
EasyChair Preprint
№ 1964

Solution of Partial Differential Equations on
Radial Basis Functions Networks

Mohie Alqezweeni and Vladimir Gorbachenko

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 16, 2019

Solution of partial differential equations on radial basis

functions networks

Mohie M. Alqezweeni[0000-0003-3036-8992] and Vladimir I. Gorbachenko[0000-0002-1012-8855]

 Penza State University, 40, Krasnaya street, 440026 Penza, Russia
mohieit@mail.ru, gorvi@mail.ru

Abstract. The solution of boundary value problems described by partial differ-

ential equations on networks of radial basis functions is considered. An analysis

of gradient learning algorithms for radial basis functions networks showed that

the widely used first-order method, the gradient descent method, does not pro-

vide a high learning speed and solution accuracy. The fastest method of the

second order - the trust region method is very complex. A learning algorithm

based on the Levenberg-Marquardt method is proposed. The proposed algo-

rithm, with a simpler implementation, showed comparable results in compari-

son with the trust region method.

Keywords: partial differential equations, radial basis functions networks, neu-

ral network learning, Levenberg-Marquardt method.

1 Introduction

In the modern industry, Digital Twin is widely used [1–2]. A digital twin is a dynamic

virtual model of a system, process or service. A digital double is constantly learning

and updating its parameters, receiving information from many sensors, correctly rep-

resents the state of a physical object. During learning, it uses current data from sen-

sors, from control devices, from the external environment. Digital twins allows real-

time monitoring of systems and processes and timely analysis of data to prevent prob-

lems before they occur, schedule preventative maintenance, reduce downtime, open

up new business opportunities and plan future updates and new developments.

Digital doubles of objects with distributed parameters are mathematically boundary

value problems for partial differential equations (PDE) [3]. In most cases, boundary

value problems are solved by numerical methods, since analytical solutions exist only

for a very limited range of problems. For the numerical solution of boundary value

problems for PDE, the methods of finite differences and finite elements are widely

used [4]. These methods require the construction of computational grids. Generating

meshes for two and three-dimensional areas of complex configuration is a complex

and time-consuming task. The complexity of grid formation for real problems often

exceeds the complexity of solving a system of difference equations [5]. Large compu-

tational costs lead to the use of low-order approximations, which provide continuous

approximation of the solution on the network, but not its partial derivatives. Modeling

https://e.mail.ru/compose/?mailto=mailto%3amohieit@mail.ru

2

of objects with distributed parameters by the methods of finite differences and finite

elements is reduced to solving sparse systems of algebraic equations of very large

dimension. These systems are characterized by poor conditioning, which requires

high costs for their solution. Reconstructing a solution from its discrete approximation

is a separate rather time-consuming task.

When modeling complex technical objects, software packages based on the finite

element or finite difference method are usually used. However, modeling a real object

with their help encounters a number of fundamental difficulties [6]. First, accurate

information about differential equations describing the behavior of an object is usual-

ly absent due to the complexity of the description of the processes occurring in it.

Secondly, to apply the methods of finite elements and finite differences, one needs to

know the initial and boundary conditions, information about which is usually incom-

plete and inaccurate. Thirdly, during the operation of a real object, its properties and

characteristics, parameters of the processes occurring in it can change. This requires

appropriate adaptation of the model, which is difficult to carry out with models built

on the basis of finite element methods and finite differences.

An alternative to finite difference methods and finite elements are meshless meth-

ods [7], most of which are projection methods. These methods give an approximate

analytical solution in the form of a sum of basis functions multiplied by weights. As

basis functions, radial basis functions (RBF) are popular [8–9]. Methods using RBF

allow one to obtain a differentiable solution at an arbitrary point in the solution do-

main in the form of a function satisfying the required smoothness conditions, they are

universal, allow working with complex geometry of computational domains, and are

applicable for solving problems of any dimension. RBF-based methods require, for

the selected parameters of the radial basis functions, to find the vector of weights, so

that the resulting approximate solution ensures that the equation and boundary condi-

tions are satisfied with an acceptable error on a certain set of sampling points. For

example, the sum of the squared residuals at the sampling points should be small. The

main disadvantage of using RBF is the need for unformalized selection of parameters

of basis functions.

Promising is the implementation of meshless methods on neural networks. The so-

lution of boundary value problems for PDE is possible on multilayer perceptrons [9–

10]. But the most promising is the use of radial basis function networks (RBFN) [11],

since RBFNs contain only two layers, one of which is linear, and the solution for-

mation is local in nature, which simplifies the learning of such networks. The use of

RBFN allows you to configure both weights and RBF parameters during learning

networks. Applications of RBNF for solving boundary value problems are considered

in the works of Jianyu L., Siwei L., Yingjian Q., Yaping H., Mai-Duy N., Tran-Cong

T., Sarra S., Chen H., Kong L., Leng W., Kumar M., Yadav N., Vasilieva A.N., Tar-

khova D.A., Gorbachenko V.I. [12–15].

To build digital models of twins, it is promising to use the ideas of machine learn-

ing and neural networks to build models of real objects. This approach allows you to

build adaptive models that are refined and rebuilt in accordance with the observations

of the object. Therefore, the urgent task is the development of neural network model-

ing technologies, a more complete account of historical and newly arriving data, im-

3

proving methods for automatically adjusting architecture and model parameters, clas-

sification and prediction methods [6]. Using neural network models allows us to de-

velop a unified approach to solving various modeling problems. For example, in [16]

a unified approach to solving direct and inverse boundary value problems described

by partial differential equations was proposed.

The solution to the problem is formed in the learning process RBFN. Therefore, it

is important to reduce network learning time. But at present, for learning RBFN in

solving boundary value problems, mainly the simplest gradient methods of the first

order based on gradient descent are used [10]. Second-order fast methods are practi-

cally not used in solving boundary value problems on RBFN. An exception is the

confidence area method proposed in [15]. But the method is very complicated, since it

requires at each iteration the solution of the minimization problem to solve the condi-

tional minimization problem.

The aim of this work is to improve the algorithms for learning networks of radial

basis functions in solving boundary value problems, which reduce the time of solving

the problem.

2 Related works

RBF [8] are the functions of the distance of a space point from a function parame-

ter called the center of the function: (), −x c p , where x — the space point, p —

the vector of function parameters, c — the center of the radial basis function, −x c

— the Euclidean norm (distance) between the point and center. Various RBFs are

applied. In this paper, we use the Gauss function (Gaussian)
2

2

|| ||
φ(|| ||,) exp

2
a

a

 −
− = −

x c
x c ,

where c — the position of the function center, a — the shape parameter, often called the width.

When using RBF for solving boundary value problems, the type and parameters of

RBF are selected before solving the problem. This procedure is informal, requires

experimental verification and does not have unambiguous recommendations. Only

some recommendations on choosing RBF and their parameters are known [17].

The solution of boundary value problems using RBF is based on the approxima-

tion of functions. Since when solving boundary value problems, an approximation of

an unknown solution is performed, minimization of the residual at the sampling points

is used. E. J. Kansa proposed a method for solving boundary value problems using

RBF [18–19], which became the basis for other methods using RBF. We consider the

boundary value problem in operator form

 ()() , Ω,Lu f= x x x ()() , Ω,Bu p= x x x (1)

where u — the solution to the problem; L — the differential operator; the operator

B — the boundary condition operator; Ω — the solution domain; Ω — the bounda-

ry of the region; f and p are known functions.

Inside the solution domain and at the boundary, many sampling points are defined

4

11,2, , 1, , ,{ | } { | }i i N i i N N N K= = + + x x , (2)

where N — the number of sampling points in the inner region of , K — the num-

ber of sampling points on the border of Ω .

The solution to the problem is in the form of a weighted sum of basis functions

 (3)

where
j — RBF;

jw — weights, M — the number of RBF.

In (3), the number of RBFs is taken equal to the number of sampling points:

M N K= + . RBF parameters are set. The unknown coefficients in (3) are found as a

solution to a system of linear algebraic equations, which is obtained from the residu-

als of problem (1) at sampling points after substituting (3) in (1). For this, the RBF

must be differentiable as many times as necessary. The result is a system of linear

algebraic equations

=Aw b , (4)

где
L

B

=

G
A

G
,

() () () ()

() () () ()

() () () ()

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 2 3

N

N

L

N N N N N

L L L L

L L L L

L L L L

 =

x x x x

x x x x
G

x x x x

,

() () () ()

() () () ()

() () () ()

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 2 3

N N N N N

N N N N N

B

M M M N M

B B B B

B B B B

B B B B

+ + + +

+ + + +

 =

x x x x

x x x x
G

x x x x

,

() () () () () ()
1 1 1

T

1 2 1 2, , , , ,N N N Mf f f g g g+ +
 =

b x x x x x x ,

() () ()
T

1 2, , , Mw w w= a x x x .

System (4) has a square matrix and its solution is a weight vector w . The Kansa

method generates an asymmetric matrix, which makes it difficult to solve the system

with a large number of sampling points. With a large number of sampling points, the
A matrix is poorly conditioned. When using RBF with a global domain of definition,

the matrix is dense, which also worsens conditioning. A serious drawback is the un-

formalized selection of the best RBF parameters

Known works do not consider the relationship between the number of RBF and

the number of sampling points. Usually take the number of sampling points equal to

the number of RBF. However, the ratio between the number of RBF M and the num-

ber of sampling points N K+ : ()
1

3M N K + , wheremeans proportionality [20], is

known for approximation problems. Since the number of sampling points in this case

significantly exceeds the number of RBFs, system (4) is overridden. To solve such

systems, the Singular Value Decomposition method is convenient [21].

RBF

1

() (),
M

j j

j

u w
=

= = x x x

5

When solving non-stationary problems, one can use RBF to approximate the dif-

ferential operator with respect to spatial variables, preserving the differential opera-

tors with respect to time (direct method). The result is an ordinary differential equa-

tion containing a differential operator approximable by RBF. Более простым являет-

ся прием, при котором производная по времени заменяется коечной разностью

и на каждом временном слое с помощью RBF решается стационарная задача. A

simpler method is when the time derivative is replaced by a bed difference and a sta-

tionary problem is solved on each time layer using RBF. For example, the equation

u
LU

t

=

after approximating the time derivative takes the form

1k k
ku u

Lu
−−
=

,

where — the step of sampling time, k — the time layer number. Then, on the tem-

porary k layer, the stationary
1k k kLu u u − − = − problem is solved.

Thus, the use of RBF allows you to implement meshless methods and obtain a so-

lution in an approximate analytical form. The resulting solution makes it possible to

calculate the solution and its derivatives at arbitrary points in the region. But methods

using RBF require solving poorly conditioned systems of linear algebraic equations

with dense rectangular matrices. There are no formalized methods for determining the

position and parameters of the RFB form. Networks of radial basis functions are free

from most of these shortcomings, all parameters of which are determined during the

networks learning.

RBFN includes two layers [11]. The first layer consists of RBFs that perform

nonlinear transformation of the input vector 1 2, ,..., dx x x=x — the coordinates of

the point at which the approximation to the solution is calculated (d — the dimension

of space). The second RBFN layer is a linear weighted adder

1

() (;)
M

m m m

m

u w
=

= x x p , (5)

where M — the number of RBF,
mw — RBF weight

m ,
mp — parameter vector.

The process of solving boundary value problems using RBFN was considerd using

the example of problem (1) defined in the operator form. In the simplest case, it con-

sists of 3 stages:

1. From the sets and Ω choose N internal and K boundary sampling points (2)

(points at which the error of the solution is controlled). When there is no a priori in-

formation about the solution, it is advisable to use random uniform distribution of

sampling points in the region and on the boundary of the solution. If there is a priori

information about the solution of the problem, you can increase the number of sam-

pling points in those areas in which it is necessary to obtain increased accuracy of the

solution. For example, it is advisable to increase the number of sampling points in

areas in which a change in the characteristics of the solution is expected.

Since the properties of the solution to the problem are a priori difficult to evaluate,

you can first find a rough solution to the problem using the minimum number of sam-

pling points, and then, having determined the areas in which the error functional takes

on the greatest value, decide on the number of sampling points and their location. As

already noted, the ratio between the number of RBF M and the number of sampling

points N K+ is known. However, when approximating the solutions of boundary val-

ue problems using RBFN, this dependence gives an excessive number of sampling

6

points; therefore, it is necessary to select the number of sampling points. An increase

in the number of sampling points leads to an increase in the computational complexity

of the problem. Periodic random regeneration of a limited number of sampling points,

used to prevent network retraining, reduces the number of sampling points.

2. Define the RBFN structure: network type, number of RBF, type RBF, set initial

values for the vector of weights and parameter vectors of RBF. There are no definite

recommendations for choosing the type of RBF. When solving a second-order PDE, it

is necessary to calculate the second derivatives of the network output. Therefore, it is

advisable to use the Gaussian function, the domain of definition of which is compara-

ble with the domain of definition of its derivatives, which cannot be said of multi-

quads, for which there is a large spread of values. Unlimited values of multiquadrics

also complicate their use in the uneven distribution of RBF centers. When choosing

preliminary values, it is necessary to set the RBF parameters and the weight vector.

The methods for choosing the location of the RBF centers are very similar to the

methods for selecting sampling points. Centers can be arranged in nodes of a uniform

grid or randomly. You can increase the density of RBF in areas where a change in the

nature of the solution is expected. You can start the solution with a minimum amount

of RBF and add RBF in areas with large error values during learning [12]. When plac-

ing RBF centers in the nodes of a uniform grid, it is advisable to set the same prelimi-

nary width values for all RBFs. The width values in this case are selected depending

on the step size. With a random distribution of the centers, the width can be chosen

randomly from a certain interval. The boundaries of the interval can be the same for

all RBFs, or depend on the distance between the center of the RBF and the centers of

its neighbors. Weights are usually triggered by small random numbers.

3. Perform network learning, ie select such values of weights and RBF parameters so

that the error functional at the sampling points takes a minimum value. The solution

of the boundary value problem (1) on RBFN is an approximation of an unknown solu-

tion on the set of sampling points (2). Since the solution at the sampling points is

unknown, only minimization of the residuals on the set of sampling points is possible.

To construct the functional error, the least squares method is used. The functional

error for searching for w weights and p RBF parameters minimizing discrepancies at

sampling points has the form

()
2 2

RBF RBF

1 1

, (; ,) () (; ,) () min
N N K

i i i i

i i N

J Lu f Bu p
+

= = +

= − + − → w p x w p x x w p x , (6)

where
ix — sampling points (2), — matched penalty factor,

RBFu — approximate

solution obtained at RBFN (3).

The penalty factor ensures the fulfillment of boundary conditions, since in mesh-

less methods the conditions at the boundary are not fixed. As can be seen from (6),

the use of RBFN allows us to optimize not only the weights, but also the RBF param-

eters (in the case of the Gauss function, the coordinates of cents and the width). The

functional error (6) may include terms with penalty factors that are also responsible

for other conditions for the formulation of the problem, for example, relations at me-

dia interfaces.

Learning RBFN networks differs from solving the problem of unconditional opti-

mization of the functional (6). Functional (6) is minimized on a limited set of sam-

pling points. A trained network should have the generalization property, that is, pro-

7

vide a solution with a given accuracy indicator not only at sampling points, but also at

arbitrary points in the solution domain. When learning the network, relearning is pos-

sible: at sampling points, the accuracy indicator can be small, and at other points it

can be large. The possibility of relearning is reduced by using a large number of sam-

pling points. But this approach increases the solution time. The way out is periodic

random regeneration of a set of sampling points [14]. From the modern point of view

on the learning of neural networks, this technique is the implementation of mini-batch

(stochastic) learning [22]. When using sampling point regeneration, the RBFN learn-

ing process is organized as a process of minimizing a set of functionals error, each of

which is obtained by a specific choice of sampling points. Each functional error is not

minimized to the end. Between the regeneration of sampling points, only a few steps

are taken of the selected method of minimizing the functional error. This approach

circumvents the problem of getting into a local extremum, which is typical for most

methods of global nonlinear optimization.

The vast majority of RBFN learning algorithms are based on gradient optimization

methods [23]. All gradient methods are local optimization methods, which in general

does not guarantee the achievement of a global minimum of the functional error. At

the same time, the search for the global minimum of the functional error, generally

speaking, is not necessary; it is enough to find the local minimum with some given

accuracy. There are known applications of genetic algorithms for learning RBFN

networks in solving classification problems [24], which are much simpler than PDE

solutions. Three classes are distinguished among gradient methods: zero-order meth-

ods that use only the values of the optimized function and not the values of its deriva-

tives during optimization, first-order methods that use the first derivatives of the op-

timized function (function gradient), and second-order methods that use the second

derivatives (Hessian matrix).

Methods to minimize the functional error can be divided into two groups. The first

group includes methods for sequentially adjusting weights and RBF parameters. The

weights that have the greatest impact on the functionality error are tuned first, then the

RBF parameters are tuned. Since the weights enter linearly into the formula for out-

putting the network (5), optimization methods other than those used for learning RBF

parameters that are nonlinear in (5) can be used for their learning.

In the well-known works devoted to solving PDE on RBFN [9–10, 12–14], the

simplest first-order method is used — the gradient descent method. Let us consider

the implementation of the fastest descent method using the example of the two-

dimensional problem (1) and the use of Gaussian as RBF. Consider a single parameter

vector RBFN

T

1 2 11 21 1 12 22 2 1 2, , , , , , , , , , , , , , ,
RBF RBF RBF RBFn n n nw w w c c c c c c a a a = θ , (7)

where
jw — RBF weights, 1, 2, 3, , RBFj n= ,

RBFn — number of RBF,
1jc and

2jc — coordinates of the centers,
ja — width.

Correction of vector (7) at the iteration k in the gradient descent method is carried

out according to the formula
() () ()1 1k k k+ +

= +θ θ θ , (8)

8

where () ()()1k k
J

+
 = −θ θ — vector of parameter correction, — learning speed,

selected hyperparameter, ()()k
J θ — the gradient vector of functional (6) over the

components of the vector ()k
θ (7) at the iteration k .

Calculations by (8) end with a small value of functional (6). The gradient descent

method has a low convergence rate, which does not allow solving problems with high

accuracy.

Second-order methods are based on a quadratic approximation of the functional

error. In the vicinity of the next approximation of the parameter vector ()k
θ of the net-

work, the functional error (6) is approximated by the Taylor formula

() ()() ()() ()() () () ()()() ()
T T

1 1 1 11

2

k k k k k k k k
J J J J

+ + + + + + +

θ θ θ θ θ θ H θ θ , (9)

where ()()k
J θ — functional gradient, ()()()k

JH θ — the Hessian matrix (the ma-

trix of the second derivatives of the functional) calculated with ()k
θ .

From the minimum condition for functional (9), the network parameter correction

vector ()1k+
θ can be obtained, which ensures a decrease in the functional error. Due to

the complexity of calculating the Hessian matrix for multilayer perceptron, various

approximations of the Hessian matrix are used. For example, the conjugate gradient

method uses the Fletcher-Reeves formulas (Fletcher R., Reeves C. M.) [25] and Po-

lak-Ribier (Polak E., Ribiere G.) [26]. In quasi-Newtonian methods, the Hessian ap-

proximation matrix is calculated at each training step, for example, according to the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [27]. In the Levenberg-

Marquardt method [23], the Hessian matrix is approximated using the product of the

Jacobian matrices of the network error vector.

Second-order methods are not widely used in RBFN learning. Although the pres-

ence of only one layer with nonlinear functions and the differentiability of most RBFs

provide the possibility of applying second-order optimization methods for learning

RBFN. In [28], when solving the approximation problem, the nonlinear layer was

studied by the conjugate gradient method, and the weights were studied by the meth-

od of orthogonal least squares. In [29], an algorithm was proposed for the conjugate

gradient adjustment method for RBFN weights, which differs from the known ones

taking into account the specifics of solving boundary value problems. RBF parame-

ters were learned by gradient descent method. The algorithm takes into account the

differentiability of RBF and is based on the matrix-vector representation of the func-

tional error (6).

In [15], it was proposed, and in [30–31], a fast RBFN learning algorithm was

learned, based on an effective optimization method, the trust region method (TRM)

[32]. The method allows to simultaneously optimize a large number of parameters,

has a high convergence rate even for poorly conditioned tasks, and allows to over-

come local minima.

The TRM algorithm is quite complicated, since at least it is found in limited areas,

which requires at each step of the optimization process to solve the conditional opti-

mization problem. Therefore, it is advisable to investigate the possibility of adaptation

for learning RBFN of modern fast first-order methods and the Levenberg-Marquardt

9

method. Of particular interest is the Levenberg-Marquardt method, which is simpler

to implement than TRM and, as shown in [33], is equivalent to TRM.

3 Development of Levenberg-Marquardt algorithm for

learning of radial basis functions networks for solving

PDE

The implementation of the Levenberg-Marquardt RBFN learning method for PDE

solution will be considered on the example of the model problem described by the

Laplace equation with Dirichlet boundary condition

() ()
2 2

1 2 1 22 2

1 2

, , ,
u u

f x x x x
x x

+ =

, () ()1 2 1 2, , ,u p x x x x= , (10)

The functional error for the model problem is the sum of the squared residuals

along the internal and boundary sampling points

() ()
22

1 1

N K

i i j j

i j

I u f u p
= =

= − + −

 , (11)

where
iu — Laplacian at the point i ,

i ir u f= − —residual of the i -th internal

sampling point,
j j jr u p= − — residual at the j -th boundary sampling point.

In the Levenberg-Marquardt method, the correction ()k
θ of the parameter vector θ

(7) is found from the solution of a system of linear algebraic equations

() ()T

1 1 1

k

k k k k− − −+ = −J J E θ g , (12)

where T

1 1k k k− − +J J E— an approximation of the Hessian matrix, E — identity ma-

trix,
k — regularization parameter that changes at each step of learning, T=g J r—

gradient vector of functional (11) according to the vector of θ parameters,
T

1 2 nr r r = r — residual vector at internal and boundary sampling points,
1k−J —

Jacobi matrix calculated in 1k − iteration.

Let’s represent the Jacobi matrix in block form
1 2

 = w c c a
J J J J J , where

1 1

1

2 2

1

1

RBF

RBF

RBF

n

n

n n

n

r r

w w

r r

w w

r r

w w

 =

w
J ,

1

1 1

11 1

2 2

11 1

11 1

RBF

RBF

RBF

n

nc

n n

n

r r

c c

r r

c c

r r

c c

 =

J ,

10

2

1 1

12 2

2 2

12 2

12 2

RBF

RBF

RBF

n

nc

n n

n

r r

c c

r r

c c

r r

c c

 =

J ,

1 1

1

2 2

1

1

RBF

RBF

RBF

n

n

n n

n

e e

a a

e e

a a

e e

a a

 =

a
J ,

where n N K= + — total number of sampling points.

The elements of the Jacobi matrix are easy to calculate analytically. Elements of

the
wJ matrix for internal sampling points are calculated by the formula

()
2

2

2
2

2

4

2
j

j
j jai ii

j j j

av fe
e

w w a

−
− − − −

= =

x c

x c
.

 For boundary sampling points, calculations are performed using the
2

2
exp

2

ji

j j

e

w a

 − = −

x c
formula. The

1c
J matrix elements for internal sampling points

are of the form

()

2

2

2
2

2

1 14 2

1

4
j

j
j jaji

j

j j j

awe
e x c

c a a

−
− − −

= −

x c

x c
.

For boundary points, matrix elements are written as

2

22 1 1

2

1

()
j

ja ji

j

j j

x ce
w e

c a

−
− −

=

x c

.

Similarly, the elements of the
2cJ matrix are calculated.

The elements of the
aJ matrix for internal sampling points are of the form

() ()
2

2

2

2 22 2 2

5 2
2 4

j

j
jaji

j j j j

j j j

we
e a a

a a a

−
− − = − − − − −

x c

x c
x c x c .

For boundary points, matrix elements are written as

2

2

2

2

3

j

j
jai

j

j j

e
w e

a a

−
− −

=

x c

x c
.

The condition for completing the learning process by the Levenberg-Marquardt

method is a small value of the functional error (11).

The matrix T

1 1k k k− − +J J E of system (12) is dense symmetric and positive definite.

Therefore, to solve system (12), one can use the Cholesky method [21]. A drawback

of the Cholesky method is the use of a lengthy square root extraction operation when

performing matrix decomposition. The LDLT decomposition method [21] is free from

this drawback, which represents the matrix in the form
T=A LDL , where L — the

lower triangular matrix with the unit main diagonal, D — the diagonal matrix, and T

11

— the matrix transpose operation. When decomposing, the square root extraction

operation is not applied.

In the Levenberg-Marquardt method, the regularization parameter must change

during the learning of the network. The learning process begins with a relatively large

value of the parameter . This means that at the beginning of the learning process,

Hessian in (12) is close to the approximate value H E , and the correction vector is

determined by the gradient descent method with a small step
()

1

k

k k− = − θ g . As the

functional error decreases, the parameter decreases and the method approaches the

Newton method with the Hessian approximation
TH J J . This ensures a high con-

vergence rate, since the Newton method near the minimum of the functional error has

good convergence. In [33], it is recommended to start with some value of
0 and coef-

ficient 1 . The current value of is divided by if the functional error is reduced,

or multiplied by if the functional error is increased.

It was shown in [33] that the Levenberg – Marquardt method is equivalent to

TRM, and the radius of the trust region is controlled by the parameter . But unlike

the well-known TRM implementations, the Levenberg-Marquardt method does not

require solving a rather complicated conditional optimization problem at each learn-

ing iteration. That is, the Levenberg-Marquardt method, while maintaining the posi-

tive properties of the trust region method, is simpler.

The disadvantage of the Levenberg-Marquardt method is the poor conditionality

of system (12), which depends on the RBF width and increases with increasing accu-

racy of calculations. It is known [34] that the matrix whose elements are RBF is poor-

ly conditioned and the conditionality of the matrix depends on the width of the RBF.

As the RBF width increases, the elements of the matrix
w

J tend to unity, and the ele-

ments of the matrices
c

J and
aJ tend to zero. The condition number of the matrix

T
J J

is increasing. The regularization parameter improves the conditionality of system

(12), but a decrease in the parameter as the error decreases leads to a deterioration in

conditionality.

4 Experiments

An experimental study was carried out using the example of problem (10) with

() () ()1 2 1 2, sin sinf x x x x= , ()1 2, 0p x x = . The problem was solved in a single

square. The number of internal and boundary sampling points is 100N = , 40K = .

The penalty factor is 10 = . The RBF centers were regularly located on a square grid

with the number of centers at each coordinate equal to 8. Sampling points were ran-

domly located in the solution region and on the region boundary. Weights were initi-

ated by zero values. The initial width of all RBFs was constant, equal to 0.2. The

experiments were carried out in the MATLAB R2019a system. To solve system (12),

we used the MATLAB system solver. The RBFN learning by the Levenberg-

Marquardt method was compared with the gradient descent learning and the acceler-

ated Nesterov method [35] - the fastest first-order method.

12

In fig. Fig. 1 shows the location of the centers, the symbol of the width (in the

form of circles with radii equal to the width) of RBF, and the weights using the

MATLAB color palette before learning the network (Fig. 1a) and after learning (Fig.

1b). Fig. 1 shows the importance of setting RBF parameters.

a) before learning the network

b) after learning the network by the Leven-

berg-Marquardt method

Fig. 1. The centers and width of RB functions in solving PDE

The dependence of the mean square residual of various algorithms on the iteration

number is shown in Fig. 2.

Fig. 2. Dependences of the mean quadratic residual of various algorithms on the iteration num-

ber

The results of experiments to solve the boundary value problem on RBFN net-

works learned by various algorithms are presented in Table 1. The gradient descent

method made it possible to solve the model problem with little accuracy. To solve

13

with high accuracy, the method is practically not applicable. The Nesterov method

provides somewhat greater accuracy. Only the Levenberg Marquardt method allowed

us to solve the problem with high accuracy in an acceptable time. The Levenberg-

Marquardt method showed practically the same results compared to the trust region

method [15], but the implementation of the Levenberg-Marquardt method is simpler.

The disadvantages of the Levenberg-Marquardt method are the poor conditionality of

the system that forms the correction of the parameters, and the non-smooth nature of

the convergence.

Thus, the algorithm of the Levenberg-Marquardt method showed a clear ad-

vantage over first-order algorithms and ensured accuracy at the level of known im-

plementations of the trust region algorithm, but is simpler than these algorithms.

5 Conclusions

Networks of radial basis functions are a promising means of solving boundary val-

ue problems described by partial differential equations. But the well-known methods

of learning networks of radial basis functions do not provide quick learning of net-

works of radial basis functions. As a way to eliminate this drawback, it is proposed to

improve the algorithms for learning networks.

For learning networks of radial basis functions intended for solving PDE, a learn-

ing algorithm based on the Levenberg-Marquardt method has been developed, which

differs by taking into account the specifics of the network architecture and analytical

calculation of parameters. The method made it possible to achieve the average quad-

ratic discrepancy, which is not achievable by the known first-order algorithms, on the

model problem. The proposed algorithm achieves a small error for the number of

iterations equal to the number of iterations of the algorithm based on the trust region

method, but is simpler than this algorithm, since it does not require solving the condi-

tional optimization problem at each iteration.

References

1. Grieves, M.: Digital Twin: manufacturing excellence through virtual factory replication.

White Paper, 1–7 (2014).

2. Madni, A. M., Madni, Lucero S. D.: Leveraging digital twin technology in model-based

systems engineering. Systems 1, Article-Number 7, doi:10.3390/systems7010007 (2019).

3. Farlow, S. J.: Partial differential equations for scientists and engineers. Dover Publications

(1993).

4. Mazumder, S.: Numerical methods for partial differential equations: finite difference and

finite volume methods. Academic Press (2015).

5. Tolstykh, A. I., Shirobokov, D. A.: Mesh-free method based on radial basis functions.

Computational Mathematics and Mathematical Physics 45(8), 1447–1454 (2005).

6. Vasilyev, A., Tarkhov, D., Malykhina, G.: Methods of creating digital twins based on neu-

ral network modeling. Modern Information Technologies and IT-Education 14(3), 521–

532 (2018).

14

7. Meshfree methods for partial differential equations. Editors Griebel, M., Marc. A.

Schweitzer, M. A. Springer (2008).

8. Buhmann, M. D.: Radial basis functions: theory and implementations. Cambridge Univer-

sity Press (2004).

9. Chen, W., Fu, Z.-J.: Recent advances in radial basis function collocation meth-

ods. Springer (2014).

10. Yadav, N., Yadav, A., Kumar, M.: An introduction to neural network methods for differ-

ential equations. Springer (2015).

11. Aggarwal, C. C.: Neural networks and deep learning. Springer (2018).

12. Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial dif-

ferential equation by growing radial basis function neural networks. Neural Networks

16(5–6), 729–734 (2003).

13. Mai-Duy, N., Tran-Cong, T.: Solving high order ordinary differential equations with radial

basis function networks. International Journal of Numerical Methods in Engineering, 62,

824–852 (2005).

14. Vasiliev, A. N., Tarkhov, D. А.: Neural network modeling: Principles. Algorithms. Appli-

cations, St. Petersburg Polytechnic University Publishing House (2009).

15. Gorbachenko, V. I., Zhukov, M. V.: Solving boundary value problems of mathematical

physics using radial basis function networks. Computational Mathematics and Mathemati-

cal Physics 57(1), 145–155 (2017).

16. Gorbachenko, V. I., Lazovskaya, T. V., Tarkhov, D. A., Vasiljev A. N., Zhukov, M. V.:

Neural network technique in some inverse problems of mathematical physics. Advances in

Neural Networks - ISNN 2016: 13th International Symposium on Neural Networks, ISNN

2016, St. Petersburg, Russia, July 6-8, 2016, Proceedings (Lecture Notes in Computer Sci-

ence). Springer, 310–316 (2016).

17. Fasshauer, G., Zhang, J.: On choosing “optimal” shape parameters for RBF approximation.

Numerical Algorithms 45(1–4), 345–368 (2007).

18. Kansa, E. J.: Multiquadrics — A scattered data approximation scheme with applications to

computational fluid-dynamics — I surface approximations and partial derivative estimates.

Comput. Math. Appl. 19(8–9), 127–145 (1990).

19. Kansa, E. J.: Multiquadrics — A scattered data approximation scheme with applications to

computational fluid-dynamics — II solutions to parabolic, hyperbolic and elliptic partial

differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990).

20. Niyogi, P., Girosi, F.: On the relationship between generalization error, hypothesis com-

plexity, and sample complexity for radial basis functions. Neural Computation 8(4), 819–

842 (1996).

21. Watkins, D.: Fundamentals of matrix computations. Wiley (2010).

22. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016).

23. Gill, P. E., Murray, W., Wright, M. H.: Practical optimization. Emerald Group Publishing

(1982).

24. Weikuan, J., Dean, Z., Tian, S., Chunyang, S., Chanli, H., Yuyan, Z.: A New optimized

GA-RBF neural network algorithm. Computational Intelligence and Neuroscience. Article

ID 982045 (2014).

25. Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Computer

Journal 7, 149–154 (1964).

26. Polak, E., Ribiére, G.: Note sur la convergence de méthodes de

directions conjuguées. Revue française d’informatique et de recherche opérationnelle, série

rouge 3(1), 35–43 (1969).

27. Nocedal, J., Wright, S.: Numerical Optimization. Springer (2006).

15

28. Zhang, L., Li, K., Wang, W.: An improved conjugate gradient algorithm for radial basis

function (RBF) networks modelling. Proceedings of 2012 UKACC International Confer-

ence on Control, 19–23.

29. Gorbachenko, V. I., Artyukhina, E. V.: Mesh-free methods and their implementation with

radial basis neural networks. Neirokomp’yutory: Razrabotka, Primentnine 11, 4–10 (2010)

(in Russian).

30. Alqezweeni, M. M., Gorbachenko, V. I., Zhukov, M. V., Jaafar, M. S.: Efficient solving of

boundary value problems using radial basis function networks learned by trust region

method. Hindawi. International Journal of Mathematics and Mathematical Sciences. Arti-

cle ID 9457578 (2018).

31. Elisov, L. N., Gorbachenko, V. I., Zhukov, M. V. Learning radial basis function networks

with the trust region method for boundary problems. Automation and Remote Control

79(9), 1621–1629 (2018).

32. Conn, A. R., Gould, N. I. M., Toint, P. L.: Trust-region methods. MPS-SIAM (1987).

33. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. Jour-

nal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963).

34. Boyd, J. P., Gildersleeve, K. W.: Numerical experiments on the condition number of the

interpolation matrices for radial basis functions. Applied Numerical Mathematics 61(4),

443–459 (2011).

35. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and

momentum in deep learning. ICML'13 Proceedings of the 30th International Conference

on International Conference on Machine Learning 28, III-1139-III-1147 (2013).

