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Abstract

To guarantee the integrity of data stored in cloud servers, a number of techniques have been
proposed. For security analysis, we generally assume honest but curious servers and honest clients.
However, for dynamic data, we need to assume stronger adversaries since a malicious server or a
malicious client can deny the update of stored data. Until now, some schemes have been proposed to
give the security against the stronger adversaries. However, almost schemes are safe for adversarial
clients or malicious servers, but not both. So, in this paper, we propose a PDP scheme supporting
dynamic data and guarantees the integrity of stored data against malicious servers and clients. To
design the scheme, we firstly design a new authenticated data structure so-called Stateful Rank based
Skip List which reflects the latest version of stored data. Based on the data structure, we design
a non-repudiable dynamic PDP which permits servers and clients to manage the version of stored
data in an authenticated and non-repudiable way, so that our scheme prevents malicious servers and
clients from cheating the latest version of the stored data.

1 Introduction

In cloud storage services, a client entrusts his/her data to a remote storage server and does not maintain
the data in his local storage. Therefore the integrity of stored data relies on cloud server. If the storage
server is attacked by a hacker or infected with a malware, stored data is compromised or deleted. So,
data auditing technologies are important for clients to ensure that outsourced data are intact.

To check the integrity of data stored in remote cloud server, remote data auditing technologies, such
as Provable Data Possession[1] and Proof of Retrievability[6], have been researched. Among them, we
focus on PDPs in this work. The schemes permit clients to verify the integrity of the data stored in
server’s storage without downloading whole data from the server. To achieve the goal, in general, a
client pre-processes his/her own data before uploading to cloud storage. Sometimes, in the procedure,
the client makes metadata for the data to use it in the verification phase. To verify the integrity of the
stored data, the client makes a set of challenges, and sends them to the server. Then, the server makes
a proof as the response for given challenges using stored data. The client verifies the proof to check the
integrity. If the given proof is verified to be valid, the client can assured that his/her file is intact.

Though a number of schemes have been proposed for verifiable integrity check, most of them are
made for static data. They do not assume the scenario where stored data are dynamic which can be
changed according to a client’s request. However, stored data in cloud storage might be updated by data
owner, such as modification, insertion and deletion. So, the research of PDP schemes for dynamic data is
important and some PDP schemes have been proposed to support dynamic data. The first dynamic PDP
scheme has been proposed in [2]. Thought the scheme can support modification, deletion, and append, it
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cannot support insert operation. After the first scheme has been introduced, some dynamic PDP schemes
have been proposed with fully dynamic operations [3, 4, 12].

To design dynamic PDP schemes, we need some additional data structure to manage the changes
made in dynamic data. Almost dynamic PDP schemes have been designed based on skip list [9, 3, 4] or
Merkle Hash Tree [7, 12] since the data structures are suitable for managing dynamic data. In the case
of a skip list, the rank based skip list which is a variant of skip list is used in [3]. In the data structure,
each internal node stores the homomorphic tag of data block, level of node, and the rank which is the
number of reachable leaf nodes from the node, seachable variables and label of node. By using ranks, a
client can fast search leaf node associated with data block which the client want to find. The complexity
of the data update in the average case is O(logN) When using a rank based skip list, which increases
the efficiency of the dynamic PDP scheme. However, the data structure can not support the variable size
of updated data. Then it incurs more overhead on other data blocks with O(N) complexity in the worst
case since block indices are used in this data structure. To overcome this problem, the PDP scheme in
[4] uses flexible length based authenticated skip list which is called FlexList. The main advantage of the
data structure supports the variable size of data block and data update. That is, in the data structure, each
node stores the number of bytes which can be reached from the node. Therefore, the PDP scheme in [4]
is faster than the PDP scheme in [3] in terms of data update with O(u) complexity, where u is the size of
update. In the case of Merkle hash tree, the PDP scheme in [12] uses block update tree which is a variant
of Merkle hash tree. The data structure is always balanced regardless of the number and order of update
operations. Also, the size of the data structure is independent of the stored data size because when the
owner restores some data blocks in the cloud, all previous copies of the corresponding data block are
deleted.

Almost existing dynamic PDP schemes assume honest clients and honest but curious servers in the
view of security. The honest but curious servers honestly manage stored data but can corrupt less fre-
quently accessed data for their benefit. This security model assuming honest but curious server is suitable
for PDP scheme for static data. On the other hand, in a dynamic environment, malicious servers can store
previous data if clients can not detect this type of misbehaviour although clients require some updates.
As well as, there is possibility that a dishonest client legally accuses honest storage server as tampering
stored data. So, we need to consider misbehaviour of dishonest clients in the security model of dynamic
PDP. The security against a malicious client was firstly considered in [13]. In [13], the scheme detects
misbehaviour of a malicious client by using incremental signature technique called hash-compress-and-
sign. But after data update, the client does not have any way to prove the server’s misbehaviour even if
it restores the data for the previous without corrupting it. Because the client isn’t given an undeniable
information of a server, such as a signature, and the scheme is designed against not malicious servers
but honest but curious servers. Most recently, dynamic PDP scheme in [11] has been announced, which
assumes an adversarial client and an honest but curious server. This technology uses a data structure
called Indext Logic Table(ILT ) to allow the server and client to directly manage versions of stored data.
However, ILT doesn’t provide authentication information but only shows the logic numbers for each data
block and all data. Therefore, the scheme has same problem as the scheme in [13] for a malicious server
although a server and a client exchange undeniable information of each other. As mentioned above, we
need to consider malicious servers which are more malicious than before in dynamic scenario. To de-
sign PDP scheme against malicious server, in [5], the proposed PDP scheme assumes the more malicious
server than before. A way to prevent a server from passing verification even after storing an older version
of stored data after the update is presented in [5]. When generating the tag to prevent this misbehaviour
of the server, [5] inserts the version number of the data block which is the same as the logic number
in [11]. However, [5] does not detect the misbehaviour of the malicious client because it assumes only
the adversarial server. In order to guarantee strong security against both dishonest clients and malicious
server, our paper designs dynamic PDP for a stronger server than before and a malicious client.
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In this paper, we firstly design non-repudiable PDP scheme which guarantees strong security against
malicious servers and dishonest clients. To design the PDP scheme, we propose a new authenticated
dynamic data structure called Stateful Rank based Skip List. The data structure provides a version of
stored data since the latest version of stored data is updated every time the data is updated. Then the
client and server can generate an undeniable for both the version and authentication information of stored
data. So, malicious servers and dishonest clients can not deny their misbehaviours by using PDP scheme,
and it extends our scheme to non-repudiable PDP scheme.

2 Data Structure

We have already mentioned the problem of the use of Index Logic Table. In short, the Index Logic Table
is vulnerable to the attack of a malicious server described in [5] since it is not authenticated. Let ILT
denote Index Logic Table, TFi denote the tag of a data block Fi and σC denote the signature of client.
For example, a client wants to modify Fi to F ′i . Then the client updates ILT and TFi to ILT’ and T ′F i ,
respectively before sending the updated data to the server. According to the method of [11], the client
sends F ′, ILT ′, TF ′i and data list with the signature σ ′C for FN ‖U ‖ ILT ′ . After receiving these, the
sever only updates its own ILT to ILT ′ and other data stored in server is not updated. If the server has
well managed the data which is not updated, the proof containing TFi is passed from the client. The main
reason why this problem happens is that ILT is not authenticated. That is, a client doesn’t know whether
the server exactly stores updated data or not. Thus although a server doesn’t perform update of some file
blocks, the server can make a cheating proof which is successfully passed from verification of the client.

In this section, we propose two data structures, ”version-sequence” and stateful rank-based skip list.
The former enables a client to handle the version of outsourced data, the latter is an authenticated data
structure to solve the above problem.

2.1 Version-sequence

In this section, we explain a data structure to enable a client to handle the version of data. This means
that a client can distinguish which data is the latest from the proposed data structure. A version sequence
is the sequence of logic numbers defined in [11]. From now on, let vseq denote a version-sequence. In
vseq = (vseq[1], . . . ,veseq[n],V N), vseq[i] denotes the logic number of ith data block and V N denotes the
version number of stored data. The version number increases whenever data update happens by 1.

Version-sequence provides 3 operations, modification, insertion and deletion. Divide data F into
n blocks and suppose that the length of each data block is same. Then the initial version-sequence is
(1, . . . ,n,n+1). When a stored data is updated, the corresponding version-sequence is updated too. Let
algorithms concerned with modification, insertion and deletion denoted by vseqM, vseqI and vseqD,
respectively. 1) a client wants to modify the ith data block Fi to F ′i . Then vseq[i] is updated to V N of
vseq, and V N is increased to V N + 1. 2) In the case of insertion operation, a client would insert a data
block F ′ after ith data block. Then from the index i+1 to the index n, each vseq[k] for k = i+1, . . . ,n is
increased by 1 but each the value of vseq[k] maintains. After that, vseq[i+1] is updated to V N and V N
is increased to V N +1. 3) when a client deletes the ith data block Fi, from the index i+1 to the index n,
each vseq[k] for k = i+1, . . . ,n is decreased by 1 but each the value of vseq[k] maintains. After that, V N
is updated to V N +1.

2.2 Stateful rank-based skip list

In this section, we make a new authenticated skip list originated by the rank-based skip list in [3] which
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Table 1: Notation
Notation Meaning
l(v) the level of the node v
r(v) the rank of the node v
f (v) the label of v
t(v) the data block tag stored in the node v
LN(v) the logic number of a data block stored in the node v

stores logic numbers of all data blocks. Briefly, the rank of a node is defined by the number of reachable
leaf nodes from the node. From [9], for each internal node in a skip list, there are two points, right pointer
and down pointer, denoted by rgt and dwn. For a node v, rgt(v) and dwn(v) denote the nodes right to v
and down to v, respectively. We uses the example of a rank-based skip list described in Figure1 of [3].
In Figure1 of [3], rgt(w3) and dwn(w3) are v1 and v5, respectively. Before looking details, we define
some notations as like Table.1

Let a data F be divided into n data blocks, F1, . . . ,Fn, and let LNi be the logic number of Fi for
i = 1, . . . ,n. The ith data block Fi will be stored in ith leaf node of a skip list. Each leaf node stores data
block tags t1, . . . , tn(the making tags will be referred later), corresponding level, rank, label and the logic
number of the data block. Except for leaf nodes, all internal nodes store corresponding level, rank, and
label. Each rank of nodes is used for search operation.

We can find the leaf node to search by using ranks. For example, in Figure1 of [3], the rank of
node w3 is 4 because from the node, 4 nodes, v5,v4,v3,v1 can be reached. Let v be the current node,
and let high(v) and low(v) be right most reachable node and left most reachable node of v, respectively
assume that a client wants to find it h node. For example, in Figure1 of [3], high(w3), low(w3) are 6, 3
respectively. If i is in [low(v),high(v)], then the current v is moved to rgt(v), otherwise, the node v is
moved to dwn(v). The relation between r(v), low(v) and high(v) is referred in [3]

For the proposed skip list to be authenticated is needed to make an authentication information which
is like hash accumulation in [7]. Let f (v) be the label of a node v defined by the value of hash accumula-
tion of labels which belongs to neighborhood nodes of v. The method of hashing is same as referred one
in [3] but the logic number stored in a node v are added to [3] as a parameter. As referred in [3], we can
define follows:

Definition 1. Let h be a collision-resistant hash function. For input x1, . . . ,xn, h(x1, . . . ,xn) is defined as
follow:

h(x1, . . . ,xn) := h(h(x1) ‖ · · · ‖ h(xn))

Definition 2. Let h be a hash function defined in above definition.The label f (v) of a node v in the pro-
posed skip list containing the logic number stored in v is defined as follows:

CASE1. v = null
f (v)≡ 0

CASE2. l(v)> 0
f (v) = h(l(v),r(v),0, f (dwn(v)), f (rgt(v)))
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CASE3. l(v) = 0

f (v) = h(l(v),r(v),LN(v), t(v), f (rgt(v))

By the above definition, a client can construct a proposed skip list and after that, the client stores the
label fC(s) of the start node in his/her local storage and sends the skip list to the server.

2.2.1 Proof

In this section, we make a proof to authenticate data stored in cloud storage. To authenticate the ith data
block Fi, the data owner sends the corresponding query Q(i) to the server. After receiving Q(i), the server
uses the algorithm in 2 to make proof path P and sends the proof path with t(vi) where vi denotes the ith

leaf node. The client computes the label of the start node from P and t(vi) and check whether computed
label is equal to fC(s) or not. If it is not equal, then the client considers that the ith data is corrupted or
lost.

The method to generate a proof path is equal to [3]. But as mentioned above, the logic number is
added to the algorithm proposed in [3] as a parameter. Assume that the server receives the query Q(i)
sent by the client. Let v1, . . . ,vs denote the nodes that have gone from the start node to the ith leaf node
in reverse order. Then v1 is the ith node arrived, v2 is the start node, and let search(i) = (v1, . . . ,vs)
be the search path. By [3], a proof path P(i) consists of A(v1), . . . ,A(vs) and each A(v j) consists of
l(v j),LN(v j),q(v j),d(v j),g(v j) which the logic number is added to existing A(v j) member described in
[3].

The element d(v j) for each A(v j) in the proof path P indicates whether the element v j−1 of the search
path is the right node or the bottom node of v. g(v j) and q(v j) represent the labels and ranks of rgt(v j) or
dwn(v j) nodes, respectively, that are not included in the search path. Finally, LN(v j) is the logic number
stored in the node. Since q(v j),d(v j) and g(v j) in this paper are the same as those presented in [3],
details regarding these can be read in [3]. However, LN(v j) is as follows:

LN(v j) =

{
LN(v j) if l(v j) = 0

0 if l(v j) 6= 0

Table.3 is the example of the proof path for the 2nd data block(or leaf node) in the Figure1 of [3] and the
Table.2 shows the algorithm of the generating a proofpath.

Table 2: The algorithm ProofPath(Q(i))
1: Input Q(i)
2: Let search(i) = (v1, . . . ,vs) for ith data block
3: return P(i) = (A(v1), . . . ,A(vs))
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Table 3: Proof path P(2) for 2nd data blcok, where search(6) = (v6,w4,w5,w6,w7)
node v v6 w4 w5 w6 w7

l(v) 0 2 3 3 4
LN(v) LN(v6) 0 0 0 0
d(v) rgt dwn dwn rgt dwn
q(v) 0 4 5 1
g(v) 0 f (w3) f (v7) f (v8) f (v9)

2.2.2 Verification

When the client receives (P(i), t(vi)) from the server, the client computes the label fS(s) of the start
node through the proof sent by the server using the SKVerify(i,P(i), t(vi), fC(s)). The operation of
SKVerify(i,P(i), t(vi), fC(s)) is similar to the verification algorithm described in [3]. However, the
variables related to the logic number are added to the algorithm of [3]. Hence, our verification algorithm
is the same as the verification algorithm of [3] but only adds the variables of logic number.

2.2.3 The Method of update of Sateful Rank-Based Skip List

In this section, we propose algorithms that allow the skip list proposed in this paper to reflect data
updates. There are three types of update: modification, insertion, deletion. Each update operation is
denoted by M, I and D. To briefly describe the update process, the client sends a query (op, i,F ′i , t

′
i) to

the server to update a data, where op is one of M, I and D, and i is an index of a data block to be updated.
The meaning of each query is as follows:

• (M, i,F ′i , t
′
i): Modify ith data block Fi and the corresponding tag ti to F ′i and t ′i , respectively.

• (I, i,F ′i+1, t
′
i+1): Insert F ′i+1 after ith data block and store the tag t ′i+1 for F ′i+1.

• (D, i,NULL,NULL): Delete the ith data block.

When the server receives each query, it sends proof path P(i) and ti for the current data without immedi-
ately executing the update. The server sends (P(i), ti) for modification and insertion, and (P(i−1), ti−1)
for deletion. If the verification for each proof to update data is successfully passed, then the server pro-
ceeds to update the data and the stateful rank-based skip list through the update algorithms which are
described in Table.4, 5 and 6

The client verifies each server through SKVerify as shown in the previous section. If the verifica-
tion succeeds, the update is considered successful, otherwise the server did not perform the update as
requested by the client.

Table 4: The algorithm SKUpdateM(i,F ′i , t
′
i) for modification

1: Input i,F ′i , t
′
i

2: Update labels, logic numbers, levels, ranks of nodes in search(i)
3: return (P′(i), t ′i)
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Table 5: The algorithm SKUpdateI(i,F ′i+1, t
′
i+1) for insertion

1: Input i,F ′i+1, t
′
i+1

2: Insert F ′i+1a f terith data block and store the coressponding tag t ′i+1
3: Update labels, logic numbers, levels, ranks of nodes in search(i+1)
4: return (P′(i+1), t ′i+1)

Table 6: The algorithm SKUpdateD(i,NULL,NULL) for deletion
1: Input i
2: Delete ith data block and the corresponding tag
3: Update labels, logic numbers, levels, ranks of nodes in search(i−1)
4: return (P′(i−1), t ′i−1)

3 Proposed Scheme

In this section, we describe dynamic PDP protocol that enables a client to handle the versions of stored
data and supports non-reputation. The proposed scheme consists of four phases: SetUp, Upload, Proof-
Verification, and Update. Briefly, the SetUp phase is where the client generates keys for tag generation
and signature schemes. The step of Upload is a step of generating a ta, splitting a data to store, generating
a version-sequence, a stateful rank-based skip list, and a signature of the client, and transmitting the
signature to the server. The proof-verification phase is the verification phase of the proof generated by
the server for the data blocks challenged by the client. Finally, the Update step is the step where the
server executes the data update requested by the client and the client verifies the update execution.

3.1 SetUp and Upload

Divide data F into n blocks. Let each data block be denoted by F1, . . . ,Fn, where each Fi is in Zp for
all i = 1, . . . ,n. To enable the client to upload data to store to cloud storage, and the client and server to
verify data exchanged by each other, the following algorithms are used

• KeyGen(1λ ): 1) the client generates signing key pair (sskC,spkC). And the client chooses ran-
domly an element α in Zp and computes v = gα . Then (sskC,α) is securely managed as the
private key skC of the client and (spkC,v) is publicly released as the public key pkC of the client.

2) the server similarly generates signing key (sskS,spkS). Then sskS is securely stored as the private
key of the server, spkS is public as the public key of the server.

• TagGen(skC,F,H,h): This algorithm is performed by the data owner. Let G and G′ be multiplica-
tive cyclic groups with order p which is a sufficiently large prime, and let e : G×G′ −→ G′ be a
bilinear map. Let H : {0,1}∗ −→ G be a map-to-hash function, and h be a collision-resistant hash
function defined by previous section. For each data block Fi ∈ Zp, for i = 1, . . . ,n, generate the tag
ti as follow:

ti = (H(Fi ‖ LNi) ·uFi)α

Also, the client constructs the version-sequence vseqC and the skip list SKLC for the data F . Let
fC(s) be the label of the start node of SKLC. The client makes the signature for fC(s) ‖ vseqC as
follow:

sig(sskC, fC(s) ‖ vseqC) = [h( fC(s) ‖ vseqC)]
sskC
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Let sigC denote sig(sskC, fC(s) ‖ vseqC). After generating sigC, the client sends {(Fi, ti)}n
i=1, SKLC,

vseqC, sigC to the cloud server.

• UploadCheck server(pkC,sskC,SKLC,vseqC,sigC): 1) Let SKLS,vseqS be state of SKLC,vseqC

respectively, after server receives SKLC,vseqC from the client. The server computes the label fS(s)
of SKLS and verifies sigC from fS(s) ‖ vseqS and spkC. 2) And verifies the relation between tags
and corresponding data blocks from following formula:

e(ti,g) =?e(H(Fi ‖ LNi) ·uFi ,v)

If one of 1) and 2) is not passed, the server returns reject. Otherwise, the server generates the
signature sigS = sig(sskS,h( fS(s) ‖ vseqS)) for h( fS(s) ‖ vseqS). Then the server makes the receipt
sigS(sigC) = sig(sskS,h( fC(s) ‖ vseqC)) of sigC. The server sends sigS and sigS(sigC) to the client.

• UploadCheck client(spkS,sskC,sigS,sigS(sigC)): 1) the client verifies sigS(sigC) from sigC and
spkS. 2) And also the client verifies sigS from fC(s) and vseqC. If one of 1) and 2) fails, then
the client returns reject to the server. Otherwise, the client generates the receipt sigC(sigS) =
sig(sskC,sigS) of sigS and sends the receipt to the server.

The server verifies the receipt of the client by using UploadCheck server. If the verification suc-
ceeds, the client stores fC(s), vseqC, sigC and sigS(sigC) in his/her local storage, and the server stores
{(Fi, ti)}n

i=1,SKLS,vseqS,sigS and sigC(sigS).

3.2 Proof-Verification

Briefly, the client randomly chooses elements γi1 , . . . ,γik in Zp for data block indices γi1 , . . . ,γik . Then
the client sends i j,γi j

k
j=1 to the server as the challenge C. As soon as receiving the challenge, the server

generates the proof P and sends this to the client. Then the client verifies the proof. Before showing
details, let the tag set {t1, . . . , tn} be denoted by T . Algorithms are follows:

• GenProof(C,T,F,SKLS,vseqS): This algorithm is performed by the server. The server makes the
proof paths P(i1), . . . ,P(ik) for i1, . . . , ik and generates {P(i j), ti j}k

j=1. Compute µ = ∑
k
j=1 γi j ·Fi j ,

t = Πk
j=1 t

γi j
i j

for data blocks Fi1 , . . . ,Fik and makes h(vseqS). Then the server sends the proof
P = ({P(i j), ti j}k

j=1,(µ, t),h(vseqS)) to the client.

• Verify(pkC,P, fC(s),vseqC): 1) the client check the coincidence between h(vseqC) and h(vseqS).
2) For each (P(i j), ti j), j = 1, . . . ,k, the client uses SKVerify to authenticate proof pahts. 3) Also,
the client verifies the integrity of challenged data blocks by using following formula:

e(µ,σ) =?e(Πk
j=1 H(Fi j ‖ LNi j) ·uµ ,v)

If one of 1), 2) and 3) is not passed, then the client returns reject. Otherwise, the verification
succeeds.

3.3 Update

In this section, we would the update phase. Briefly speaking, the client sends an update request (op, i,F ′)
to server. op denotes operations of update, and let M, I and D denote modification, insertion and deletion,
respectively. Also i is the index of data block to update. Specially, in the case of insertion, i means that
the data block F ′ would be inserted after ith block. Also F ′ is NULL when a deletion happens. After the
server receives client’s request, the server performs the data update along with the request.
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• Modification
Step1. the client wants to modify the ith data block Fi to F ′i . The client computes the tag t ′i for
F ′i and sends the update request (M, i,F ′i , t

′
i) to the server. And by using the algorithm vseqM, the

client updates his/her own version sequence vseqC to vseq′C.
Step2. When the server receives client’s request, firstly the server makes the proof path P(i) for ith

data block by using the algorithm ProofPath, then the server generates (P(i), t(vi)). According to
the update request, the server modifies the data block Fi to F ′i and replaces the corresponding tag ti
with t ′i . And by using SKUpdateM and vseqM, update server’s skip list SKLS and version-sequence
vseqS to SKL′S and vseq′S, respectively. After performing the required update, the server makes the
proof path P′(i) and generates (P′(i), t ′(vi)). Then the server sends ((P(i), t(vi)),(P′(i), t ′(vi)) to
the client.
Step3. the client uses the algorithm SKVerify to authenticate (P(i), t(vi)). If the verification
is passed, then the client predicts or computes the updated label f ′C(s) of the start node from
(P(i), t(vi)). The method to update the authentication information is described in [8]. After
computing the updated label of the start node, the client verifies (P′(i), t ′(vi)) from f ′C(s) and
SKVerify. If the verification succeeds, the client makes sig′C = sig(sskC,h( f ′C(s) ‖ vseq′C)) and
sends this to the server.
Step4. the server computes h( f ′C(s)vseq′S) from SKL′S and vseq′S. Then the server verifies the sig′C.
If sig′C is successfully verified, then the server generates the receipt as follow:

sig′S(sig′C) = sig(sskS,sig′C)

And makes sig′S = sig(sskS,h( f ′S(s) ‖ vseq′S)). Then the server sends sig′S and the receipt.
Step5. the client verifies sig′S from h( f ′C(s) ‖ vseq′C) and spkS. And also the client checks the
receipt from sig′C and spkS. If the two signatures are successfully verified, then the client generates
sig′C(sig′S) = sig(sskC,sig′S) as the receipt and sends the receipt to the server.
Step6. the server verifies the receipt of the client from sig′S and spkC.

All steps are successfully completed, the client updates fC(s) to f ′C(s). Then the client stores
f ′C(s),vseq′C,sig′C and sig′S(sig′C) in his/her own local storage. The server stores updated data,
SKL′S,vseq′S,sig′S and sig′C(sig′S).

• Insertion
Step1. the client wants to insert a data block F ′ after the ith data block. The client computes the
tag t ′i+1 for F ′ and sends the update request (I, i,F ′, t ′i+1) to the server. After that, the client updates
the existing version-sequence vseqC to vseq′C by using vseqI.
Step2. After receiving the update request, the server generates (P(i), t(vi)) by making the proof
path P(i) from the ProofPath. According to the update request, the server inserts F ′ after ith

data block and stores the corresponding tag t ′i+1. At the same time, the server replaces the existing
skip list SKLS and version-sequence vseqC with SKL′S and vseq′S by using the algorithms SKUpate
and vseqI. After performing update, the server makes proof path P′(i+ 1) for i+ 1th data block
to generate (P′(i+ 1), t ′(vi+1)). Then the server forward ((P(i), t(vi)),(P′(i+ 1), t ′(vi+1)) to the
client.
Step3. the client verifies (P(i), t(vi)) from SKVerify. If the verification is passed, then the client
computes the updated label f ′C(s) and verifies (P′(i+ 1), t ′(vi+1)) from the f ′C(s) and SKVerify.
When the verification succeeds, the client generates sig′C = sig(sskC,h( f ′C(s) ‖ vseq′C)) to send to
the server.

9
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Step4. the server verifies sig′C by computing h( f ′S(s) ‖ vseq′S). If the verification succeeds, the
server generates sig′S(sig′C) = sigh(sskS,sig′C) ,and makes the receipt sig′S(sig′C) = sig(sskS,sig′C).
Then the server sends thses to the client.
Step5. the client verifies sig′S by using h( f ′C(s) ‖ vseq′C) and skpS. And similarly, the client ver-
ifies the receipt. If sig′S and sig′S(sig′C) are valid, then the client makes the receipt sig′C(sig′S) =
sig(sskC,sig′S) and sends it to the server.
Step6. the server verifies the receipt.

All steps are successfully passed, the client and the server stores their own data in each storage.

• Deletion
Step1. the client sends the update request (D, i,NULL,NULL) to delete the ith data block Fi, and
update the existing version-sequence vseqC to vseq′C by using vseqD.
Step2. After receiving the update request, the server generates (P(i− 1), t(vi−1)) by making the
proof path P(i− 1) from the ProofPath. According to the update request, the server deletes Fi

and the corresponding tag ti. At the same time, the server replaces the existing skip list SKLS

and version-sequence vseqC with SKL′S and vseq′S by using the algorithms SKUpate and vseqI.
After performing update, the server makes proof path P′(i− 1) for i− 1th data block to generate
(P′(i−1), t ′(vi−1)). Then the server forward ((P(i−1), t(vi−1)),(P′(i−1), t ′(vi−1)) to the client.
Step3. the client verifies (P(i− 1), t(vi−1)) from SKVerify. If the verification is passed, then
the client computes the updated label f ′C(s) and verifies (P′(i− 1), t ′(vi−1)) from the f ′C(s) and
SKVerify. When the verification succeeds, the client generates sig′C = sig(sskC,h( f ′C(s) ‖ vseq′C))
to send to the server.
Step4. the server computes h( f ′C(s)vseq′S) from SKL′S and vseq′S. Then the server verifies the sig′C.
If sig′C is successfully verified, then the server generates the receipt as follow:

sig′S(sig′C) = sig(sskS,sig′C)

And makes sig′S = sig(sskS,h( f ′S(s) ‖ vseq′S)). Then the server sends sig′S and the receipt.
Step5. the client verifies sig′S from h( f ′C(s) ‖ vseq′C) and spkS. And also the client checks the
receipt from sig′C and spkS. If the two signatures are successfully verified, then the client generates
sig′C(sig′S) = sig(sskC,sig′S) as the receipt and sends the receipt to the server.
Step6. the server verifies the receipt of the client from sig′S and spkC.

The subsequent steps are the same as described above.

4 Security Analysis

As mentioned above, we assume that both client and cloud server are dishonest. For example, suppose
that server doesn’t have corrupted stored data of data owner , and assume that the proof of server for
challenged data blocks from a client is passed. But to either earn money or undermine the external
reputation of a cloud service provider, client maliciously claims that the proof of server is not correct and
accuse the service provider as tampering his/her data to a settlement. Since two parties are dishonest, the
3rd party, such as judge, cannot convince which evidences(e.g. metadata) are truthful.

In this paper, when there is disputes between client and server, we propose the method of settling
disputes by exchanging each other’s signature. Briefly mentioning, the use of a version-sequence which

10
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is a monotonic data structure and the exchange of each other’s signatures can resolve disputes between
clients and servers.

The security of the proposed scheme is proved from the correctness and soundness defined in [10].
Briefly speaking, the security is based on the secure BLS signature, computational Diffie-Hellman prob-
lem in bilinear map.

Definition 3. The computational Diffie-Hellman problem is that for given g,gx,gy in G for unknown x,y
in Zp, to compute gxy

Theorem 1. Suppose that the signature scheme used to make data block tags is existentially unforgeable
and the computational Diffie-Hellman problem is infeasible in bilinear map. Then no adversary against
the soundness of our public-verification scheme could cause a verifier to accept in the proposed auditing
protocol instance with non-negligible probability, except by responding with correctly generated proof.

The proof of the soundness of the protocol can be guaranteed if the computational Diffie-Hellman
problem is unfeasable. It is proved from the sequences of the challenge games described in [10]. Briefly
mentioning, in random oracle model if an adversary can make a cheating proof then the adversary can
solve the CDH problem with unnegligible probability because this means that the adversary can make
forgeries of the data block tags. The rigorous proof can be provided latter, and the reader can find the
proof in [10]

The next theorems are concerned with the method to resolve disputes between the client and the
server. Before showing the theorem to resolve disputes, we first show that a version-sequence is a
monotonic data structure which is defined in [11] the following theorem is regarding with it.

Theorem 2. A version-sequence is a monotonic data structure

Proof. Let vseq1 and vseq2 be version-sequences originated from the same data F , respectively, and let
V N1 and V N2 be the version numbers of vseq1 and vseq2, respectively. We already know that each version
number is increased by 1 whenever the data F is updated. If V N1 >V N2, then vseq1 is a version-sequence
that reflects the most recently updated data F from vseq2. If V N1 <V N2, then vseq2 is a version-sequence
that reflects the most recently updated data F from vseq1. If V N1 =V N2 and h(vseq1) = h(vseq2), then
vseq1 is absolutely same as vseq2. Hence, a version-sequence is monotonic

Theorem 3. If the signature scheme which is exchanged between a client and a server is existentially un-
forgeable and a version-sequence is monotonic, then the proposed PDP protocol can settle the following
disputes:

CASE1. The client have required data update to the server but the client didn’t update his/her own
the label of the start node of SKLC. Then the client blames the server as framing up the stored data.

CASE2. The server has saved the data back to the previous version since the update was verified. At
this time, the server claims to have updated the data.

CASE3. The server has corrupted data.

We skip the rigorous proof of the above theorem. Briefly sketching the proof, Since the signature
scheme is existentially unforgeable, both client and server can not make forge their own receipt. The
third party, such as a judge, receives the receipts sigS(sigC) and sigC(sigS) of the client and the server
from the two party. And the third party requires the client to generate sig′C from fC(s) and vseqC stored in
his/her local storage, at the same time requires the server to make sig′S from SKLS and vseqS. If their data

11
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is corrupted or forged, then the verification for their receipt by the third party can not be passed. Also,
although each receipt is valid, the third party can distinguish whose data is latest because the version
sequence is monotonic. Hence, the proposed protocol can resolve disputes. The rigorous proof can be
provided latter.

5 Conclusion

We design the non-repudiable PDP scheme against malicious servers and dishonest clients for the first
time by using new data structure. Our scheme allows a clients and a server to generate undeniable
information for the latest version and authentication information of stored data. Hence, each malicious
party can not deny misbehaviours of each other under our PDP scheme. In the view of security, we also
prove that our scheme guarantees stronger security than before when compared to existing PDP schemes
in this paper. Hence, we expect that our scheme can improve the security of cloud storage service.
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