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Abstract—We prove the four color theorem (briefly 4CT)by a 

new way, which is absolutely different from ones by A.B. Kempe 

in 1879 and P. Tait in 1880 as well as the computer-aided proofs 

by K. Appel and W. Haken in 1976 and by N. Robertson etc. in 

1995.With a tier graph of the tier number being the least and two 

definitions: one is a vertex adjacent closed subgraph 

corresponding to vi , another is the good independent sets; three 

conditions to get the first good independent set r1 from any planar 

graph G had been found, by which V(G) can be partitioned into 4 

independent sets. 

Finally, we show in detail the entire procedure to prove the 

4CT by a example. 

Keywords—outer planar graph, vertex adjacent closed 

subgraph, hub, good independent set, tier graph 

I. INTRODUCTION 

The four color problem first appeared in a letter of October 

23, 1852 to Sir William Hamilton from Augustus de Morgan, 

which was asked to him by his student Frederick Guthrie who 

later attributed it to his brother Francis Guthrie. 

  After the announcement of this problem to the London 

Mathematical Society by Arthur Cayley in 1878, within a year 

its solution was proposed by A.B. Kempe [9]. After 11 years  

this publication P. J. Heawood published its refutation [7]. 

Another proof by P.G. Tait [13]in 1880 again was negated by 

W.T. Tutte [14]. 

The four color problem in graph theory has stood out as 

unscalable  peak for a century or more[11]. Until 1976 using 

A.B. Kempe’s idea, K. Appel and W. Haken proposed a 

computer-aided proof of the 4CT [1,2,3], but it is too long and 

too complex to be tested by hand. In 1995 N. Robertson, D. 

Sanders P. Seymour and R. Thomas, still using A.B. Kempe’s 

idea, gave another 4CT computer-aided proof [12], but simpler 

than Appel and Haken's in several respects, and easy to be 

tested by hand, so the 4CT is established. 

Hereafter, some scholars consider that to prove the 4CT by 

hand is inadvisable[16] and impossible. 

Here is a query that the 4 color problem belong to NP-c? 

Most books[15,16] point definitely out that in graph theory the 

vertex k-colorable problems, k≧3, belong to NP-c problems. 

Expressly, k=3, it is seemingly simple tractable, in fact, it is 

heartbreaking one of NP-c problems! 

 The 4-color problem of a planar graph is one case of the k-

colorable problems, so it should be one of the NP-c problems. 

Now that, for the 4CT they got a good algorithm 

(O(n
2
))[1,2,3,12], then that P=NP should be gotten. By results 

by Cook[5] and Karp[8] all NP-c problems should have good 

algorithm. However, why no one of thousands NP-c problems 

is resolved for 40 and more years from 1976 to today?! 

Studied their way proving the 4CT,we think that their way 

is an optimized enumeration. By which one can not deal with 

other NP-c problems. 

We think that the primary way to prove 4CT is to partition 

vertices of a planar graph into 4 independent sets. But the 

problem finding independent sets is one of NP-c 

problems[6,15,16]in graph theory. And if found a good 

method that partition vertices of a 3-colorable graph into 3 

independent sets, then it is established that P=NP[16]. 

For 40 years or more working we have found necessary and 

sufficient conditions finding the first good independent set, by 

which V(G) of a planar graph can be partitioned into 4 

independent sets by only one time operation. 

 

II. THE OUTER PLANAR GRAPH AND RELATIVE THEOREM 

Let G be a simple maximal planar graph. It can be drawn 
in a plane without edge-crossing, and divides the plane into 
faces; all vertices and edges of G all are on the boundaries of 
faces, that is, there are no vertex and no edge in either the 
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interior or exterior of any face. It has exactly one unbounded 
face, called the outer face. If all vertices of a planar graph are 
on the boundary of a face, the planar graph is called the outer 
planar graph and denoted by ɷ.  

The undefined terms and symbols used in this paper can 
be found in [4]. 

Theorm1 An outer planar graph ɷ is 3-colorable. 

Proof. By induction on the vertex number n on ɷ:  

1.When n ≤3 the theorem is immediate. 

2.Suppose that the theorem holds when the vertex 

number of ɷ is fewer than n ； 

3. let the vertex number of ɷ be n. From such an edge ei,j = 

(vi,vj) whose degree of endpoints vi and vj are more than two 

(If not, G is a cycle, and is 3-colorable),split the ɷ into two ɷ1 

and ɷ2, so the vertex number of each of both is fewer than n. 

So both ɷ1 and ɷ2 are 3-colorable by the second hypothesis. 

With 3-coloring the ɷ1 and ɷ2, the two pairs same name 

vertices (vi and vj in ɷ1 and ɷ2 respectively)should be colored 

with the same colors, respectively, which is easy to done, then 

merging these two ɷ1 and ɷ2 forms the outer planar graph ɷ, 

which had been colored in 3 colors.▌ 

 

III. DEFINITIONS AND THE LEAST TIER NUMBER 

GRAPH 

A. Definition 1 

An induced sub-graph by vi and its neighbors in G is 
defined as the vertex adjacent closed sub-graph 
corresponding to vi and is denoted by Qi (=G[V(Ni)]), with 
calling vi as the hub[5]. 

  Lemma Qi of any vertex vi of a planar graph is 4-
colorable. 

Proof. From definition of Qi we know that Qi-vi is an 
outer planar graph, which is 3-colorable 

by the lemma, it is viable to color vi in the fourth color.▌ 

Definition 2 

A subset r1 of V(G) is said to be a vertex independent set 
of G if no two vertices of r1 are adjacent in G.  

V(G) of G can be partitioned into R independent sets, 

namely V(G)=r1∪r2∪…∪rR, ri∪rj is not an independent 

set,  and ri∩rj=ø,0<i<j≤R.  

Definition 3 

    The independent sets are classified into two types, 
good   and bad. The independent set r1 is good, if and only if 
χ(G-r1) =χ(G)-1; and the all independent sets of G are good if 
and only if the number R of independent sets is minimum, i.e. 
R=χ(G). 

If in G there is a vertex vi of d(vi)= |V(G)|-1,then G=Qi, 
χ(Qi)=χ(G), and r1 has only the vertex vi, so χ(G-vi)=χ(G)-1, 
and the r1 is obviously good. 

 

Different independent set partitioning method divides the 
number R of independent sets of G to be different. 

Take a wheel figure W10 with vertex label 0,1,…,10 as  

example, the hub vertex v0 of d(v0)=Δ(G)=| V(W10) |-1=10, 

the rest vertices of each degree to be δ(G)=3. If v0 is divided 

into r1, r1={v0} and Qr1=G; then  χ(G-r1)=χ(G)-1, the r1 is 

obviously good. 

W10-v0 is a bipartite. we get easy that r2={v1,v3,v5,v7,v9} 
and r3={v2,v4,v6,v8,v10}. 

The independent set number R of W10 =3. i.e. χ(W10)=3. 
thus, the got r1 is obviously good by this partitioning way. 

 

If non-adjacent vertices of degree=δ(W10)=3  are, step by 
step, divided into r1, got the r1={v1,v3,v6,v9}, Qr1=G; Then, 
from W10-r1, non-adjacent vertices v2,v4, v8 ,v10 are divided 
into r2, got the r2 ={v2,v4,v8,v10};Then from W10-r1-r2, we get 
r3={v5,v7}, r4={v0}; that are the all independent sets of W10, 

i.e. V(W10)=r1 ∪ r2 ∪ r3 ∪ r4. By this partitioning the 

independent set number R of W10 = 4. thus, the got r1 is 
obviously bad. 

Thus it can be seen that in order to get the first 

independent set r1 to be good, then  any vi∈G of d(vi)=Δ(G) 

must first be divided into r1, and then non-adjacent vertices 
with degrees from the large to the small must be, step by step, 
divided into r1, until Qr1=G. The r1 is good obtained by this 
partition method. 

If you want that V (G) of a planar graph G to be divided 

into 4 independent sets, then the first independent set r1 must 

be good, that is, χ(G-r1)=3. Therefore, it is particularly 

important to get the first independent set r1 from a planar graph, 

if it is bad, the future work is done in vain! Therefore, the 

cause of the first independent set r1 being bad should be found 

first and to be resolved so as to ensure that the r1 is good.  

 

B. The minimum tier number graph Tk 

 to construct the minimum tier number graph Tk of the 
given G 

The vertex degree of each vertex in the given G is 
firstly calculated. Then, with any vi of d(vi)=Δ(G) as 
the starting point, the tier graph with the minimum 
number of tiers to the starting point vi is constructed,  
which is denoted by Tk. There is only one vertex vi 
on T0 tier of Tk, all vertices adjacent to vi constitute 
T1 tier, and all vertices adjacent to the vertices on T1 
constitute T2 tier,…, all vertices adjacent to the 
vertices on Te-1 constitute the ended tier Te. 



 

 

 Characteristic of Tk is that the vertex on T0 is adjacent 
only to vertices on T1. And the vertices on Tk , 0<k<e, 
are adjacent only to those on Tk-1,Tk and Tk+1, not 
adjacent to those on other tiers; and no vertex on Tk-1 
is adjacent to ones on Tk+1. 

 

IV. THE NECESSARY AND SUFFICIENT CONDITIONS 

OBTAINED THE FIRST SET  R1 FROM A GRAPH 

A vj∈T2 whose d(vj)=d(vj 一)+ d(vj 二)+ d(vj 三), which is 

respectively the vertex number that vj is connected ones 

on T1, T2 and T3; Qj 一,Qj 二 and Qj 三 is respectively the 

induced sub-graph by d(vj 一) vertices on T1 ,by d(vj 二)+1

（vj）vertices on T2 and by d(vj 三)vertices on T3; there   
must exist Qj 一∩Qj 二; there no Qj 一∩Qj 三. χ（Qj 一）and χ

（Qj 三）all≤χ（G）-1;  χ（Qj 二）≤χ（G）. 

A. The things must be done before proving following 

theorem 2: 

 to construct Tk of the given G; 

 d(vj 一) and d(vj 二) of each vertex vj ∈T2 (and its 

following up paragraphs T2,3,T2,4,…,T2,e-1,T2,e) must be 
computed  out. 

B. theorem 2  

The first independent set r1 of G is good, if the following 

conditions must be satisfied: 

C1: the first vertex in r1 must be the starting vertex vi of 
Tk, whose d(vi)=Δ(G). 

C2: the next vertices partitioned into r1 must only first be 

vertices∈T2, and the following next ones are such vertex 

that gradually move to T2,k from Tk,2<k≤e. 

C3: a vertex vj∈T2 is partitioned into r1 such that r1 is 

good, if and only if: 

d(vj 二)=0 of a vj∈T2. we partition the vj whose d(vj 二)=0 

into r1, then move its d(vj 三) neighbors∈T3 to T1,3, G=Qr1，
and the got r1={vi,vj} is good. As Qj 一⊆T1, Qj 二=vj, G-r1=Qr1-

vi-vj= T1∪Qj 三, and χ(T1) and χ(Qj 三) all ≤χ(G)-1, so χ(G-

r1)≤χ(G)-1. 

d(vj 二)>0 of a vj∈T2. then taking the vj  and each of its 

d(vj 二) neighbors∈T2 as hub, respectively; compute each 

χ(Qh 一), so long as χ(Qh 一)=3(i.e. Qh 一 is an odd cycle) appears, 

right away, partition the vh into r1; no matter χ(Qh 二) and χ(Qh

三) are maximum or not, G=Qr1, the got r1={vi,vh} is good. 

If all χ(Qh 一)<3,then gradually partition vh∈T2 whose 

χ(Qh 一) from 2 to 1 into r1, until Qr1=G. The got r1 must be 

good. 

We show that if one of 3 conditions does not meet, got 
the first independent set r1 may be bad; but 3 conditions all 
meet, got the  r1 must be good by examples. 

if C1 does not meet, i.e. first regard vi of d(vi)＜△（G）as 

the start and make up Tk, and partition it to r1 , got the first 

independent set r1 may be bad. See the example above of W10. 

Again, if the C1 does not satisfy, especially, if a vertex vi 

whose d(vi) ≡1(mod 3) is an odd number (such as 7,13,19…) 

and＜△(G), is regarded as starting vertex and make up Tk, and 

first is partitioned the vi into r1(see Fig.1). When each of 

vertices∈T2 is regarded respectively as the hub, and each χ(Qh

一) equal to =2; and there is a vertex vs∈T2 of degree △(G), 

without loss of generality, suppose that d(vs)= d(vi)+1. And the 

vs is adjacent to all vertices on T2, see Fig.1. If again partition 

vs into r1, G=Qr1,then got the r1={vi,vs}is bad(see Fig.1-1)！ 

 

Fig.1 G  d(vi)≠△(G） 

 

Fig.1-1 r1={vi,vs}, H=G-r1,χ(H)=4 

Because in this case the Qi∩Qs is an edge in H=G-r1,if the 

edge is decomposed from H which is decomposed into an edge 

and an outer planar graph ɷ (see Fig.1-1), although they are all 

3-colorable; but with coloring the ɷ, the two end-vertices of 

the edge must be colored in the same color (see Fig.1-1, v1 and 

v7), so one of them must be colored with the fourth color that 

χ(H)=4. So the r1 is bad. 

But, in this case if C1,C2 and C3 are all satisfied, i.e. regard 

a vertex of degree △(G) as starting vertex make up Tk, and first 

partition it into r1,then partition such vertices∈T2 into r1 that 



 

 

each hub’s χ(Qh一) is the maximum, until G=Qr1,the r1 must be 

good.  

Such as, in Fig.1 regard vs of degree △(G) as the start and 

make up Tk, and first partition it into r1,then partition  v2,v6∈

T2 into r1 (since each of them is regarded respectively as the 

hub, the d(v2一) and d(v6一)=3; χ(Q2一)and χ(Q6一)=2,they are all 

the maximum in vertices∈T2); then move vertices vi,v3,v5∈T2   

into T1,2 (since they are adjacent to v2 or v6), at this time, only 

a vertex v4 remains on T2,so partition v4∈T2 to r1, G=Qr1, got 

the r1={v2,v6,v4,vs} is good. 

  Because in H=G-r1 there are vertices of degree 2(in Fig.1-2 

the vertices u and w of degree 2),it suffices to split each of 

them into two vertices so that the H become a outer planar 

graph with suspended vertices u, w, and its χ(H)=3,see Fig.1-2. 

 

Fig.1-2 H=G-r1,χ(H)=3 

In addition, if 3 conditions all satisfy, i.e. regard a vi of 

degree △(G) ≡1(mod3) being odd as the start and make up Tk, 

and first partition it into r1 ,even if there is another vertex vj∈

T2  of degree △(G)≡1(mod 3) to be odd ,see Fig.2 the vertices 

vi and vj of degree △(G) ,again partition vj and its non-adjacent 

vertices∈T2 into r1, G=Qr1, got the r1=(vi,vj) is also good. 

 

 

Fig. 2 G 

Because vj is adjacent to vertices∈T1 of degree 1, it means 

that vj is adjacent to two vertices∈T1,so it is adjacent to at 

most △(G)-2 vertices∈T2, that is, in T2 there exist at lest two 

vertices which can partition into r1, then partition those vertices 

into r1, G=Qr1, got the r1 is good, see Fig.2 and 2-1. got the 

r1={vi,vj,x}is good. 

 

Fig.2-1 

Since the Qr1∩Qj is two edges in H( in Fig.2-1 e1,7 and 

e4,5).Split such two edges from H that H become two outer 

planar graphs and two edges. And 4 vertices connected by the 

two edges belong respectively to two distinct outer planar 

graphs(in Fig.2-1 vertices v1 and v4 belong to an outer planar, 

vertices v5 and v7 belong to the other),even if the two vertices 

of degree 2 in an outer planar graph must be colored with the 

same color(say, in Fig.2-1 the vertices v1 and v4 ), the H= G-r1 

is also 3-colorable.It is viable that with coloring two outer 

planar graphs, need merely to color two pairs vertices in 

distinct outer planar graphs with different colors, i.e. the 

endpoints of the two edges with different colors . 

Why do we have C2?  

Two reasons: first, from T2 layer its subsequent segments 
T2,x, 2<x≤e, select vertices who satisfy C2, and to divide 



 

 

them into r1, until G=Qr1; so that vertices that are not 
adjacent to the starting point are not missed;  

The other is that vertices of k≥3 layers are divided into r1, 
may be in large probability , such that G≠Qr1!and got the 
r1must be bad. 

 

The reasons  that C3 needs be satisfied are shown follows 
below:. 

 

   

 

V.     FOR EXAMPLE  

 FINALLY, WE SHOW IN DETAIL THE ENTIRE PROCEDURE TO 

PROVE  THE 4CT BY PARTITIONING 25 VERTICES OF A 

PLANAR G IN FIG.A INTO FOUR INDEPENDENT SETS. BY 

WHICH IN 1890 P. J. HEAWOOD OVERTHROWN THE PROOF 

OF THE 4CT BY A. B. KEMPE IN 1879.  

 

 

Fig. A. G on 25 vertices 

show：1.1  First compute each vertex degree in Fig. A.  G. 

Vertices of degree Δ(G)=7 are: v1,v3,v6,v12,v23; vertices of 

degree 6 are: v2,v7,v17, the remains vertices of degree 5. 

1.2. Select arbitrarily a vertex vi whose d(vi)=Δ(G)=7 of G 

in Fig. A，like v3，regard v3 as the starting  make up tier 

graph Tk (see Fig.A-1)，and partition it into r1. 

 
Fig.A-1 the Tk taking v3 as the start 

1.3. For manual analysis convenience, Tk  in Figure A-1 is 

shown in Figure A-2. 

 

 
 

Fig.A-2 the Tk 

By observing, there is no vertex of  d(vj二)=0.vertices of 

d(vj一) =2, its χ(Qj一)=2, are v7,v10,v23, v14,v15,v16 . So, first, 

partition v7 into r1,move its adjacent vertices v8,v18,v23∈T2 to 

T1,2; move v19∈T3 to T1,3; then  partition v10,v14,v16 into 

r1.move its adjacent vertices v9,v11;v15,v24;v17 ∈T2 to T1,2; 

move v21,v25∈T3 to T1,3; move v20,v22∈T3(they adjacent to 

the vertices on T1,2) to T2,3.  

1.4.on T2,3 vertices v20 and v22 of d(vj一) =2, its χ(Qj一)=2; so 

partition one of  both, such as v22 into r1,at here G=Qr1, got 

r1={v3,v7,v10,v14,v16,v22} and H=G-r1.see Fig. B. 

 

Fig. B.  H =G-r1 

2.1 First compute each vertex degree of G in Fig.B. v12 of 

degree Δ(H)= 6, v17 of degree 5,the vertices of degree 4 are 

v1,v6,v8,v9,v18,v20,v23,v24, the remaining vertices 

v4,v5,v15,v13,v25,v11,v19,v21,v2 of degree 3. 

2.2 Regard v12 of degree Δ(H)=6 as the starting vertex 

make up Tk (see Fig.B-1.). And partition it to r2. 



 

 

 

Fig.B-1. Tk taking v12 as the staring 

2.3 vertices of d(vj 二 )=0 are v11,v19,v25,v4,  so simply 

partition them into r2,then move their adjacent vertices 

v20,v21,v8 and v5,v15∈T3 to T1,3.Since v1 of d(v1一)=1, its χ(Q1

一)=1, but v6 of d(v6一)=2, its χ(Q6一)=2. so partition the v6 into 

r2,then move its adjacent vertices v1 to T1,2, move v9∈T3  to 

T2,3 . 

2.4 since there is only vertex v9 on T2,3，so, partition  it 

into r2, at here H=Qr2 ， so we got that 

r2={v12,v6,v4,v11,v25,v19,v9} and H’=H-r2.  

H’ is a bipartite with an e=(v5,v15) and 2 paths: 

P1={v2,v1,v8,v20,v21}，P2 ={v13,v24,v17,v18,v23}. 

3. it is easy that partition V( H’) into 2 independent sets: 

r3={v23,v17,v13,v1,v20,v5 }  and 

r4 ={v18,v24,v2, v8, v21,v15}. 

     From this example one can see that using the partitioning 

independent sets way can partition V(G) of a planar graph into 

4 independent sets by one time operation. It not only the 4CT, 

but also can get the colors at the every vertex of the graph. 
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