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Abstract 
Efforts are made to construct a prediction model 

for the discharge characteristics of IoT device 

batteries using time-series prediction models based 

on Transformers. With the aim of calculating SOC 

(State of Charge) through recursive prediction, 

conditions and processes conducive to more 

accurate recursive prediction were investigated. 

Currently, recursive prediction with iTransformer 

tend to be good score. It was also suggested that 

adding noise during recursive prediction may enable 

more stable long-term predictions. 

 

Keywords: IoT device; primary battery; SOC; 

Transformer; PatchTST; Non-stationary 

Transformers; iTransformer 

 

1. Introduction 
IoT devices often use primary batteries from the 

viewpoint of cost and stability. To ensure the stable 

operation of IoT systems, it is crucial to accurately 

assess the battery status of IoT devices. In our work, 

we proposed a method for high-precision state 

prediction of primary batteries for IoT devices, 

combining estimated device’s current integration 

based on the operation task and the Recursive Least 

Squares (RLS) method [1]. The RLS method 

requires data measurement in advance to create a 

battery model, which lead to high implementation 

costs. To address this problem, we are attempting to 

predict battery status using machine learning only 

from battery operating data without prior battery data 

acquisition. Previous our research [2] has shown that 

when using PatchTST [3], a derived model of 

Transformer [4], the accuracy of predicting battery 

voltage one step ahead is equivalent to or better than 

the RLS method. On the other hand, there remained 

issues with the feasibility of calculating the predicted 

SOC for multiple steps ahead. The recursive 

prediction did not work. Fig 1 shows an example of a 

multi-step prediction with PatchTST (input sequence 

length 30, prediction length 54, input variables are 

terminal voltage and estimated Coulomb amount). 

Predicted waveform stops moving before reaching 

the IoT device's terminal voltage of 2.4V.  

 

Fig. 1. Multi-step prediction example (PatchTST) 

This paper investigated the conditions for 

realizing SOC calculation by recursive multi-step 

prediction by taking new approach, such as new 

Transformer-based models, data input conditions, 

and processing during recursive prediction. 

 

2. Data 
Operational data that can be obtained from the 

IoT devices used in our research include battery 

voltage, temperature, and the estimated coulombs 

amount consumed by the device [1]. 

Fig 2 shows the battery voltage data used in this 

study. This is the discharge characteristic under 

indoor natural fluctuation conditions (6°C to 29°C), 

and the voltage is acquired once every step (60 

seconds). From this Fig, as the discharge progresses, 

the voltage decreases, and the variation increases. In 

other words, this data is highly non-stationary.  

 

Fig. 2. battery discharge characteristic of IoT device 

Fig.3 is a diagram showing the discharge 

characteristics and temperature in an area of about 



2000 steps. This Fig suggests that there is a 

correlation between voltage and temperature in a 

certain long-term step. 

 

Fig. 3. voltage and temperature in 2000step area 

 

3. Time-series prediction model 
 In this study, the following time series prediction 

models were constructed for battery discharge 

characteristics prediction. New models have been 

introduced to address non-stationarity and correlation 

between variables more effectively. 

1. PatchTST: It is the model that showed the best 

score for predicting one step ahead in previous 

research. Adopted as a base model. This model 

features splitting time series data into separate 

sequences, inputting each segment into a 

Transformer Encoder with patching it. 

2. Non-stationary Transformers [5]: A model 

based on Transformer that has been modified to 

deal with non-stationarity in time series data. 

Series Stationarization performs normalization 

for each time series input unit and denormalizes 

it at the output to deal with non-stationarity. 

De-stationary attention is introduced to restore 

excessive stationarity. 

3. iTransformer [6]: A newly proposed model that 

better considers the correlation between 

multiple variables. iTransformer regards 

independent time series as variate tokens to 

capture multivariate correlations by attention 

unlike traditional Transformer and utilize 

layernorm and feed-forward networks to learn 

series representations. There is also a mention 

that variables are normalized in layernorm. 

 

4. Recursive prediction 
To perform SOC calculation, recursive prediction 

was performed for the time series model in Section 3 

using the voltage prediction results as a new 

sequence voltage input, while changing the input 

sequence length and prediction length several times. 

Train and Valid for each model were performed on 

operating data up to an estimated SOC of 20% 

(calculated from the estimated coulomb account and 

the nominal capacity of the primary battery). The 

prediction started from the estimated SOC 20%. 

Voltage, temperature, and estimated coulombs 

amount are adapted as input variables. They were 

constructed with and without temperature inclusion. 

The voltage utilizes the preceding predicted value 

as the new sequence input, whereas the estimated 

coulomb amount employs the calculated value. Once 

the operational conditions of the IoT device are 

determined, the forthcoming coulomb value can be 

computed. As for the temperature, we presumed that 

it would be feasible to acquire the temperature in the 

future through various means (e.g., via a weather 

forecast, etc.). In this study, the actual temperature 

was employed as input. 

Fig. 4 shows the first recursive prediction output 

of each model with input sequence length 96 and 

prediction length 96. Input variables are voltage, 

temperature, and estimated coulombs. The horizontal 

axis is step, and the vertical axis is normalized 

voltage value. Prediction waveforms 0 to 96 steps are 

the values in which the previous prediction result is 

input as recursive prediction, and the 97 to 192 steps 

are the predicted outputs. Fig. 5 shows the results of 

the 5th recursive prediction. In the 5th recursive 

prediction (576 steps ahead), although a little 

oscillations remain in the Non-stationary 

Transformers, the oscillations in the predicted 

waveform have attenuated and almost disappeared. 

 

 

Fig. 4. 1st recursive prediction (left:PatchTST 

center:Non-stationary Transformers right: 

iTransformer) 

 

Fig. 5. 5th recursive prediction (left:PatchTST 

center:Non-stationary Transformers right: 

iTransformer) 

From this result, stable multi-step prediction over 

long steps ahead could not be expected just by 

considering non-stationarity and correlation with 

temperature. Here, we attempted to introduce a 

process to add noise to input sequence voltage during 

recursive prediction, although it was a bit tricky. 

This idea comes from that the predicted waveform 

output reproduces the periodicity and trends of time-

series data and appears to be little free of noise 

components included in the training data, resulting in 

deviation from the training data. The applied noise 

was created so that the average value was 0 and the 

variance value of the difference between the first 

predicted value and the actual value was the same. 



Fig 6 shows the 5th recursive prediction results when 

noise is added. By applying noise, the attenuation of 

the oscillations of the 5th recursive prediction output 

is relaxed and remains. Since there may be a 

possibility for stable predictions over a longer step 

ahead. We treated it as a processing condition and 

proceed with the evaluation. 

 

 

Fig. 6. 5th recursive prediction with noise 

(left:PatchTST center:Non-stationary 

Transformers right: iTransformer) 

5. Evaluation results 
Table 1 shows result of RMSE and calculated 

SOC error by recursive predictions in test data. In the 

case where the predicted voltage reaches termination 

voltage of 2.4V, the SOC error ratio is calculated, 

otherwise filled in with NA. The steps to the 

termination voltage in test data are approximately 

8000 steps. 

 

Table 1: RMSE and calculated SOC error in test 

data  

model/ include temperature in 

input variables/ add noise/ 

sequence length/ prediction 

length 

RMSE calculated 

SOC 
error(%) 

PatchTST/no/no/96/96 0.133 NA 

PatchTST/yes/no/96/96 0.062 NA 

PatchTST/no/yes/96/96 0.472 NA 

PatchTST/yes/yes/96/96 0.116 NA 

PatchTST/no/no/332/332 0.058 NA 

PatchTST/yes/no/332/332 2.191 15.16 

PatchTST/no/yes/332/332 0.129 3.76 

PatchTST/yes/yes/332/332 0.063 NA 

PatchTST/no/no/720/720 0.074 NA 

PatchTST/yes/no/720/720 0.095 NA 

PatchTST/no/yes/720/720 0.142 NA 

PatchTST/yes/yes/720/720 0.112 -1.28 

Non-stationary 

Transformers/no/no/96/96 

0.131 NA 

Non-stationary 

Transformers/yes/no/96/96 

0.054 NA 

Non-stationary 

Transformers/no/yes/96/96 

0.208 NA 

Non-stationary 

Transformers/yes/yes/96/96 

0.587 NA 

Non-stationary 

Transformers/no/no/332/332 

0.067 NA 

Non-stationary 

Transformers/yes/no/332/332 

0.115 NA 

Non-stationary 

Transformers/no/yes/332/332 

1.807 -4.5 

Non-stationary 

Transformers/yes/yes/332/332 

5.410 NA 

Non-stationary 

Transformers/no/no/720/720 

0.117 NA 

Non-stationary 

Transformers/yes/no/720/720 

0.0653 NA 

Non-stationary 

Transformers/no/yes/720/720 

0.119 NA 

Non-stationary 

Transformers/yes/yes/720/720 

0.115 NA 

iTransformer/no/no/96/96 0.092 NA 

iTransformer/yes/no/96/96 0.087 NA 

iTransformer/no/yes/96/96 0.054 -4.78 

iTransformer/yes/yes/96/96 0.146 5.34 

iTransformer/no/no/332/332 0.056 NA 

iTransformer/yes/no/332/332 0.054 NA 

iTransformer/no/yes/332/332 0.106 1.63   

iTransformer/yes/yes/332/332 0.110 1.05   

iTransformer/no/no/720/720 0.055 NA 

iTransformer/yes/no/720/720 0.059 NA 

iTransformer/no/yes/720/720 0.080 NA 

iTransformer/yes/yes/720/720 0.057 NA 

 

 The overall trend is that prediction models made by 

iTransformer tend to have good scores in terms of 

RMSE and calculated SOC error. It can also be seen 

that when noise is added, there are many cases where 

the predicted voltage is reached to termination 

voltage. Fig 7 shows the waveforms for the 

following conditions:”iTransformer/no/no/332/332”, 

“iTransformer/yes/no/332/332”,“iTransformer/no/ye

s/332/332”, and “iTransformer/yes/yes/332/332”. In 

the condition without added noise, the recursively 

predicted waveform becomes a constant value 

midway through. In contrast, when noise is added, 

the waveform continues to oscillate and eventually 

reaches the terminal voltage. This suggests that 

adding noise contributes to more stable long-term 

prediction.  

 

Fig. 7. Recursive prediction in test data (top left: 

“iTransformer/no/no/332/332” condition, top 

right: “iTransformer/yes/no/332/332” condition, 

bottom left: “iTransformer/no/yes/332/332” 



condition,   bottom right: 

“iTransformer/yes/yes/332/332” condition) 

Regarding the effect of temperature in input 

variables, there does not seem to be much difference 

from the results in Fig 7 with sequence length and 

prediction length of 332. Fig 8 shows the waveforms 

of “iTransformer/no/yes/720/720” condition and 

“iTransformer/yes/yes/720/720” condition. In the 

comparison at a length of 720, it seems that the 

predicted waveform follows the ground truth more 

closely when temperature is included. However, the 

effect of temperature requires further verification 

with additional data. 

 

Fig. 8. Recursive prediction in test data (left: 

“iTransformer/no/yes/720/720” condition, right: 

“iTransformer/yes/yes/720/720” condition) 

6. Conclusion 
From investigation of the conditions to calculate the 

primary battery SOC of IoT devices using recursive 

prediction, the prediction model by iTransformer 

currently tends to have good scores. It was also 

suggested that adding noise during recursive 

prediction may make it easier to reach the terminal 

voltage. 

Future work is planned to investigate the effects of 

relearning and difference of learning data region. 

Data patterns other than noise (for example, 

introduction of time-series data by a generation AI 

model) will also be considered for processing during 

recursive prediction. We will also check the results 

when applied to other sample data and search for 

more appropriate conditions. 
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