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Abstract. Accuracy of scientific and technological information (STI)
retrieval is on probation while its exploration expands: continuous addi-
tions of contents, comments and data structures create rich but uneasy
conditions for selections of items by users of the same keywords. More-
over, users of information are confronted to a “hidden face” of searchable
space: their own choices that could be recorded from their selections on
lists of proposed answers to a query and could help mapping their navi-
gation on recorded “routes” of search, are not open to consultation, and
remain either unveiled or even unavailable. At best, users benefit from
useful recommendations but, as data on their own preferences and choices
is not shared, networked information for global navigation remains fuzzy.
In this position paper, our standpoint is that search of scientific informa-
tion generates data on various needs and users, and search would then
take benefit from an efficient re-use of users generated contents, in ad-
dition to any current metrics. First, with examples including our own
data, we suggest that search practices in STI domains could be designed
as an addition of sub-communities of users, sharing interest for their own
selections of items. Second, we propose a data structure modeling inter-
action between those sub-communities and networking routes between
them, in order to give a common room to “searchability” of a keyword
domain. We thus propose a design of alternative paths to answers, which
could better fit search architecture with observed needs for information
retrieval in scientific research.

Keywords: knowledge management · recommender systems · query and key-
word modeling · complex systems applications · information retrieval

1 Introduction

The research agenda [19] of National Academies of Sciences of the United States
observed recently that digital scientific and technical information (STI) is a
“complex system” that has to improve its architecture and its accuracy. In this
context, that position paper raises questions about optimization of “searchabil-
ity” of STI, which refers to efficient access to relevant information by users.

“Searchable” is “capable of being computationally searched”, within an inde-
pendent community of search, open to serendipity [8], navigating in an unknown
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space: “Web search is governed by a unified hidden space, and each involved
element such as query and URL has its inborn position” [4]. STI community of
search ask for accuracy of delivered items, as highlighted by reviews of “obser-
vational” approaches to information retrieval [12], and performs a rich semantic
search [1]. In this community, “user’s initial search aims and intentions evolve
as new information is encountered” [20].

Main issue is of this position paper is to observe that users of STI are build-
ing together a community of information retrieval, and that this community
remains confronted to a “hidden face” of its common searchable space; available
output of search never proposes user’s generated contents mapping communities
of users of selected contents issued from the same keyword. Those data, which
are not open to consultation, remain either unveiled or even unavailable. Lack
of those data affects specifically search in STI: in uses for scientific research,
a simple keyword could give access to a very wide range of structured discus-
sions and interpretations, each delivered with their own specific “version” and
“vocabulary”. Without the help of data identifying specific sub-communities,
search could appear as a lonely walk in a forest of fuzzy homonyms.

However, current research hardly study that situation, as only “few ap-
proaches take advantage from searches performed previously by users” [13].
Fortunately, recent approaches on interactive information retrieval and user’s
behavior highlights that search in STI covers a large variety of distinct ways and
needs [15].

From that new strategic standpoint, in a nutshell, this article tackles the
following research question: Why and How could STI search users could benefit
from each other’s search sessions?

Our main contribution is, first, to characterize STI search communities, with
examples including our own data, illustrating variety of search needs and be-
haviors characteristics, existing under cover of a common queryword. Second,
with help of a bi-partite graph developed for information retrieval, we build a
modeling of groups of users performing search sessions, and formalize their links.

Result is a data structure mapping all recordable categories of sub-communities
of search (users-items groups), that, altogether, shape the global search process
surrounding a keyword. A “compass” helps orienting navigation, and create con-
ditions for complete “searchability” of a queryword, with modeled alternative
paths to answers. In that way, we propose a search architecture devoted to fit
with observed needs of information retrieval in STI contexts.

2 Part 1. Communities of Users in STI Search

STI search strategies depends on community behaviors of users that could be
identified from structured “relations between the topics and the use of docu-
ments” [5], and could develop various alternative strategies of search and uses [9].

To characterize communities of users and items in STI searches, we identify
two levels of community building: one level is the one of behaviors that could
be shared by all users in any STI search session; second level is STI uses which
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are specific to distinct scientific communities. Both levels seem to interact in
community building of STI search.

2.1 STI Uses of Specific Communities: Differences Between
Practices

Differences in STI practices is sourcing differences of search attitudes. We take
an example from data on STI practices extracted from a survey of research data
management achieved at the CNRS in 2014 [18]. Results are part of a nationwide
survey on scientific information and documentation including 432 directors of
French public research laboratories.

With an high reponse rate (30%) this survey was based on 91 questions
send to 1250 directors of laboratories. Data reveals significant differences in STI
management in any fields of production and uses of scientific information. To
give an example, adoption of Research Data Management ( RDM), “ we can
distinguish three groups: (1) laboratories from nuclear and particle physics and
from social sciences and humanities appear globally more advanced regarding
RDM than other disciplines; (2) laboratories from the three domains ecology
and environment, informatics and earth sciences and astronomy have dedicated
resources and make their data available; (3) laboratories in the field of physics
appear aware of the challenge”. Regarding to OA, results reveal also significant
differences of management of STI practices: those results have all direct impacts
on the ways and purposes of search activities and on searched items.

The same kind of result is supplied by an other national survey ( COPIST):
here the CNRS examined STI practices and management at national scale for
all research organisations. Results include answers of 106 research and higher
education institutions and shows, altogether, a strong will to share their pracices
and large differences between current organisation. Detailed results on search
tools and bibliometrics are available1 and shows significant differences expressed
by users on their uses and their will to share their uses and their documents2.

2.2 Behaviors of STI Search: Variety of Needs for Search and
Search Results

As a whole, as researchers are interested in new coming ideas and emerging
results, a “cold start” biased answer to a query, is a permanent threat: a new
article’s content has, by definition, not yet be produced elsewhere. Search is
innovation-oriented, as it tries to find out items which could be identified al-
together, as “typical” and “original”: a versatile answer to a query could thus
sometimes be estimated as fruitful.

The ultimately searched answer could be found on unpredictable instrumen-
tal bases:3, and “multiple search strategies” have been experienced whith STI

1 http://www.cnrs.fr/dist/z-outils/documents/copist-premiers-resultats.pdf, p. 55
and further

2 Ibid, pp. 11 and 19
3 P. Feyerabend, Contre la méthode, Paris Seuil 1975
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context [7]. The same conclusion exists for search tactics: 29 separate ways for
search have been decribed [2] and reference chasing remains an “open problem
intersecting bibliometrics and information retrieval” [6]. It is then clear that
“search is not research” and has its own separate ways wich are numerous and
variable [10]. On their side researchers, as users of STI search tools, express a
stress of information overload [11], while reviews of literature on recommender
systems [21], shows that global performance is questionable. As remarked al-
ready, systemic approaches to search are hardly developed on “collaborative query
management system” or “search and browse interaction” [16], which could be
developed, from analyses of parsing and logs on publisher’s knowledge bases
(PKB) and from systematic querying of search logs.

At least, variability of behaviors, of practices, of reception of search are in-
teracting an create altogether, the need of a common data structure.

3 Part 2: Modeling a “Keyword Eco-System” Linking
Search Behaviors

This second part proposes modeling a kind of an “ecosystem” for a keyword:
it describes sub-groups of search and the routes that are open to navigation
between them, in “interactive information retrieval process” [7], while studying
evolutions of search needs with evolutions of knowledge [15].

The data content of any switched user-item group, informs on “how re-
searchers are searching” in a sub-community, as each “cluster of search” of
user-items shared information could differ at any steps of discovery processes
and change from one scientific sub-community to the others, or with advance-
ment of scientific ideas from one standpoint, as it is the case in great research
infrastructures using the same kind of approach for a large variety of experi-
ments. Main goal is to “re-rank results from the user’s intent” by formalizing
an analyzed interaction between queries and results retrieved, and “lower the
cognitive burden” of search [22].

Graphs are since long mobilized fo a large variety of tasks related to knowl-
edge representation. Bi-partite graph characteristics [17] are exploited in this ar-
ticle, with a typical crown-graph figure, familiar to neural networks approaches,
but used here in a novel direction, suggested by information analysis [14] allowed
by their typical geometry.

3.1 Definition 1: “Route of Querying”

Any user’s route is figured by a path of vertex, built on three parameters of
data routinely recorded for any query on a given keyword: a number of retrieved
documents (or URL), b number of users having selected those documents, and
c index of correlation intensity of the link between users and documents. This
last measure expresses frequency and dynamics of change of matching between
each recorded number of users and number of documents, observed in queries
belonging to the same group.
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Let us consider that our goal is to record “routes of querying” for a given
keyword, and that those routes, which of course could differ, are designed to be
compared [3].

Let us then write:
Qn = f(Nn,Kn)

where Qn is a number of queries produced by users of a search engine. Let us
also consider that for each query Q, we can record a number of users N and
a number of items (URL, documents, articles) K recording the same search on
a keyword, at the same time among the same corpus of items: we will call this
sub-community a community of users of the same “route” of querying.

For any distinct route, we could express the limits of its system of possible
queries [13] for a given keyword. Let us pose two limits of substitution between
“users” and “items” for any query choice: one limit is where a few users ask
for many items and one other limit is when many users will consult a very few
items. We then could write these limits of possible substitution between users
and items, N and K:

Q1 = f(Nmax,Kmin
or Q1 = f(Nmin,Kmax

Or, in a general form:
[max, min
Qn = fN,K
[max, min

3.2 Definition 2: Variation of Queries’ Content

Let us now write α the coefficient of increase of N and β the coefficient of
increase of K when Q varies by one unit, that is to say when a new additional
query for a given keyword or to a new period of time of the same query is
recorded (for instance: check of users interested in items of a domain before and
after publication of a famous article). Those coefficients of increase will allow
to measure “stability” or instability of the function, according to variations of
coefficients of increase or decrease of quantities n and k between two queries of
the same route. We will then record whether or not, users and/or items have
varied in a correlative way, between queries Q1 and Q2.

We assume here that the data structure of any query could vary from one
to the other, and that this variation could be expressed by an observable and
recordable index of change in the relation between number of users and number
of items.

We could then write:

α β
Qn = f [nmax,min kmax,min

Let us note that value “min” or “max” of n and k give data on the measured
quantity of those variables to “produce” Q, but let us note also that, from one
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unit Q to the other (from one query to the other) the coefficient of increase
or of decrease between value “min” or “max” of n and k, gives an additional
data on quantity of those variables in production of Q. This additional data
gives a value of “stability” or “instability” of the process of querying, which is a
dynamic index of behavior. For any unit n and k of production of Q, variation
of quantities measured by α and β is a critical information about Q.

3.3 Definition 3: Dynamic Networks of Communities (Users and
Items)

We know in fact that with regard to the slope of a set of queries, with also the
mix of user and items that it measures, the slope tends to be a stable one when
α+ β 6 1 or (α+ β)→ 1: in that last case, transition between Qn−1 and Qn is
steady because, as measured by α + β, variation of (n + k) is still of the same
order as the variation of Q. There is no significant increase or decrease in the
number of units (users and items) recorded between those two or more successive
queries.

Conversely, there could be also an alternative situation in which (α+β)±∞
that is to say that for each variation of one unit of Q, we have an unstable
variation of characteristics of Q, indicated by an unstable variation of (α + β),
which will increase or decrease abruptly: relations between users and items will
change strongly. In that last case, between units Qn−1 and Qn, the variation of
the quantities x and y would be unstable, which means that the query’s couple
of user and item will change significantly. This last situation could indicate that
a threshold is reached in the effectiveness of the query.

In fact, in that last case, why continuing to allocate (n, k) to Q if (α + β)
tends toward minus infinity −∞? In that last case in fact, combination (n, k)
becomes over “performing” which is questionable when it’s time to decide a new
query Qn+1 on the same characteristics of n and k. With such characteristics
of a query, it could be more interesting to change n or k than to reproduce the
same quantities in next query. More generally, for transition between Qn−1 and
Qn, choice of stability in n and k could be “justified” if we observe that stability
prevails with (α + β) tends to 1 and “questionable” when instability prevails
with α + β tends to ± ∞.

On long series of queries, there will be “learning” phenomena which will
give sense to expression of limits to variation of the purposed investigation on a
long set of queries covering large fields. In that perspective, it is possible to fix
arbitrary limits of variations to a given set of queries, with the “best” and the
“worse”, like for instance:

Best = Nmax, (α+ β)→ 1,Kβ
min

And
Worst = Nmin, (α+ β)±∞,Kβ

max

If we have selected those two opposite limits to queries belonging to an STI
data search, we could write our limits with the following framework:
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“Best” “Worst”

Nmax Nmin

(α+ β)→ 1 (α+ β)±∞
β

Kmin

β
Kmax

3.4 Definition 4: “Compass” for Positioning of Communities Routes

On the basis of preceeding expression, the two triplets could give shape to a
formal graph-based presentation of paths existing between those two limits, and
having the characteristic to position all the non contradictory solutions exist-
ing between those two limits with three parameters. The following bi-partite
Hamiltonian graph with connected nodes, offers that representation.

•a

•b

•c

• d

• e

• f

α
Nmax

(α + β)→ 1

β
Kmin

α
Nmin

(α + β)→ ±∞

β
Kmax

Fig. 1. Compass GRAPHYP fixing nodes and “directions” of routes of search

Figure 1 shows a complete representation of all the typical intermediary situ-
ation between our two limits, which gives us a tool for classification of observed
queries Q in series of searches on a given keyword, according to users and items
choices. Structured by GRAPHYP, this set of query search typical position has
two main characteristics, which will be detailed below, with the help of Figure 2.

NODE (Query) TYPICAL DIRECTION OF SEARCH (Users, Items)

a Nα max, Kβ max, (α + β) → ± ∞
b Nα min, Kβ max, (α + β) → 1
c Nα min, Kβ min, (α + β) → ± ∞
d Nα min, Kβ min, (α + β) → 1
e Nα max, Kβ min, (α + β) → ± ∞,
f Nα max, Kβ max, (α + β) → 1

Fig. 2.
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As observed in Figure 2, GRAPHYP expresses the whole ensemble of non-
contradictory positions that structured routes of search could occupy during any
search on a given keyword in a data base. This has consequences, defined by
three characteristics on operating rules of GRAPHYP.

Characteristic 1: GRAPHYP functions like a compass as it supplies all
possible directions, and “locates” the recorded one of a query Q. This set of
possible “positions” during search gives an overview of the proposed modeling
of the searchable space of STI data base.

Characteristic 2: The second feature of GRAPHYP modeling of search
is that it allows recording and comparisons of “behaviors” of querying search.
It allows users to learn from their past recorded behavior as well as from the
recording of other users of the same base, if data is made accessible to all users.

In those two ways, the “compass” has the functionality to “orient” and “lo-
cate” search attitudes as being recorded as individual dynamic behaviors.

Characteristic 3: GRAPHYP allows also expressing, by summation of in-
dividual attitudes, the global trend of a community of users according to
characteristics of their uses.

One could at least select arbitrarily one node, between a and e, to fix there an
optimum point, and measure the distance of a set of observed routes toward
that selected node. Mapping of routes of STI search becomes possible, like in air
or sea routes. Cooperative or conflicting routes could be identified by the data
structure of GRAPHYP.

3.5 Navigation Rule 1: A “Progressive Learning System” (PLS)

GRAPHYP creates opportunity to reach output (STI data search results) while
identifying alternative ways to reach it for a given input (query). In that way,
learning profile of users, the way they access to items and which items could be
thus compared and located locally and globally. GRAPHYP could be used as a
kind of a browser for uses of a STI community.

Like any compass, GRAPHYPER secures navigation’s parameters at any
scale (see infra), owing to its built-in characteristics of information processing
and transfer, to its functions of positioning previously recorded routes, and to
its potential of recording and recommending paths of navigation. In that way
GRAPHYP belongs to learning systems combining intuitive choices and auto-
matic path definition at any operational scale.

Another notion, interaction of routes, could be found in the specific context
of “mutual reachability” of nodes is one central issue of this part of this article.

From this starting point, with the processing resources supplied by GRA-
PHYP, one could describe various functionality of forecast.

3.6 Navigation Rule 2: Fixing Affinity of Communitie’s Routes

Let us take all nodes (a, b, c, d, e, f) as possible starting points for definitions
of “goals” of routes of search at time T . Any other node could be designed as
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“objectives” to be reached on a route built from the starting point of a given
node. We could then record “search profiles” corresponding to circulation from
one node to the other on a recorded route.

From design of Figure 3 above, one could observe that a continuous circula-
tion from node to node, let appear a common edge in all the pairs corresponding
to any node: node a has a common edge with node e, b has a common edge with
f , etc. From this standpoint, we could remark that it is continuously possible
to have a circular “travel” inside GRAPHYP, from edge to edge, while coming
back to starting node by the way of the complementary edge of that node.

a

b

c

d

e

f

1 4

25

3 6

Fig. 3. Recording and Positioning of Nodes on Routes of Data Search in GRAPHYP

3.7 Navigation Rule 3: Mapping New Routes between Communities

For instance, as shown on Figure 3, node a could allow an exploration of GRA-
PHYP’s other nodes which will represent six steps on one way, designed here.
An other six-step way could be practiced from the same node a starting from
its other edge. There are at least 12 possible steps which could be explored from
any node of that eulerian circuit, and GRAPHYP offers then 72 possibilities
of identification of characteristic “search profile” which could be modeled and
recorded in an STI data base.

In that ways could be identified numerous characterized positions of explo-
ration of a data base, and this identification of conditions of navigation: it offers
users and their community precise records of explored and unexplored ways to
discovery.

One could remark that those explorations of “possible” routes, could be man-
aged altogether with any classical probabilist approach, with which the possi-
bilist approach could combine in any purposed uses.
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3.8 Navigation Rule 4: Fixing a Search Profile

We could also apply the design of Figure 3 to propose another significant feature
of traceability of the searchable space of STI, which is recording search profiles,
which allows to “read” characteristic steps of a route of navigation in a data
base. This result could be produced when projecting on x, y axes as shown on
Figure 4.

b

a

e

a

c

c

d

d

e

f

f

f

d

e

a

c

c

b

a

c

b

c

a

b

c

ny - 2

c

b

b

c

a

b

a

f

f f f

f

b

d d d

e

c

e
eeny-2

nx

nx + 3

nx + 5

Fig. 4. Recording and positioning of nodes on routes of data search in graphyp

Based on the design sketched by Figure 4, one could, for any query applied
to this grid of structured data, (in our example: nx + 3 and nx + 5, ny2) it
becomes feasible to identify the origin, and so the “kinship” of any position
located on GRAPHYP recorded data base. One could then evaluate all diverging
or converging solution surrounding any observed node located on the grid. For
any observed network, there exists an “induced network” which applies the
property of “mutual reachability” of connected nodes in a network.

Mapping of routes of documentation using those ideas, should help con-
fronting strategies of discovery.

3.9 Navigation Rule 5: Mapping Distances Between Communities

Exploration of neighbor routes is an important feature of the searchable space,
as it informs on its depth and treewidth and, as far as we know, there are hardly
no developments in mapping of this aspect of searchable space of STI.
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Reduction of uncertainty on size and direction of future routes to discovery
could benefit from representations of ways which have been followed and/or
abandoned (Figure 4). On that base, exploration of neighbor coming routes
could benefit from tree couples of edges which shapes this node:

a = (e, f) b = (d, f) c = (d, e) d = (b, c)
c = (a, c) f = (a, b)

We face here the grid of nodes which are linked by a specified common edge,
resulting from the position of each node on the grid. We could then propose
the mapping of a grid of correlated neighbor routes. The grid observed on Fig-
ure 5, structured whith same nodes as in grid of Figure 4, gives opportunity of
projection that could be studied in a further works.

b

d

c

e

e

b

f

b

d

f

a

f

e

Fig. 5. Grid of Correlated Neighbor Routes

3.10 Navigation Rule 6: Fractal Scalability of Searchable Space

A final property of the bipartite graph that gave birth to GRAPHYP is self-
similarity which is designed on the following Figure 6.

The graph with nodes A,B, C. . . .is built on a larger dimension of the pre-
ceeding one and the addition of those “compasses” on a self-similar basis, allows
building of architectures of information of the same type of information process-
ing at any scale, and the application to the operating frame of GRAPHYP, of
basic operation of addition, subtraction, multiplication, division. Scalability of
the system could thus be established as a final feature of traceability of that
system. We began already further works on that characteristic of the data struc-
ture.
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Fig. 6. Self Similarity of the Bipartite Graph Graphyp
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