The 4-Color Theorem is Proved by Hand

Xiurang Qiao

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

The 4-Color Theorem is proved by hand

Xiu-rang Qiao
Retire Office
Sinopec Luoyang
Luoyang, China
xrqiao@126.com.cn

Abstract

We prove the four color theorem (briefly 4CT)by a new way, which is absolutely different from ones by A.B. Kempe in 1879 and P. Tait in 1880 as well as the computer-aided proofs by K. Appel and W. Haken in 1976 and by N. Robertson etc. in 1995. With a tier graph of the tier number being the least and two definitions: one is a vertex adjacent closed subgraph corresponding to v_{i}, another is the good independent sets; three conditions to get the first good independent set \mathbf{r}_{1} from any planar graph G had been found, by which $V(G)$ can be partitioned into 4 independent sets.

Finally, we show in detail the entire procedure to prove the 4CT by a example.

Keywords-outer planar graph, vertex adjacent closed subgraph, hub, good independent set, tier graph

I. Introduction

The four color problem first appeared in a letter of October 23, 1852 to Sir William Hamilton from Augustus de Morgan, which was asked to him by his student Frederick Guthrie who later attributed it to his brother Francis Guthrie. After the announcement of this problem to the London Mathematical Society by Arthur Cayley in 1878, within a year its solution was proposed by A.B. Kempe [9]. After 11 years this publication P. J. Heawood published its refutation [7]. Another proof by P.G. Tait [13]in 1880 again was negated by W.T. Tutte [14].

The four color problem in graph theory has stood out as unscalable peak for a century or more[11]. Until 1976 using A.B. Kempe's idea, K. Appel and W. Haken proposed a computer-aided proof of the 4CT [1,2,3], but it is too long and too complex to be tested by hand. In 1995 N. Robertson, D. Sanders P. Seymour and R. Thomas, still using A.B. Kempe's idea, gave another 4CT computer-aided proof [12], but simpler than Appel and Haken's in several respects, and easy to be tested by hand, so the 4CT is established.

Hereafter, some scholars consider that to prove the 4CT by hand is inadvisable[16] and impossible.

Here is a query that the 4 color problem belong to NP-c? Most books[15,16] point definitely out that in graph theory the vertex k-colorable problems, $\mathrm{k} \geqq 3$, belong to NP-c problems. Expressly, $\mathrm{k}=3$, it is seemingly simple tractable, in fact, it is heartbreaking one of NP-c problems!

The 4-color problem of a planar graph is one case of the kcolorable problems, so it should be one of the NP-c problems.

Now that, for the 4CT they got a good algorithm $\left(\mathrm{O}\left(\mathrm{n}^{2}\right)\right)[1,2,3,12]$, then that $\mathrm{P}=\mathrm{NP}$ should be gotten. By results by Cook[5] and Karp[8] all NP-c problems should have good algorithm. However, why no one of thousands NP-c problems is resolved for 40 and more years from 1976 to today?!

Studied their way proving the 4CT, we think that their way is an optimized enumeration. By which one can not deal with other NP-c problems.

We think that the primary way to prove 4 CT is to partition vertices of a planar graph into 4 independent sets. But the problem finding independent sets is one of NP-c problems $[6,15,16]$ in graph theory. And if found a good method that partition vertices of a 3 -colorable graph into 3 independent sets, then it is established that $\mathrm{P}=\mathrm{NP}[16]$.

For 40 years or more working we have found necessary and sufficient conditions finding the first good independent set, by which $\mathrm{V}(\mathrm{G})$ of a planar graph can be partitioned into 4 independent sets by only one time operation.

II. THE OUTER PLANAR GRAPH AND RELATIVE THEOREM

Let G be a simple maximal planar graph. It can be drawn in a plane without edge-crossing, and divides the plane into faces; all vertices and edges of G all are on the boundaries of faces, that is, there are no vertex and no edge in either the
interior or exterior of any face. It has exactly one unbounded face, called the outer face. If all vertices of a planar graph are on the boundary of a face, the planar graph is called the outer planar graph and denoted by ω.

The undefined terms and symbols used in this paper can be found in [4].

Theorm1 An outer planar graph ω is 3 -colorable.
Proof. By induction on the vertex number n on ω :

1. When $\mathrm{n} \leq 3$ the theorem is immediate.
2.Suppose that the theorem holds when the vertex number of ω is fewer than n;
2. let the vertex number of ω be n. From such an edge $e_{i, j}=$ $\left(v_{i}, v_{j}\right)$ whose degree of endpoints v_{i} and v_{j} are more than two (If not, G is a cycle, and is 3-colorable), split the ω into two Φ_{1} and ω_{2}, so the vertex number of each of both is fewer than n. So both ω_{1} and ω_{2} are 3-colorable by the second hypothesis. With 3-coloring the ω_{1} and ω_{2}, the two pairs same name vertices (v_{i} and v_{j} in ω_{1} and ω_{2} respectively)should be colored with the same colors, respectively, which is easy to done, then merging these two ω_{1} and ω_{2} forms the outer planar graph ω, which had been colored in 3 colors.

III. DEFINITIONS AND THE LEAST TIER NUMBER GRAPH

A. Definition 1

An induced sub-graph by v_{i} and its neighbors in G is defined as the vertex adjacent closed sub-graph corresponding to v_{i} and is denoted by $Q_{i}\left(=G\left[V\left(N_{i}\right)\right]\right)$, with calling v_{i} as the hub[5].

Lemma Q_{i} of any vertex v_{i} of a planar graph is 4colorable.

Proof. From definition of Q_{i} we know that $Q_{i}-v_{i}$ is an outer planar graph, which is 3-colorable
by the lemma, it is viable to color v_{i} in the fourth color.

Definition 2

A subset r_{1} of $V(G)$ is said to be a vertex independent set of G if no two vertices of r_{1} are adjacent in G.
$\mathrm{V}(\mathrm{G})$ of G can be partitioned into R independent sets, namely $\mathrm{V}(\mathrm{G})=\mathrm{r}_{1} \cup \mathrm{r}_{2} \cup \ldots \cup \mathrm{r}_{\mathrm{R}}, \mathrm{r}_{\mathrm{i}} \cup \mathrm{r}_{\mathrm{j}}$ is not an independent set, and $\mathrm{r}_{\mathrm{i}} \cap \mathrm{r}_{\mathrm{j}}=\varnothing, 0<\mathrm{i}<\mathrm{j} \leq R$.

Definition 3

The independent sets are classified into two types, good and bad. The independent set r_{1} is good, if and only if $\chi\left(\mathrm{G}-\mathrm{r}_{1}\right)=\chi(\mathrm{G})-1$; and the all independent sets of G are good if and only if the number R of independent sets is minimum, i.e. $\mathrm{R}=\chi(\mathrm{G})$.

If in G there is a vertex v_{i} of $d\left(v_{i}\right)=|V(G)|-1$, then $G=Q_{i}$, $\chi\left(\mathrm{Q}_{\mathrm{i}}\right)=\chi(\mathrm{G})$, and r_{1} has only the vertex v_{i}, so $\chi\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\chi(\mathrm{G})-1$, and the r_{1} is obviously good.

Different independent set partitioning method divides the number R of independent sets of G to be different.

Take a wheel figure W_{10} with vertex label $0,1, \ldots, 10$ as example, the hub vertex v_{0} of $\mathrm{d}\left(\mathrm{v}_{0}\right)=\Delta(\mathrm{G})=\left|\mathrm{V}\left(\mathrm{W}_{10}\right)\right|-1=10$, the rest vertices of each degree to be $\delta(\mathrm{G})=3$. If v_{0} is divided into $r_{1}, r_{1}=\left\{\mathrm{v}_{0}\right\}$ and $\mathrm{Qr}_{1}=\mathrm{G}$; then $\chi\left(\mathrm{G}-\mathrm{r}_{1}\right)=\chi(\mathrm{G})-1$, the r_{1} is obviously good.
$\mathrm{W}_{10}-\mathrm{v}_{0}$ is a bipartite. we get easy that $\mathrm{r}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}\right\}$ and $\mathrm{r}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{~V}_{8}, \mathrm{v}_{10}\right\}$.

The independent set number R of $\mathrm{W}_{10}=3$. i.e. $\chi\left(\mathrm{W}_{10}\right)=3$. thus, the got r_{1} is obviously good by this partitioning way.

If non-adjacent vertices of degree $=\delta\left(\mathrm{W}_{10}\right)=3$ are, step by step, divided into r_{1}, got the $r_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{9}\right\}, \mathrm{Qr}_{1}=\mathrm{G}$; Then, from $W_{10}-r_{1}$, non-adjacent vertices $\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{8}, \mathrm{v}_{10}$ are divided into r_{2}, got the $r_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$; Then from $\mathrm{W}_{10}-\mathrm{r}_{1}-\mathrm{r}_{2}$, we get $\mathrm{r}_{3}=\left\{\mathrm{v}_{5}, \mathrm{v}_{7}\right\}, \mathrm{r}_{4}=\left\{\mathrm{v}_{0}\right\}$; that are the all independent sets of W_{10}, i.e. $V\left(W_{10}\right)=r_{1} \cup r_{2} \cup r_{3} \cup r_{4}$. By this partitioning the independent set number R of $\mathrm{W}_{10}=4$. thus, the got r_{1} is obviously bad.

Thus it can be seen that in order to get the first independent set r_{1} to be good, then any $v_{i} \in G$ of $d\left(v_{i}\right)=\Delta(G)$ must first be divided into r_{1}, and then non-adjacent vertices with degrees from the large to the small must be, step by step, divided into r_{1}, until $\mathrm{Qr}_{1}=\mathrm{G}$. The r_{1} is good obtained by this partition method.

If you want that $V(G)$ of a planar graph G to be divided into 4 independent sets, then the first independent set r_{1} must be good, that is, $\chi\left(\mathrm{G}-\mathrm{r}_{1}\right)=3$. Therefore, it is particularly important to get the first independent set r_{1} from a planar graph, if it is bad, the future work is done in vain! Therefore, the cause of the first independent set r_{1} being bad should be found first and to be resolved so as to ensure that the r_{1} is good.

B. The minimum tier number graph T_{k}

- to construct the minimum tier number graph T_{k} of the given G
The vertex degree of each vertex in the given G is firstly calculated. Then, with any v_{i} of $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\Delta(\mathrm{G})$ as the starting point, the tier graph with the minimum number of tiers to the starting point v_{i} is constructed, which is denoted by T_{k}. There is only one vertex v_{i} on T_{0} tier of T_{k}, all vertices adjacent to v_{i} constitute T_{1} tier, and all vertices adjacent to the vertices on T_{1} constitute T_{2} tier, ..., all vertices adjacent to the vertices on $\mathrm{T}_{\mathrm{e}-1}$ constitute the ended tier T_{e}.
- Characteristic of T_{k} is that the vertex on T_{0} is adjacent only to vertices on T_{1}. And the vertices on $T_{k}, 0<k<e$, are adjacent only to those on $\mathrm{T}_{\mathrm{k}-1}, \mathrm{~T}_{\mathrm{k}}$ and $\mathrm{T}_{\mathrm{k}+1}$, not adjacent to those on other tiers; and no vertex on $\mathrm{T}_{\mathrm{k}-1}$ is adjacent to ones on $\mathrm{T}_{\mathrm{k}+1}$.

IV. THE NECESSARY AND SUFFICIENT CONDITIONS OBTAINED THE FIRST SET R_{1} FROM A GRAPH

$A \mathrm{v}_{\mathrm{j}} \in \mathrm{T}_{2}$ whose $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}-\right)+\mathrm{d}\left(\mathrm{v}_{\mathrm{j}} \equiv\right)+\mathrm{d}\left(\mathrm{v}_{\mathrm{j}} \equiv\right)$, which is respectively the vertex number that v_{j} is connected ones on $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and $\mathrm{T}_{3} ; \mathrm{Q}_{\mathrm{j}}-, \mathrm{Q}_{\mathrm{j}}=$ and $\mathrm{Q}_{\mathrm{j}} \equiv$ is respectively the induced sub-graph by $d\left(v_{j}-\right)$ vertices on T_{1}, by $d\left(v_{j}=\right)+1$ (v_{j}) vertices on T_{2} and by $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}} \equiv\right)$ vertices on T_{3}; there must exist $\mathrm{Q}_{\mathrm{j}}-\cap \mathrm{Q}_{\mathrm{j}=}$; there no $\mathrm{Q}_{\mathrm{j}}-\cap \mathrm{Q}_{\mathrm{j} \equiv .} \chi\left(\mathrm{Q}_{\mathrm{j}-}\right)$ and χ $\left(\mathrm{Q}_{\mathrm{j}} \equiv\right)$ all $\leq \chi$ (G) $-1 ; \chi\left(\mathrm{Q}_{\mathrm{j}}=\right) \leq \chi$ (G) .
A. The things must be done before proving following theorem 2:

- to construct T_{k} of the given G ;
- $d\left(v_{j}-\right)$ and $d\left(v_{j}=\right)$ of each vertex $v_{j} \in T_{2}$ (and its following up paragraphs $\mathrm{T}_{2,3}, \mathrm{~T}_{2,4}, \ldots, \mathrm{~T}_{2, \mathrm{e}-1}, \mathrm{~T}_{2, \mathrm{e}}$) must be computed out.

B. theorem 2

The first independent set r_{1} of G is good, if the following conditions must be satisfied:

C1: the first vertex in r_{1} must be the starting vertex v_{i} of T_{k}, whose $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\Delta(\mathrm{G})$.

C 2 : the next vertices partitioned into r_{1} must only first be vertices $\in T_{2}$, and the following next ones are such vertex that gradually move to $\mathrm{T}_{2, \mathrm{k}}$ from $\mathrm{T}_{\mathrm{k}}, 2<\mathrm{k} \leq \mathrm{e}$.

C3: a vertex $\mathrm{v}_{\mathrm{j}} \in \mathrm{T}_{2}$ is partitioned into r_{1} such that r_{1} is good, if and only if:
$d\left(v_{j}=\right)=0$ of a $v_{j} \in T_{2}$. we partition the v_{j} whose $d\left(v_{j}=\right)=0$ into r_{1}, then move its $d\left(v_{j} \equiv\right)$ neighbors $\in T_{3}$ to $T_{1,3}, G=\mathrm{Qr}_{1}$, and the got $\mathrm{r}_{1}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$ is good. As $\mathrm{Q}_{\mathrm{j}}-\subseteq \mathrm{T}_{1}, \mathrm{Q}_{\mathrm{j}}==\mathrm{v}_{\mathrm{j}}$, G-r $\mathrm{r}_{1}=\mathrm{Qr}_{1}-$ $\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{j}}=\mathrm{T}_{1} \cup \mathrm{Q}_{\mathrm{j}} \equiv$, and $\chi\left(\mathrm{T}_{1}\right)$ and $\chi\left(\mathrm{Q}_{\mathrm{j}} \equiv\right)$ all $\leq \chi(\mathrm{G})-1$, so $\chi(\mathrm{G}-$ $\left.\mathrm{r}_{1}\right) \leq \chi(\mathrm{G})-1$.
$\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}=\right)>0$ of $\mathrm{a} \mathrm{v}_{\mathrm{j}} \in \mathrm{T}_{2}$. then taking the v_{j} and each of its $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}=\right)$ neighbors $\in \mathrm{T}_{2}$ as hub, respectively; compute each $\chi\left(\mathrm{Q}_{h}-\right)$, so long as $\chi\left(\mathrm{Q}_{h}-\right)=3$ (i.e. $\mathrm{Q}_{h}-\mathrm{is}$ an odd cycle) appears, right away, partition the v_{h} into r_{1}; no matter $\chi\left(\mathrm{Q}_{\mathrm{h}}=\right)$ and $\chi\left(\mathrm{Q}_{\mathrm{h}}\right.$ \equiv) are maximum or not, $\mathrm{G}=\mathrm{Qr}_{1}$, the got $\mathrm{r}_{1}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{h}}\right\}$ is good.

If all $\chi\left(\mathrm{Q}_{\mathrm{h}}-\right)<3$, then gradually partition $\mathrm{v}_{\mathrm{h}} \in \mathrm{T}_{2}$ whose $\chi\left(\mathrm{Q}_{\mathrm{h}}-\right)$ from 2 to 1 into r_{1}, until $\mathrm{Qr}_{1}=\mathrm{G}$. The got r_{1} must be good.

We show that if one of 3 conditions does not meet, got the first independent set r_{1} may be bad; but 3 conditions all meet, got the r_{1} must be good by examples.
if C 1 does not meet, i.e. first regard v_{i} of $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)<\Delta$ (G) as the start and make up T_{k}, and partition it to r_{1}, got the first independent set r_{1} may be bad. See the example above of W_{10}.

Again, if the $C 1$ does not satisfy, especially, if a vertex v_{i} whose $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right) \equiv 1(\bmod 3)$ is an odd number (such as $7,13,19 \ldots$) and $<\Delta(\mathrm{G})$, is regarded as starting vertex and make up T_{k}, and first is partitioned the v_{i} into r_{1} (see Fig.1). When each of vertices $\in T_{2}$ is regarded respectively as the hub, and each $\chi\left(\mathrm{Q}_{\mathrm{h}}\right.$ -) equal to $=2$; and there is a vertex $\mathrm{v}_{\mathrm{s}} \in \mathrm{T}_{2}$ of degree $\Delta(\mathrm{G})$, without loss of generality, suppose that $\mathrm{d}\left(\mathrm{v}_{\mathrm{s}}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)+1$. And the v_{s} is adjacent to all vertices on T_{2}, see Fig.1. If again partition v_{s} into $r_{1}, G=Q r_{1}$, then got the $r_{1}=\left\{v_{i}, v_{s}\right\}$ is bad(see Fig.1-1) !

Fig. $1 \mathrm{G} \mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \Delta(\mathrm{G})$

Fig.1-1 $r_{1}=\left\{v_{i}, v_{s}\right\}, H=G-r_{1}, \chi(H)=4$

Because in this case the $\mathrm{Q}_{\mathrm{i}} \cap \mathrm{Q}_{\mathrm{s}}$ is an edge in $\mathrm{H}=\mathrm{G}-\mathrm{r}_{1}$, if the edge is decomposed from H which is decomposed into an edge and an outer planar graph ω (see Fig.1-1), although they are all 3 -colorable; but with coloring the ω, the two end-vertices of the edge must be colored in the same color (see Fig.1-1, v_{1} and v_{7}), so one of them must be colored with the fourth color that $\chi(H)=4$. So the r_{1} is bad.

But, in this case if $\mathrm{C} 1, \mathrm{C} 2$ and C 3 are all satisfied, i.e. regard a vertex of degree $\Delta(G)$ as starting vertex make up T_{k}, and first partition it into r_{1}, then partition such vertices $\in T_{2}$ into r_{1} that
each hub's $\chi\left(\mathrm{Q}_{\mathrm{h}^{-}}\right)$is the maximum, until $\mathrm{G}=\mathrm{Qr}_{1}$, the r_{1} must be good.

Such as, in Fig. 1 regard v_{s} of degree $\Delta(G)$ as the start and make up T_{k}, and first partition it into r_{1}, then partition $\mathrm{v}_{2}, \mathrm{v}_{6} \in$ T_{2} into r_{1} (since each of them is regarded respectively as the hub, the $\mathrm{d}\left(\mathrm{v}_{2-}\right)$ and $\mathrm{d}\left(\mathrm{v}_{6^{-}}\right)=3 ; \chi\left(\mathrm{Q}_{2^{-}}\right)$and $\chi\left(\mathrm{Q}_{6^{-}}\right)=2$,they are all the maximum in vertices $\in \mathrm{T}_{2}$); then move vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{3}, \mathrm{v}_{5} \in \mathrm{~T}_{2}$ into $\mathrm{T}_{1,2}$ (since they are adjacent to v_{2} or v_{6}), at this time, only a vertex v_{4} remains on T_{2}, so partition $v_{4} \in T_{2}$ to $r_{1}, G=\mathrm{Qr}_{1}$, got the $r_{1}=\left\{\mathrm{v}_{2}, \mathrm{v}_{6}, \mathrm{v}_{4}, \mathrm{v}_{\mathrm{s}}\right\}$ is good.

Because in $\mathrm{H}=\mathrm{G}-\mathrm{r}_{1}$ there are vertices of degree 2(in Fig.1-2 the vertices u and w of degree 2), it suffices to split each of them into two vertices so that the H become a outer planar graph with suspended vertices u, w, and its $\chi(\mathrm{H})=3$,see Fig.1-2.

Fig. $1-2 \mathrm{H}=\mathrm{G}-\mathrm{r}_{1}, \chi(\mathrm{H})=3$

In addition, if 3 conditions all satisfy, i.e. regard a v_{i} of degree $\Delta(\mathrm{G}) \equiv 1(\bmod 3)$ being odd as the start and make up T_{k}, and first partition it into r_{1}, even if there is another vertex $v_{j} \in$ T_{2} of degree $\Delta(G) \equiv 1(\bmod 3)$ to be odd ,see Fig. 2 the vertices v_{i} and v_{j} of degree $\Delta(G)$,again partition v_{j} and its non-adjacent vertices $\in T_{2}$ into $r_{1}, G=\mathrm{Qr}_{1}$, got the $r_{1}=\left(v_{i}, v_{j}\right)$ is also good.

Fig. 2 G

Because v_{j} is adjacent to vertices $\in \mathrm{T}_{1}$ of degree 1 , it means that v_{j} is adjacent to two vertices $\in T_{1}$, so it is adjacent to at most $\Delta(\mathrm{G})-2$ vertices $\in \mathrm{T}_{2}$, that is, in T_{2} there exist at lest two vertices which can partition into r_{1}, then partition those vertices into $r_{1}, G=Q r_{1}$, got the r_{1} is good, see Fig. 2 and 2-1. got the $r_{1}=\left\{v_{i}, v_{j}, x\right\}$ is good.

Fig.2-1

Since the $\mathrm{Qr}_{1} \cap \mathrm{Q}_{\mathrm{j}}$ is two edges in H (in Fig.2-1 $\mathrm{e}_{1,7}$ and $\mathrm{e}_{4,5}$). Split such two edges from H that H become two outer planar graphs and two edges. And 4 vertices connected by the two edges belong respectively to two distinct outer planar graphs(in Fig.2-1 vertices v_{1} and v_{4} belong to an outer planar, vertices v_{5} and v_{7} belong to the other), even if the two vertices of degree 2 in an outer planar graph must be colored with the same color(say, in Fig.2-1 the vertices v_{1} and v_{4}), the $\mathrm{H}=\mathrm{G}-\mathrm{r}_{1}$ is also 3-colorable.It is viable that with coloring two outer planar graphs, need merely to color two pairs vertices in distinct outer planar graphs with different colors, i.e. the endpoints of the two edges with different colors .

Why do we have C2?

Two reasons: first, from T_{2} layer its subsequent segments $\mathrm{T}_{2, \mathrm{x}}, 2<\mathrm{x} \leq \mathrm{e}$, select vertices who satisfy C 2 , and to divide
them into r_{1}, until $G=\mathrm{Qr}_{1}$; so that vertices that are not adjacent to the starting point are not missed;

The other is that vertices of $k \geq 3$ layers are divided into r_{1}, may be in large probability, such that $\mathrm{G} \neq \mathrm{Qr}_{1}$!and got the r_{1} must be bad.

The reasons that C3 needs be satisfied are shown follows below:.

V. FOR EXAMPLE

Finally, we show in detail the entire procedure to PROVE THE 4CT BY PARTITIONING 25 VERTICES OF A planar G in Fig.A into four independent sets. By which in 1890 P. J. Heawood overthrown the proof of the 4CT by A. B. Kempe in 1879.

Fig. A. G on 25 vertices
show: 1.1 First compute each vertex degree in Fig. A. G. Vertices of degree $\Delta(\mathrm{G})=7$ are: $\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{12}, \mathrm{v}_{23}$; vertices of degree 6 are: $\mathrm{v}_{2}, \mathrm{v}_{7}, \mathrm{v}_{17}$, the remains vertices of degree 5 .
1.2. Select arbitrarily a vertex v_{i} whose $d\left(v_{i}\right)=\Delta(G)=7$ of G in Fig. A, like v_{3}, regard v_{3} as the starting make up tier graph T_{k} (see Fig.A-1), and partition it into r_{1}.

Fig.A-1 the T_{k} taking v_{3} as the start
1.3. For manual analysis convenience, T_{k} in Figure $\mathrm{A}-1$ is shown in Figure A-2.

Fig.A-2 the T_{k}
By observing, there is no vertex of $d\left(v_{j}=\right)=0$.vertices of $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}^{-}}\right)=2$, its $\chi\left(\mathrm{Q}_{\mathrm{j}^{-}}\right)=2$, are $\mathrm{v}_{7}, \mathrm{v}_{10}, \mathrm{v}_{23}, \mathrm{v}_{14}, \mathrm{v}_{15}, \mathrm{v}_{16}$. So, first, partition v_{7} into r_{1}, move its adjacent vertices $\mathrm{v}_{8}, \mathrm{v}_{18}, \mathrm{v}_{23} \in \mathrm{~T}_{2}$ to $\mathrm{T}_{1,2} ;$ move $\mathrm{v}_{19} \in \mathrm{~T}_{3}$ to $\mathrm{T}_{1,3}$; then partition $\mathrm{v}_{10}, \mathrm{v}_{14}, \mathrm{v}_{16}$ into r_{1}. move its adjacent vertices $\mathrm{v}_{9}, \mathrm{v}_{11} ; \mathrm{v}_{15}, \mathrm{v}_{24} ; \mathrm{v}_{17} \in \mathrm{~T}_{2}$ to $\mathrm{T}_{1,2}$; move $\mathrm{v}_{21}, \mathrm{v}_{25} \in \mathrm{~T}_{3}$ to $\mathrm{T}_{1,3} ;$ move $\mathrm{v}_{20}, \mathrm{v}_{22} \in \mathrm{~T}_{3}$ (they adjacent to the vertices on $\mathrm{T}_{1,2}$) to $\mathrm{T}_{2,3}$.
1.4.on $\mathrm{T}_{2,3}$ vertices v_{20} and v_{22} of $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}^{-}}\right)=2$, its $\chi\left(\mathrm{Q}_{\mathrm{j}^{-}}\right)=2$; so partition one of both, such as v_{22} into r_{1},at here $G=\mathrm{Qr}_{1}$, got $r_{1}=\left\{v_{3}, v_{7}, v_{10}, v_{14}, v_{16}, v_{22}\right\}$ and $H=G-r_{1}$.see Fig. B.

Fig. B. $\mathrm{H}=\mathrm{G}-\mathrm{r}_{1}$
2.1 First compute each vertex degree of G in Fig.B. v_{12} of degree $\Delta(H)=6, v_{17}$ of degree 5,the vertices of degree 4 are $\mathrm{v}_{1}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{18}, \mathrm{v}_{20}, \mathrm{v}_{23}, \mathrm{v}_{24}$, the remaining vertices $\mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{15}, \mathrm{v}_{13}, \mathrm{v}_{25}, \mathrm{v}_{11}, \mathrm{v}_{19}, \mathrm{v}_{21}, \mathrm{v}_{2}$ of degree 3 .
2.2 Regard v_{12} of degree $\Delta(\mathrm{H})=6$ as the starting vertex make up T_{k} (see Fig.B-1.). And partition it to r_{2}.

Fig.B-1. T_{k} taking v_{12} as the staring
2.3 vertices of $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}=\right)=0$ are $\mathrm{v}_{11}, \mathrm{v}_{19}, \mathrm{v}_{25}, \mathrm{v}_{4}$, so simply partition them into r_{2},then move their adjacent vertices $\mathrm{v}_{20}, \mathrm{v}_{21}, \mathrm{v}_{8}$ and $\mathrm{v}_{5}, \mathrm{v}_{15} \in \mathrm{~T}_{3}$ to $\mathrm{T}_{1,3}$. Since v_{1} of $\mathrm{d}\left(\mathrm{v}_{1^{-}}\right)=1$, its $\chi\left(\mathrm{Q}_{1}\right.$ $-)=1$, but v_{6} of $d\left(v_{6^{-}}\right)=2$, its $\chi\left(Q_{6^{-}}\right)=2$. so partition the v_{6} into r_{2},then move its adjacent vertices v_{1} to $T_{1,2}$, move $v_{9} \in T_{3}$ to $\mathrm{T}_{2,3}$.
2.4 since there is only vertex v_{9} on $\mathrm{T}_{2,3}$, so, partition it into r_{2}, at here $\mathrm{H}=\mathrm{Qr}_{2}$, so we got that $\mathrm{r}_{2}=\left\{\mathrm{v}_{12}, \mathrm{v}_{6}, \mathrm{v}_{4}, \mathrm{v}_{11}, \mathrm{v}_{25}, \mathrm{v}_{19}, \mathrm{v}_{9}\right\}$ and $\mathrm{H}^{\prime}=\mathrm{H}-\mathrm{r}_{2}$.
H^{\prime} is a bipartite with an $\mathrm{e}=\left(\mathrm{v}_{5}, \mathrm{v}_{15}\right)$ and 2 paths: $P_{1}=\left\{\mathrm{v}_{2}, \mathrm{v}_{1}, \mathrm{v}_{8}, \mathrm{v}_{20}, \mathrm{v}_{21}\right\}, P_{2}=\left\{\mathrm{v}_{13}, \mathrm{v}_{24}, \mathrm{v}_{17}, \mathrm{v}_{18}, \mathrm{v}_{23}\right\}$.
3. it is easy that partition $\mathrm{V}\left(\mathrm{H}^{\prime}\right)$ into 2 independent sets: $\mathrm{r}_{3}=\left\{\mathrm{v}_{23}, \mathrm{v}_{17}, \mathrm{v}_{13}, \mathrm{v}_{1}, \mathrm{v}_{20}, \mathrm{v}_{5}\right\}$ and
$r_{4}=\left\{v_{18}, v_{24}, v_{2}, v_{8}, v_{21}, v_{15}\right\}$.

From this example one can see that using the partitioning independent sets way can partition $V(G)$ of a planar graph into 4 independent sets by one time operation. It not only the $4 C T$, but also can get the colors at the every vertex of the graph.

References

[1] Appel K. And Haken W., Every Planer Map is Four Colorable, Cotemporary Mathematics, 98, Amer. Mathematical Society, 1989.
[2] Appel K. And Haken W., Every planar map is four colorable. Part I. Discharging, Illinois
J. Math. 21 (1977), 429-490.
[3] Appel K., Haken W. and Koch J., Every planar map is four colorable. Part II.

Reducibility, Illinois J. Math. 21 (1977), 491-567
[4] Bondy J.A. and Murty U.S.R., Graph Theory with Applications, The Macmillan Press LTD, 1976, p159-163
[5] Cook S.A., The Complexity of Theorem Proving Procedure, Proc. srd ACM. Symp. on Theory of Computer, New York,1971,pp.151-158
[6] Deo N., Graph Theory with Applications to Engineering and Computer Science, Prentice - Hall, Inc., 1974. P272
[7] Heawood P.J., Map-color theorem, J.Math. Oxford Ser. 24322 338(1890)
[8]Karp, R.M., Redueibility among Combinatorial Problems, in Complexity of Computor Computations(R.E. Miller, J.W. Thateher ed)Plenum Press ,New York,pp.85-103,1972
[9] Kempe A.B., On the geographical problem of the four colors, mer. J. Math. 2 (1879), 183-200
[10] Kuratowski, C., Sur le Problems des Courbes Gauehesen To pologie, Fund. Math. Vol. 15, 1930, pp217-283
[11] Ore O., The Four Color Problem, Academic press, New York,1967, p1
[12] Robertson N., Sanders D. etc., The four color theorem, journal of combinatorial theory, Series B 70, 2-44 (1997)
[13] Tait P.G. (1880).,Remarks on coloring of maps. Proc .Royal Soc. Edinburgh Ser.A.,10,729
[14] Tutte W.T., On Hamiltonian circuits, J. London Math,Soc.,21 98-101,(1946)
[15] Shu-Park Chan., Network Graph Theory and Its Engineering Applications., Science Press, Beijing, 1982
[16] Shuhe Wang., Graph Theory., Science Press, Beijing, 2009, p97-98

