in each sliding window. The
number of filterbank channels is set to 28, and 14-th order
cepstral coefficients are computed in each 20 ms Hamming
window, shifting 6 ms each time.

B. Classification

The hidden Markov model is a statistical tool to capture
the time series structure of the facial vibration signals, which
is regarded as a mathematical double stochastic process [29].
One is to use the Markov chain with a finite state number
to simulate the implicit stochastic process of the statistical
properties of the facial vibration signals. The other is a random
process of observation sequences associated with each state
of the Markov chain. Note that the former one is expressed
by the latter, but the specific parameters of the former are
unmeasurable. We observe that the human facial vibration



process is actually a double random process, as the facial
vibration signals are observable time-varying sequences, which
are produced by the brain based on grammatical knowledge
and verbal requirements.

Furthermore, the grammatical knowledge and verbal re-
quirements can be regarded as unobservable states. It can
be seen that the HMM reasonably imitates this process and
describes the overall non-stationary and local stationarity of
the facial vibration signals. (e.g., variational pronunciation
length of a word.)

A Hidden Markov Model λ is represented as

λ = (A,B, π) (2)

where A is the state transition matrix, B is the set of emission
probability distributions, and π is the initial state probability
vector. Given any time n, an observation is associated with one
of the discrete hidden states. The random variable representing
the hidden state at time n is denoted by qn, while the random
variable representing the observation at time n is denoted by
pn. In the state transition matrix A, each element aij , which
indicates the transition probability from state i to state j and
it is defined as

aij = P (qn = j|qn−1 = i) (3)

Given the hidden state qn, the probability of an observation
vector, i.e. the emission probability is

bin = P (vn = On|qn = i) (4)

Then the set of emission probabilities B is denoted as

B = {bin}, i = 1, 2, ...S (5)

where S is the number of discrete hidden states, and it is set
to 3 in our case.

Note that FaceInput will be applied to wearable devices
with limited computing resources, which requires our train-
ing process to be efficient enough and less costly to train.
Therefore, to reduce the training time of the system and the
cost of computing resources, FaceInput uses the Baum-Welch
algorithm [31] to train the parameters instantaneously instead
of multiple iterations. Besides, FaceInput utilizes Viterbi al-
gorithm [32] to evaluate the signal samples, which need to
perform logarithmic operations on the starting probability and
the transition probability. In order to prevent the underflow
caused by the logarithm of 0, FaceInput first finds the elements
with probability less than or equal to 0, and then directly
assigns them a very small negative number instead of the one
taken from the logarithm directly.

VII. ONLINE CALIBRATION AND ADAPTATION

FaceInput works based on the assumption that the facial
vibration signals remain stable throughout its usage life-cycle.
In the practical scenarios, the signal patterns may be disturbed
by, e.g., users’ repositioning of the glasses. Over the time,
users speaking postures may also vary due to physiological
status, that renders MFCC features in the initial training
set outdated. As a result, FaceInput leverages a run-time
calibration and adaptation scheme to address these problems.

A. Runtime calibration

FaceInput conducts the run-time calibration by user’s cor-
rection and its own classification hints. As for calibration,
for each sample, besides the output from the classification
algorithm, it also recommends the top 2 candidate keys, i.e.,
those with the largest possibility which are shown on the touch
screen of smart watch. A user can click a candidate key if it
is the actually intended key when the classification algorithm
gives an erroneous output on the touch screen.

In the rare case, the user has to reenter the key while
leveraging the built-in on-screen keyboard when the intended
key is not in the candidate list. To be reliably recognized for
calibration purpose, the ”Delete” key is placed on the screen
instead of input through voice.

B. Adapting and optimizing training set

In terms of practical usage, FaceInput updates the training
data set progressively in four cases: (1) FaceInput deems the
classification output as correct if the user does not click the
candidate key, (2) the user clicks any candidate key, which
implies that a classification error occurs and the intended key
is contained in the candidate list, (3) the user tapping a key by
using the built-in keyboard implies that a classification error
occurs and the intended key is not contained in the candidate
list, (4) the user clicks the ”Delete” button on the screen, which
is not necessarily a hint for classification error since it may
be the user’s own input error.

Therefore, for adapting and optimizing training set, we have
constructed an adjustable scheme to update the training data
set in a different case. For case 1, the input instance will be
added only once into the temporary queue that corresponds to
the correct classification output. For case 2, the input instance
is added ni times into the temporary queue corresponding to
the selected candidate key. Note that ni is defined as continu-
ous error times of key i and varies from 1 to 3. For example,
if the classification algorithm gives the erroneous output of
key i for 2 times, the value of ni is set to 2. If the erroneous
output of key i occurs more than 3 times continuously, the
value of ni will be 3. And once the classification algorithm
gives the correct output for key i, ni will be reset to 1. For
case 3, the input instance is added 3 times into the temporary
queue corresponding to the selected candidate key. For case
4, the input instance is discarded instead of being added to
the temporary queue. We define the number of instance in the
temporary queue of key i as Qi. Thus, we can obtain the total
number of instances in all temporary queues

N =

9∑
i=0

Qi (6)

Once N is larger than 10, the instances in all temporary
queues are added into the training data set, and the HMM
model is trained again. Meanwhile, all temporary queues are
cleared. Note that the oldest instances will leave the training
data set, while the training set size of the corresponding key
reaches the maximum of 35.
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Fig. 8. Confusion matrix of 10 keys.

VIII. IMPLEMENTATION & EVALUATION

Implementation: In our prototype, we leverage a piezo-
electric ceramic sensor attached into a piece of glasses to
collect the facial vibration signals with the 2 kHz sampling
rate. The vibration signals are amplified by an amplifier which
is connected to a Raspberry Pi controller using MCP3008
[25], an Analog to Digital Converter (ADC). The whole data
acquisition process is implemented via BCM2835 Library
[23] with C. Then, the collected data are transmitted to a
conventional laptop by a network cable, which is implemented
via the TCP protocol.

As for the number classification, the signal denoising,
facial vibration signals detection and HMM algorithm are
implemented in Matlab. Note that the number status of the
HMM is 3 and the number of Gaussian probability-density
function of each status is 2.

Experimental setup: We recruited 30 participants(18 of
them are male) whose age is in the [18-23] range and body
mass indexes (BMIs) range from 16.25 (thin) to 30.36 (obese)
as they represent the crowds that are most possibly to use our
system.

The evaluation experiments are conducted in a conventional
office environment. Before the experiments, participants are
given 2 minutes to become familiar with our system. In all
experiments, we leverage the following default setting unless
otherwise specified. The participants are instructed to speak
20 times on each key in an orderly fashion (200 samples for
each person, and thus 6000 samples in total). For example, we
ask the participants to speak key 1 for 20 times, then key 2
for 20 times, and so on. We then randomly select 10 samples
from each key (100 samples for a person) to initialize the
HMM learning model to estimate the mathematical model.
We leverage the other 10 samples left to test the classification
accuracy of the HMM. We repeat the process above 20 times,
and thus we can obtain the average classification accuracy of
the HMM.

A. Accuracy of FaceInput

1) Baseline detection and classification: We first evaluate
the detection and classification of inputs to establish a baseline
performance of FaceInput. We asked 30 participants to input
numbers from ”zero” to ”nine” for 20 rounds by speaking
in an ordinary office environment. The confusion matrix in
Fig. 8 shows the classification performance of FaceInput with
10 training samples for each number. The diagonal in the
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Fig. 9. Impact of initial training set size for FaceInput.

matrix represents the number of points for which samples
are correctly classified. We notice that FaceInput achieves an
average classification accuracy of 98.2% and the variance of
the accuracy is about 2.5e− 04.

2) Impact of training set size: To evaluate the case as-
sociated with enlargement of the training set size, 10 of
the participants were asked to speak each number for 45
times. Fig. 9 plots the resulting variance of accuracy as the
training set size increases from 2 to 35. We observe that
classification accuracy monotonically increases as the training
set size increases. The accuracy of FaceInput escalates to
about 98% as the training set size grows up to 10. Moreover,
while increasing the number beyond 25, the accuracy further
approaches 100%. In reality, it is achievable since the runtime
adaptation mechanism of FaceInput can enlarge the training
set size and provide the optimal performance of nearly 100%
classification accuracy as the users speak continuously within
a short usage time.

B. Robustness of FaceInput

1) Positional variation of glasses: FaceInput presumes that
the glasses are stable in place to provide vibration signals of
good quality when user input different words by speaking.
However, it is quite normal that worn glass of a user shifts
slightly over the time. To evaluate the impact on the positional
variation of glasses, we asked 10 participants to speak each
number for 20 times. The participants were asked to repeat
after shifting the glasses downwards 1cm to P2 from the
original position P1. Therefore, in Fig. 10(a), “1-2” means
that we take 10 samples of P1 to train the HMM and then test
with 10 samples of P2. In particular, “A-A” means that the
samples collected from P1 and P2 are both in the training and
testing set (e.g., 10 samples from P1 and 10 samples from P2

for training, and the test set resembles the training set.). From
the results shown in Fig. 10(a), we observe that the samples
from the same position (e.g., 1-1 and 2-2) obtain much higher
accuracy than the cases of “1-2” and “2-1”. Further, if we
train the system with the samples from different positions (e.g.,
A-A), FaceInput can achieve an accuracy of 98.95%, which
means that we can eliminate the slight degradation resulted
by the displacement of the glasses with a runtime adaptation
scheme which can update the system training set.

2) Voice strength: Even for saying the same word, the
resultant vibration signals can be different because of different
voice strength. To investigate how the system performance



Fig. 10. (a) Accuracy of positional variation of glasses. (b) Impact of different
voice strength. (c) Impact of different voice length.

is influenced by voice strength, 10 participants were asked
to say words both heavily and gently. Fig. 10(b) shows the
classification accuracy under different voice strength, and we
note that here “H” represents a user speaks heavily while “G”
represents a user speaks gently. Still, the label of X-axis is
in the format of “training sample - test sample”. We observe
that the classification accuracy decreases to around 87% when
the voice force of test sample is different from that of the
training set like the cases of “G-H” and “H-G”. Fortunately,
our runtime adaptation scheme can record both the gentle and
heavy cases to update the vibration profiles. Consequently,
training set will resemble the “A-A” model achieving a high
accuracy up to 99% when users apply different voice strength
in daily input.

3) Voice length: As we all know, a critical challenge in
voice recognition system is to recognize the input as the single
correct word even if the voice duration of input is variant.
Thus, in this experiment, we investigate whether FaceInput
can tackle the length variation challenge of voice and ask
10 participants to use FaceInput with different voice lengths.
The resultant classification accuracies are shown in Fig. 10(c),
from which we can observe that FaceInput is robust against
different voice lengths (L: long, S: short, A: all). The reason
for high accuracy is that we adopt MFCC (Mel Frequency
Cepstral Coefficient) to be feature parameters, and train the
classifier for each word following a Hidden Markov Model
(HMM). MFCC can represent the dynamic features of the
signals with both linear and nonlinear properties, which is
widely applied to represent the short-term power spectrum of
acoustic or vibration signals [27]. In the HMM, the profiles of
each key are stored as a state diagram instead of time series,
which can resist the length variation of voice.

4) Mobility: There is a common scenario that the users
require to reply to a message while walking or shaking
the head. We are interested in how the system performs
with the occurrence of noise interference caused by physical
movements. Table I lists the average recognition accuracy
when participants input the numbers and walk or shake their
heads simultaneously in an ordinary office environment. By
comparing the results with the baseline, we can see that there
is almost no influence on system performance. The reason is
that we remove the low-frequency noise of human mobility
(≤ 10Hz) through a Butterworth bandpass filter.

C. Runtime calibration and adaptation

We design the runtime calibration and adaptation scheme
to maintain high recognition accuracy and make the system
more robust and resilient under different practical scenarios.

TABLE I
Classification accuracy with respect to human mobility.

Items Standing(Baseline) Walking Shaking the
head

Accuracy 98.6% 94.9% 97.1%
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Fig. 11. The runtime calibration and adaptation scheme helps restoring
high accuracy of FaceInput. Dotted lines denote the occurrence moment of
variation.

In the following experiments, we turn the runtime calibration
and adaptation scheme on in a runtime demo. We count the
average recognition accuracy over the last 50 inputs in terms of
the variation of glasses position and input volume size. From
Fig. 11, we can draw the following conclusions.

1) Resilience to displacement: In terms of the displacement
of glasses position, we move the glasses downwards 1 cm and
2 cm from the original position, and the accuracy declines
to about 85% and 68% respectively. Under the assistance of
runtime adaptation scheme, the accuracy recovers quickly after
a few tens of inputs.

2) Resilience to volume change: When there are only low
volume samples (at 75 dB) in the training set, we can get good
recognition accuracy using low volume test samples. However,
if the volume of the input command bursts up to 90 dB,
the recognition accuracy drops to around 75%. Note that the
volume level is measured by an Android application: Sound
Meter Pro [30]. Similarly, the runtime adaptation scheme
restores the system performance in a short time.

D. Temporal stability

To validate the temporal stability of FaceInput, we conduct
the same experiments 5 times throughout an hour, 1 day, 2
days, 1 week and 1 month. The glasses are fixed in the same
position according to the user’s habit. In each time, we spoke
from key “zero” to key “nine” for 100 rounds (1000 samples in
total). And we recorded the average classification accuracy of
the last 50 samples. With the enlargement of training samples
size, the classification accuracy remained stable at around 98%
each time. This indicates that FaceInput is temporally stable
over the time.

E. Cost

For time overhead, FaceInput requires users to input 10
× 10 training samples to initialize the HMM, and all the
users can finish the input within 3 minutes based on the
statistic. After the user input phase, 2.2s is required to train
the HMM. Furthermore, on average, the latency between the
voice inputs and the outputs is 0.25s. Therefore, there is no



lagging effect during the usage duration since the latency is
below the human response time. For hardware cost, FaceInput
deploys only one piezoelectric ceramic that costs 0.15 dollar,
which is inexpensive for manufacturers to embed FaceInput
on a glass.

IX. CONCLUSION

In this paper, we propose a novel hand-free and secure
text-input system for the smartwatch by mapping the facial
vibrations generated from human speech. The facial vibration
is detected by a small piezoelectric sensor embedded on the
glasses and then the input number is estimated by the Hidden
Markov Model. We conduct extensive experiments with the
voice commands from a set of participants. The results indicate
that FaceInput achieves high recognition accuracy for ten
kinds of commands with the accuracy of 98.2%. It is resilient
to environmental acoustic noise and will not be disturbed by
the voice commands of other users. Furthermore, it shows
strong robustness under several daily text-input scenarios.
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