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Abstract. Complex interactions between biology entities (drugs, diseases, side-effects, etc.), have 

posed difficulties for drug discovery and treatment. Despite the significant efforts that have been 

invested in drug-target interaction prediction, existing methods are still afflicted by the highly sparse 

datasets for drug-target interaction prediction and ignore the impact of interactions between different 

types of biological entities when constructing heterogeneous biology networks. To address the issue, 

we develop a framework based on the mixed expert model, named MEDTI, which captures the intra-

type relationships of interactions between the same type of biological entities and inter-type 

relationships of interactions among different biological entities for drug-target interaction prediction. 

The MEDTI consists of three main components: the edge representation extractor, the type-prior 

information extractor, and the mixed expert discriminator. The edge representation extractor is 

responsible for constructing a heterogeneous biology network from numerous types of biology 

networks, such as drug-drug interaction, drug-target interaction, drug-disease association, and drug-

side-effect association networks. Then the edge representation extractor maps the representation of 

different types of networks into their type spaces. The type-prior information extractor exploits prior 

information of different types of networks by using a type gate to aggregate information of each type 

spaces in heterogeneous biology networks. Cooperating with the type-prior information extractor, 

the mixed expert discriminator resists the implications of different types of biology entities and 

predicts the unobserved drug-target interaction. Experiments on real-world heterogeneous biology 

network datasets show that the MEDTI can outperform the state-of-the-art methods and predict 

different drug-target interactions accurately.  
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1   Introduction 

Recently, drug-target interaction prediction has played a vital role in the drug discovery process. 

Specifically, in the drug discovery process, the problem can be described as the existence prediction of 

drug-target interactions in the basis of  existing drug-target interactions in the heterogeneous biology 

network dataset. To figure out existence relationships among drugs and targets, numerous targets have 

been tested in recent decades for discovering safe and effective drugs. However, it is troublesome to 

figure out the specific types of interactions between different types of biological entities. There may be 

various existent but unobserved interactions between them. Therefore, there is a great need for a drug-

target interaction prediction method to eliminate the interference between different drug interactions and 

correctly identify drug-target interactions. 

Thus far, various drug-target interaction prediction methods, including traditional machine learning-

based models [1,2,3] and deep learning-based models [4,5,6], have been exploited to identify drug-

targeted actions. In the context of adequate validation of different drug-relative actions (e.g., drug-drug, 

drug-disease, etc.), existing deep learning-based models have achieved better performance than 

traditional machine learning-based models due to their superior biological network feature extraction 

capabilities. Many of them have incorporated multiple data sources which include different interactions, 

such as drug-drug, protein-protein, drug-protein interactions into a framework for drug-target interaction 

prediction. Some methods have tried to apply supervised or unsupervised models to learn dimensional 

feature representation of drugs and target proteins from heterogeneous biology network datasets and 

predict drug-target interactions. There are also knowledge graph-based methods utilizing knowledge 

graph embedding of different biological entities to learn the vector representations of drugs and target 

proteins. However, they still cannot handle the unique challenges of drug target prediction. The lack of 



appropriate type-prior information about interactions between different types is challenging to obtain 

promptly, which leads to the unsatisfactory performance of existing models. Actually, existing models 

tend to construct heterogeneous networks[7,8,9,10] to capture specific features of different biology 

interactions, which cannot be used as they are in predicting drug-target interactions and require some 

processing.  

For this reason, we consider constructing specific representations of different types of interactions in 

heterogeneous networks to extract their features. Therefore, the goal of this work is to construct a 

framework based on the mixed expert model for drug-target interaction prediction by constructing 

heterogeneous biology networks containing different types of interactions. To predict drug-target 

interaction, the first step is to identify the drug-target interaction correctly. For different types of drug 

interactions, they all have their own unique or specific representations that are not shareable. Such 

representations of different types of interactions can be identified by learned representations. Thus, 

identifying drug-target interaction is equivalent to measuring the difference between other 

representations of interactions and drug-target interaction on heterogeneous biology networks. However, 

this is a technically challenging problem. First, since representations of different types of interactions are 

high-dimensional, simple metrics like squared error may not be able to estimate the difference between 

such complex representations. Second, the representations remain changeable during the training 

process. This requires the proposed measurement mechanism to capture the changes in the 

representations and provide accurate measurements continuously. Although it is very challenging, 

effective estimation of the differences between the learned features of different drug relationships is a 

prerequisite for correctly predicting drug-target interactions. Therefore, how to effectively estimate 

dissimilarity under such conditions is a challenge that we must address. 

To address the above challenges, we propose a novel framework called mixed expert model (MEDTI), 

which captures the intra-type and inter-type relations of different edges for drug-target interaction 

prediction. MEDTI exploit the powerful representation ability of deep learning to represent biological 

entities for drug-target interaction prediction. Inspired by domain gates [11,12] and expert models 

[11,13], we incorporate the type-prior information extractor and the mixed expert discriminator in the 

training phase to fuse the prediction results of multiple experts on drug-target interaction prediction. The 

proposed MEDTI model consists of three main components: an edge representation extractor, a type-

prior information extractor, and a mixed expert discriminator. The type-prior information extractor and 

the mixed expert discriminator are built on the basis of the edge representation extractor to perform the 

main task of drug target prediction. Experimental results on two large-scale real-world heterogeneous 

biology network datasets show that the proposed MEDTI outperforms the state-of-the-art approaches. 

The main contributions of this paper can be summarized as follows: 

● To better describe relationships between drugs and targets, we construct a heterogeneous biology 

network with multiple types of biology interactions and networks and propose a mixed expert model 

for drug-target prediction (MEDTI), which captures the intra-type and inter-type relations of 

different biology interactions for drug-target interaction prediction. 

● We use R-GCN to extract the feature representations of biological entities in the heterogeneous 

biology network, and utilize the mixed expert discriminator and the type prior information extractor 

to explore potential and deeper drug-target interactions to improve the prediction performance of 

drug-target interactions. 

● The experimental results on two real-world datasets show that the MEDTI outperforms the state-of-

the-art methods and predicts drug-target interactions accurately. 

2   Related Work 

The drug-target interaction prediction is significant for drug discovery [14] and repositioning [15,16]. 

Specifically, in the drug discovery process, a large number of chemical and biological entities have been 

tested in recent decades for discovering safe and effective drugs. Two biological-based experimental 

methods have been applied to solve the problem of drug-target interaction prediction: protein microarrays 

[17] and affinity chromatography [18. Nevertheless, drug development based on experiments is a time-

consuming and expensive process. To expedite drug development, it is essential to develop validated 

combinatorial methods to drug-target interaction prediction [2,5,6,19,20]. Existing computational-based 

methods for drug-target interaction prediction can be divided into three categories: text mining-based 

methods, feature engineering-based methods, and network-based methods.  

Text mining-based approaches extract features from context literature for drug-target interaction 

prediction by treating descriptions of drugs and targets as their features [21]. A semantic similarity-based 



model using SVM and Random Forest and methods has been proposed to drug-target interaction 

prediction [22]. On the basis of chemical and biological spaces, the model builds a semantic network and 

utilize it to extract features. Unfortunately, text mining-based approaches can be influenced by variances 

of semantic representations and obfuscation among different literatures. 

The main idea of feature engineering-based methods is to extract biometric features of drugs and 

targets. For example, an SVM-based approach named BLM (binary local model) [23], which treated the 

drug-target interaction prediction problem as a binary classification problem by using chemical and 

genomic data to consider similarities of drug-target, drug-drug and target-target interactions. A 

computational framework called BLMNII, which is based on the  BLM, was proposed by Mei et.al [24]. 

BLMNII combines the neighbor-based interaction spectrum inference (NII) approach with BLM. Wang 

et al. proposed a stacked autoencoder-based model [25] to learn PSSM-based features. The model then 

uses Random Forest for drug-target interaction prediction. However, these methods still do not deeply 

explore drug-drug or protein-protein interactions.  

In network-based approaches, networks can represent complex interactions between different types of 

biological entities (i.e., drugs, proteins, diseases, side-effect). Several network-based methods have been 

developed for drug-target interaction prediction [16,26,27,28,29,30]. Cheng et al. proposed a network-

based inference model called NBI to predict new drug-target interactions [19]. NBI only utilized drug-

target bipartite network topology similarity to score the similarity between a drug and a target. Integrating 

other types of networks can improve the performance of the network approach. Chen et al. [20] used a 

heterogeneous network which consists of protein-protein and drug-drug similarities networks, and the 

known drug-target interaction network to propose an effective model called NRWRH [32]. Compared 

with only one network, it has achieved significant performance improvement. In addition, many machine 

learning methods have been applied to predict drug-target interaction while the size of experimental data 

increases. Establishing a classification model is a commonly used machine learning method. It uses the 

drug -target pair (DTP) as input, and whether there is an interaction between the drug -target to (DTP) as 

the output. The most applied machine learning model is a binary classifier, such as Random Forests and 

SVM. Zhao et al. [33] proposed a network-based method combining graph convolutional neural network 

and deep neural network for drug-target interaction prediction. In detail, this method builds a drug–

protein pair (DPP) network through the drug-drug interaction network, protein-protein interaction 

network and drug-protein interaction network. A node in the DPP network represents a drug-target pair, 

and the edge represents the link strength between these pairs. Then, the problem of drug-target interaction 

prediction is converted into an edge classification problem. 

These three categories of methods usually extract features based on different types of interactions and 

features are concatenated together by extraction networks. Those methods do model the heterogeneous 

information in a multiple-types heterogeneous network. Therefore, they cannot fully consider the 

associations among multiple types of biological entities, such as drug, disease, protein, side-effect, etc. 

Distinguished from the three categories of methods above, methods on the basis of constructing 

heterogeneous graph representation have obtained great achievements in many tasks such as item 

recommendation [34,35] and polypharmacy side-effects prediction [36]. Compared with three categories 

of methods, method based on heterogeneous graphs can model multiple types of biological entities and 

complex interactions in a single heterogeneous network. In this research, we propose a mixed expert 

model for drug-target interaction prediction (MEDTI), which captures the intra-type and inter-type 

relations of different biology interactions for drug-target interaction prediction.  

3   Problem Definition 

To facilitate the presentation in this study, Table 1 summarizes frequently used symbols. A 

heterogeneous biology network is a network with multiple types of nodes and edges. Given a 

heterogeneous biology network, it can be represented as 𝐺 = (𝑉, 𝐸, ℛ), where 𝑣𝑖 ∈ 𝑉 represents the node 

in the heterogeneous biology network, and 𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 represents the edge and 𝑟 ∈ ℛ represents the 

edge type of each 𝑒 in the heterogeneous biology network. Specifically, in the heterogeneous biology 

network, there are numerous types of nodes(𝑣𝑖) (i.e., drug, protein, disease, side-effect).  

Formally, we define the problem of this research as follows. Given 𝑉, 𝐸, and ℛ, we need construct a 

heterogeneous biology network 𝐺 = (𝑉, 𝐸, ℛ) for predicting drug-target interaction in 𝐸, where each 

edge in 𝐸 is assigned with a type 𝑒 to predict its existence.  

 

Table 1. The frequently used symbols 



Symbol Meaning Symbol Meaning 

𝐺 Heterogeneous biology network. S The edge representation. 

𝑉  
Nodes that denote different types of 

biological entities. 
𝑟 

The edge type in the heterogeneous biology 

network. 

𝐸 

Edges which represent interactions 

between different types of biological 

entities. 

𝐷 The type representation. 

ℛ 
Types of interactions between 

different types of biological entities. 
𝑃𝑖 The conclusion of the single expert network 

ℎ𝑖 The hidden state of each node 𝐸𝑖
𝑟 The degree of the node 𝑖 

𝑊𝑟
𝑙+1 The weight matrix under relation 𝑟 𝛿 

The set of weight representing the importance of 

different experts 

4   Methods 

We detail the proposed MEDTI in this section. A general overview of the MEDTI is presented in Section 

4.1. Section 4.2 explains the extraction process of edges representation in heterogeneous biology 

networks. Section 4.3 details how the type gate exploits the type-prior information of different types in 

heterogeneous biology network. Section 4.4 introduces the mixed expert discriminator to produce a type 

representation to represent its type-prior information. In Section 4.5, based on the three components of 

the proposed MEDTI, the integration of the MEDTI to predict drug-target interaction in the 

heterogeneous drug-target graph networks is detailed. 

4.1   Overview 

The goal of the proposed novel framework MEDTI is to predict drug-target interaction in the 

heterogeneous biology networks. As is shown in Fig.1, in order to achieve this goal, the proposed MEDTI 

integrates the edge representation extractor, the type gate and the type expert network. We firstly 

construct the heterogeneous network by combining several types of biology networks through the edge 

representation extractor. Both the type gate and the type expert network are built on top of the edge 

representation extractor. The type gate extracts type representations of each specific biology network. 

Finally, the mixed expert discriminator evaluates different biology interactions by different experts and 

predicts the presence of it.  

4.2   Edge Representation Extractor 

In this section, we build a heterogeneous biology network to obtain edge representation. Then the 

heterogeneous drug-target graph 𝐺 is fed into the R-GCN layer to obtain the edge representation set 𝑆 =
{𝑠𝑒 , 𝑒 ∈ 𝐸}.  

For the detailed procedures, the R-GCN layer is a graph-to-graph layer that adopts a set of node 

representations and the topological structure of the graph as inputs and generates a novel collection of 

representations for nodes. In a heterogeneous biology graph 𝐺 = (𝑉, 𝐸, ℛ), 𝑉 is a set of nodes while the 

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 is a set of tuples indicating existence of undirected edges. The hidden state of each node 𝑣𝑖 

is represented as ℎ𝑖 , where ℎ𝑖  is a 𝑑 -dimensional vector. Every node 𝑣𝑖  aggregates neighbors’ 

information ℎ𝑗 in it as described in Eq (1). 

                                        ℎ𝑖
𝑙+1 = 𝜓 (∑ ∑

1

𝑐𝑖,𝑟
𝑊𝑟

𝑙
𝑗∈𝐸𝑖

𝑟𝑟∈𝑅 ℎ𝑗
𝑙 + 𝑊0

𝑙ℎ𝑖
𝑙) , ∀𝑣𝑖 ∈  𝑉                                      (1) 

where 𝜓 denotes an activation function, c𝑖,𝑟 represents a normalization weight, 𝑊𝑟
𝑙 and W0

l  denote the 

relation specie transformations used by the RGCN during the training, respectively.  

Intuitively, Eq (1) accumulates transformed representations of neighboring nodes through a 

normalized sum [28]. Different from regular GCNs, we introduce relation-specific transformations, i.e., 

depending on the type and direction of an edge in the heterogeneous network. To ensure that the  



 

Fig.1 The framework of the MEDTI. The input of the MEDTI is the heterogeneous biology network dataset which 

includes different types of interactions among different biological entities such as drug, target, side-effect, and 

disease. Then through the R-GCN layer, the MEDTI obtains the edge representation of various interactions and the 

type representation of each biological entity. The expert model and type gate mechanism, which are specific to be 

the mixed expert discriminator and the type-prior information extractor in the MEDTI respectively, are responsible 

for exploring accurate feature representation of various interactions. The output of our method is the result of  drug-

target interaction prediction. 

representation of a node at layer 𝑙 + 1 can also be informed by the corresponding representation at layer 

𝑙, we add a single self-connection of a special relation type to each node in the network dataset. Note that 

instead of simple linear message transformations, one could select more flexible functions such as multi-

layer neural networks (at the expense of computational efficiency). A neural network layer update 

consists of evaluating Eq (1) in parallel for every node in the graph. In practice, Eq (1) can be 

implemented efficiently by using sparse matrix multiplications to avoid explicit summation over 

neighborhoods. Multiple layers can be stacked to allow for dependencies across several relational steps. 

We refer to this graph encoder model as a relational graph convolutional network (R-GCN).  

The edge representation is established on the basis of the node representation. The edge representation 

𝑠𝑒 is represented as follow. 

                                                                  𝑠𝑒 = ℎ𝑖
𝑙+1 × ℎ𝑗

𝑙+1                                                                   (2) 

The output of the R-GCN layer is edge representation 𝑠𝑒 ∈ 𝑆, which is denoted as the input of mixed 

expert discriminator.  

4.3   Type-prior information extractor 

To figure out the potential information among different types of interactions, we introduce type-prior 

information extractor based on type gate to produce a type representation to represent its type prior 

information. The type prior information can explore relations of edge representation in one type edges. 

To achieve this purpose, we set a learnable type representation 𝑒𝑑 ∈ 𝐷, which can help personalize 

the representation extraction for each edge type. Note that different type gates specialize in different 

types, and they are good at exploiting different type information. For the proposed MEDTI, we use an 

adaptive type gate to explore the type representation. The purpose of adopting a type-prior information 

extractor is to generate high-quality representations of different types of edges. Nevertheless, if the 

representations of all experts are simply averaged as the final representation, this approach does not 

achieve high-quality drug-target interactions. Since simple averaging removes information about specific 

types of interactions. Each type gate is good at dealing with a specific type representation, and if the type 

gate can be adaptively selected, then the best use can be achieved. Following this idea, this paper 

proposes an edge type gate, where the edge representations and type representations are used as inputs 

to guide the selection process of the mixed expert model. The edge type gate can be expressed as 𝑇(; 𝜙), 

where 𝜙 is the parameter of the edge type gate, then it can be expressed by Eq (3). 

                                                          𝛿𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑇(𝑒𝑑⨁ 𝑠𝑒; 𝜙))                                                    (3) 

where the type gate 𝑇(; 𝜙) is a feed-forward network. 𝑒𝑑 and 𝑠𝑒 are the type representation and edge 

representation, respectively. The output of 𝑇(; 𝜙) is normalized using a softmax network, and 𝛿𝑖 ∈ 𝛿 is 

a weight representing the importance of different experts and 𝛿 is the set of weight. 



4.4   Mixed Expert Discriminator 

Although the different experts for predicting their specific type of edge, their conclusions for the other 

types of edges are still beneficial. To further explore unobserved edges in the heterogeneous biology 

network, the mixed expert discriminator obtains different discriminable conclusions for one type edge. 

We obtain different feature representations of specific types through different type experts and capture 

the correlations between different biological edge representations by analyzing the relationships among 

different experts. 

The expert network is denoted by 𝛷𝑖(𝑠𝑒; 𝜃)(1 ≤ 𝑖 ≤ 𝑁) , where 𝑠𝑒 ∈ 𝑆  represents the edge 

representation as the input to the expert network, 𝜃 represents the parameters and 𝑁 is a hyperparameter 

that indicates the number of expert network. 𝑃𝑖 represents the conclusion of the single expert network as 

follow. 

                                                                     𝑃𝑖 = Φ𝑖(𝑠𝑒; 𝜃)                                                                    (4) 

Cooperating with the type gate, the final representation of the edge is obtained as follow. 

                                                                      𝑣 = ∑ 𝛿𝑖𝑃𝑖
𝑁
𝑖=1                                                                      (5) 

where 𝑣  denotes the final representations of different types of edges. 𝑣  is the input of a prediction 

network utilizing multi-layer perception (MLP) network with a softmax output layer, which is designed 

for the detection of the existence of drug-target interactions as follow. 

                                                             �̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃(𝑣))                                                            (6) 

The goal of the mixed expert discriminator is to determine the existence or absence of drug-target 

interactions. We use 𝑦𝑖 for the actual label and �̂�𝑖 for the predicted label. The loss function uses a binary 

cross-entropy loss (BCELoss) for classification as follow. 

𝐿 = − ∑ (𝑦𝑖𝑙𝑜𝑔�̂�𝑖 + (1 − 𝑦𝑖)log (1 − �̂�𝑖))𝑁
𝑖=1                                         (7) 

4.5   Model integration 

Based on the edge representation extractor, the type-prior information extractor, and the mixed expert 

discriminator, the proposed MEDTI captures the intra-type and inter-type relations of different biology 

interaction for drug-target interaction prediction. At each iteration, 𝑆 = {𝑠𝑒 , 𝑒 ∈ 𝐸} represents the set of 

edge representation, and the corresponding label sets of 𝑆 is denoted as 𝑌(𝑆) = { 𝑦(𝑠𝑒), 𝑒 ∈ 𝐸}.  

The integration process of the MEDTI is as follows. First, we feed the node set 𝑉 into R-GCN model 

to calculate the set of edge representation 𝑆 = {𝑠𝑒 , 𝑒 ∈ 𝐸} . For each 𝑠𝑒 , we set a learnable type 

representation 𝑒𝑑 ∈ 𝐷 to learn the type-prior information. Then, a type gate is used to integrate the 𝑠𝑒 

and 𝑒𝑑, and learn the importance of different experts 𝛿𝑖 ∈ 𝛿. Second, mixed experts evaluate 𝑠𝑒 with 

different conclusions 𝑃𝑖. Cooperating with the type gate, we obtain the final representation of the edge 

𝑣 . Finally, the proposed MEDTI predict the final representations of edges 𝑣  existence or not. The 

procedures of the MEDTI are summarized as follows. 

 

MODEL: MEDTI 

INPUT:   𝑉— Nodes set. 

𝐸—  Edges set. 

𝑅— Edges type set. 

OUTPUT: 𝑈— Set of unobserved edges. 

Step 1: 𝑈 = ∅. 

Step 2:   For each training iterations do  

Step 3:      Feed 𝑣 ∈ 𝑉 to obtain the edge representation 𝑠𝑒 by Eq (1). 

Step 4:         For each edge 𝑠𝑒 ∈ 𝑆 do  

Step 5:            Different experts evaluates the edge as follows:        

Step 6:                𝑃𝑖 = Φ𝑖(𝑠𝑒; 𝜃) 

Step 7:            Exploiting type representation 𝑒𝑑 by integrating prior information of its type. 

Step 8:            Guide selection process of the mixed experts: 

Step 9:                𝛿𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑇𝑖(𝑒𝑑⨁ 𝑠𝑒; 𝜙)) 

Step 10:             The final representation of the edge is obtained as follow. 

Step 11:                 𝑣 = ∑ 𝛿𝑖𝑃𝑖
𝑁
𝑖=1  

End for 

Step 12:        Predict unobserved edge 𝑢 for each type by Eq (6). 

Step 13:        𝑈 = 𝑈 + {𝑢} 



                 End for 

Step 14: return 𝑈 

5   Experiments  

In this section, we firstly introduce the drug-target dataset in our experiment, then present commonly 

used drug-target interaction prediction methods and analyze the performance of the MEDTI.  

5.1   Dataset 

To evaluate the performance of the MEDTI on drug-target interaction prediction, we have tested it on 

two datasets, namely Luo et al. dataset [16] and Zhang et al. [37] dataset. These two datasets have been 

widely used to evaluate the drug-target interaction prediction algorithms in pervious researches.  

The Luo et al. dataset is Drug Target Prediction benchmark, which is used for predicting drug target 

interactions, including four drug or protein related networks: drug-drug interaction network[Drug Bank 

(Version 3.0)] [38], drug-protein interaction network [Drug Bank (Version3.0)] [38], drug-disease 

association network (Comparative Toxicogenomic Database) [39] and drug-side-effect association 

network [sider database (version 2)] [40].  

The Zhang et al. integrates bioinformatics and chemical informatics resources to provide detailed drug 

data, including drug chemical substructures, target, enzyme, pathways and drug-drug interactions. This 

dataset is adopted with multiple drug features obtained from the DrugBank database released in April 

2018 (version 5.1.0). The details of our datasets are listed in Table 1 as follow. 

Table 2. The detailed description of our datasets. 

Dataset Data Type Database Description 

Luo et al. dataset 

Drug DrugBank 708 drug types 

Target DrugBank 1512 target types 

Disease Comparative Toxicogenomic  5603 disease types  

Side-effect Sider 4192 side-effect types 

Zhang et al. dataset 

Drug DrugBank 841 drug types 

Target DrugBank 1333 target types 

Enzyme DrugBank 214 enzyme types 

Pathway KEGG 307 pathway types 

Substructure PubChem 619 substructure types 

5.2   Comparison Methods 

To validate the effectiveness of the proposed MEDTI, we choose baselines from the following four state-

of-the-art algorithms, including DTINet [16], BLMNII [41], NetLapRLS [42] and CMF [43]. 

DTINet: DTINet consolidates the multiple types of networks and learns low-rank knowledgeable 

features for drug and protein feature representation. The low-dimensional feature vectors that are learned 

by DTINET acquire contextual knowledge of each network, as well as topological characteristics of 

nodes in multiple networks. On the basis of these low-rank features, DTINet discovers an optimal 

representation of the target space from the drug space that predicts the new drug-target interactions based 

on the geometric approximation of the vectors that are mapped in the unified space. 

BLMNII: BLMNII focuses on finding targets for new drug candidate compounds and identifying target 

drugs for new candidate target proteins. It is based on the bipartite local models (BLM) which transforms 

the drug-target interaction prediction into a binary classification problem. BLMNII combines neighbor-

based interaction profile inferring (NII) method with BLM to handle the new candidate problem. The 

interaction profile is viewed as label information and is used for model to learn new candidates, which 

is significant for finding targets for new drug-target compounds and identifying targeting drugs for new 

target-candidate proteins. 



NetLapRLS: NetLapRLS is a semi-supervised method which incorporates a new kernel built from a 

known drug-protein interaction network into the standard LapPLS. It trains two classifiers in the drug 

and protein types individually and then combines them together to provide the final prediction. 

NetLapRLS takes the interactions between drugs and targets into consideration and simultaneously 

focuses on similarities of drug-drug interactions and target-target interaction.  

CMF: CMF presents a multiple similarity collaborative matrix decomposition (MSCMF), which maps 

drug and target into a common low-rank feature space. The matrices of drug and target is further aligned 

with the weighted similarity matrices of the drug and the target. The weights of these two low-rank 

matrices and the similarity matrix are estimated by alternating least squares. CMF can collaboratively 

predict drug-target interactions from the two low-rank matrices. 

5.3   Experiment Setting 

We split each dataset into the training set and testing set in a ratio of 8:2, where the training set is used 

to optimize the parameters of the MEDTI and the testing set is used to evaluate its performance. In the 

edge representation extractor, we set k = 100 for dimensions of graph embedding. The expert network 

on the mixed expert  discriminator consists of two fully connected layers: the first layer has a hidden size 

of 64 and the second layer has a hidden size of 32. The type gate also includes two fully connected layers: 

the first layer has a hidden size of 200 and the second layer has a hidden size of 320. The prediction 

network on the mixed expert discriminator has a hidden size of 320. For all benchmarks and proposed 

models, we use the same batch size for training epochs of 100. The settings of the parameters of DTINet, 

BLMNII, NetLapRLS and CMF are as [16, 41, 42, 43]. 

5.4   Performance Comparison 

The drug-target interaction prediction can be viewed as a binary classification problem. We utilize Area 

Under the Receiver Operating Characteristic Curve (AUROC), Area Under the Precision Recall Curve 

(AUPR), Accuracy (Acc) and F1-score (F1) for evaluating models. For comparison, we use BLMNII, 

NetLapRLS, CMF, and DTINet, which are all mainstream algorithms. Based on Luo et al. dataset and 

Zhang et al. dataset, Table 2 shows experimental results of baselines and the proposed MEDTI. The 

proposed MEDTI are much more accurate than the baselines in terms of AUROC, AUPR, Acc and F1 

metrics. 

With the help of R-GCN, a powerful tool for extracting useful features, we can capture the features of 

different drug relationships. Compared with other types of feature representations, the features extracted 

by R-GCN are more expressive of the characteristics among various relationships. For NetLapRLS, 

although two types of classifiers, drug and target, are trained separately, its poor recognition of other 

biological entities (e.g., diseases and side-effect) contributes to its fewer effective results than the 

MEDTI. For CMF, it maps drugs and targets into a common low-rank feature space, and the matrices of 

drugs and targets are further aligned with the weighted similarity matrix of drugs and targets. This 

approach allows the CMF to predict drug-target interactions synergistically from two low-rank matrices, 

improving prediction efficiency and accuracy, with the disadvantage that the same lack of attention to 

other biological entities makes its prediction slightly inferior to our proposed MEDTI. DTINet integrates 

multiple types of networks and learns low-rank knowledge features of drug and protein feature 

representations, which confirms the superiority of integrating multiple types of networks for drug target 

prediction tasks. Based on such a basic idea, the MEDTI sufficiently extracts features of various types 

of entities and relationships by constructing heterogeneous biology networks that represent various 

biological entities and interactions and associations among these entities to better polish up drug-target 

interaction prediction in a specific mapping space.  

Specifically, the MEDTI improved AUROC and AUPR by 1.48% and 3.43%, respectively, and Acc 

and F1 scores by 1.45% and 2.22%, respectively, compared with the optimal baseline. 

5.5   The effects of different types of edges in the heterogeneous network 

The edge representation extractor is the significant construction process of heterogeneous biology 

networks in the MEDTI, which is evaluated in the section. To assess the affection of different types of 

edges and their interactions in heterogeneous biology networks, we conduct ablation experiments on Luo 

et al. dataset with AUROC and AUPR metrics. We design three variants of the proposed MEDTI 



Table 3. Performance comparison of methods in datasets 

Dataset and Metrics DTINet BLMNII CMF NetLapRLS MEDTI 

Luo et al dataset 

AUROC 0.9308 0.6595 0.9222 0.9391 0.9539 

AUPR 0.9504 0.6382 0.9413 0.9476 0.9847 

Acc 0.9441 0.6854 0.9375 0.9452 0.9597 

F1 0.9118 0.7031 0.8989 0.9223 0.9445 

Zhang et al 

dataset 

AUROC 0.8867 0.7852 0.7936 0.8339 0.9496 

AUPR 0.8695 0.8298 0.8251 0.8557 0.9208 

Acc 0.9062 0.8025 0.8134 0.8884 0.9601 

F1 0.8995 0.8117 0.8555 0.8723 0.9096 

 

for comparison, including MEDTI1-, MEDTI2- and MEDTI3-. The MEDTI1-, MEDTI2-, MEDTI3- remove 

edges of drug-disease interactions, edges of drug-drug interactions, edges of drug-side-effect 

interactions, respectively.  

Table 3 shows that MEDTI has advantages when all networks are used. When edges of drug-side-

effects are removed, AUROC and AUPR decrease slightly, but when edges of drug-disease interactions 

are removed, AUROC and AUPR highly decrease. A reasonable explanation for this phenomenon is that 

side-effects are only associated with drugs, but diseases are associated with both drugs and targets in the 

heterogeneous biology network. Therefore, we speculate that adding disease nodes and related edges can 

improve drug-target recognition on drug-target interaction prediction problem. 

By comparing the variants with the MEDTI, we can figure out that other types of edges also contribute 

to the drug-target interaction prediction, such as drug-disease and drug-side-effect. These types can bring 

accuracy improvement to the drug-target interaction prediction. 
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(a) Luo et al. dataset                                                (b) Zhang et al. dataset 

Fig. 3 Performance comparison of the MEDTI, MEDTI1-, MEDTI2- and MEDTI3- on the two datasets. 

5.6   Ablation Study 

5.6.1 Importance of the type-prior information extractor 

One of important attributes of the proposed MEDTI is to use a type gate to aggregating type-prior 

information in heterogeneous biology networks. In the MEDTI, the type-prior information extractor 

aggregates each type-prior information of different interactions and enhance the representation of each 

edge representation. We design a variant of the our model, named MEDTIt-, to confirm the significance 

of the type-prior information extractor. The only difference between MEDTI and MEDTIt- is that 

MEDTIt- does not contain the type-prior information extractor. To describe the performance change of 

the two models, we used the AUROC and AUPR values. The performance comparisons between MEDTI 

and MEDTIt- is shown in Fig. 4.   

The MEDTI achieves better performances than MEDTIt- both in the AUROC and AUPR in Fig.4. In  
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  (a) Luo et al. dataset                                                 (b) Zhang et al. dataset 

Fig. 4 Performance comparison of the MEDTI, MEDTIt- and MEDTIm-. 

process of constructing type-prior information, different type edges have distinguishable representation, 

and distinguishable representation of edges can be an indicator for the drug-target interaction prediction. 

The combination of representation of edges and types can provide an additional dimension to train 

classifier and improve performance of drug-target interaction prediction. Accordingly, this ablation study 

shows that type-prior information extractor offers a useful manner for the MEDTI, which contain the 

type-prior information extractor, to have better performance. 

5.6.2 Importance of the type-prior information extractor 

To analyze the importance of the mixed expert discriminator in drug-target interaction prediction, we 

design a variant of the proposed MEDTI, named MEDTIm- for comparison. Thus, the MEDTIm- only 

used a single expert model. The performance comparison of MEDTI and MEDTIm- is presented in Fig. 

5. 

Fig.4 shows that the MEDTI achieves significant performance improvements. Compared with the 

MEDTIm-, which only used a single expert model, the MEDTI can better exploit the contribution of 

several expert models which corresponding to other types of interactions and associations to drug-target 

interaction prediction. This substantial improvement can be attributed to the mixed expert discriminator, 

which uses multiple mixed expert from the edges of different types of edges for drug-target interaction 

prediction. The MEDTI, which contains the type-prior information extractor, automatically exploits 

structural and biological features of different types of interactions and associations in drug-target 

interaction prediction. Therefore, the MEDTI obtains better drug-target interaction prediction 

performance. 

6   Conclusion 

This study demonstrates that heterogeneous network-based node representation method can model 

multiple types of entities and complex interactions between different types of entities in a single 

heterogeneous network which can provide additional information in drug-target interaction prediction. 

The MEDTI exhibited the AUPR curve of 98.47% and outperformed the BLMNII and CMF methods on 

this task. The MEDTI also showed close performance to the NetLapRLS and DTINet methods. Further 

investigations of this method such as exploiting the common and individual features in different types of 

networks may result in training more distinguished type representations, which can promote the detection 

performance. Additionally, the MEDTI will be applied on other domain datasets such as cancer and 

neurodegenerative disease to evaluate the performance. 
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