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Abstract. Physics aids explainable artificial intelligence. The inherent
topology of a chaotic system is often a boon to learning algorithms. He-
lical or screw flows are chaotic. Their velocity and rotational fields are
parallel to each other, typically hosting coherent structures that contain
(either strain or shear) barriers which resist fluid flow across them. Here,
we apply perturbation to coherent fluid particles to construct a criterion
governing the topological changes in their mixing across barriers, which
we define using the macroscopic statistical measure of finite-time Lya-
punov exponent. Our findings demonstrate that the rigid coherent struc-
tures essentially support mixing in purely helical flows. These findings
have far-reaching implications in diverse fields of applications, ranging
from dynamos in growing magnetic field, classical turbulence in super-
fluid helium to supercell atmospheric tornadoes.
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1 Introduction

The topology of chaotic signals around equilibria is an active area of interest
in data-centric computing and neural networks. A chaotic signal is determin-
istic and bounded while being sensitive to initial conditions. Chaotic signals
have been recently represented as artificial neurons in the novel ChaosNet ar-
chitecture to improvise machine-enabled classification [1]. To add, asymptotic
perturbations have defined constriction factors which ensure the diversity of so-
lutions in multi-objective optimizations in learning algorithms [2]. Recent studies
have affirmed that the Langevin [3] and Lagrangian [4] approaches unravel the
underlying physics of neural networks in data science. Since the application of
machine learning is gaining traction to comprehend the physics of fluid flow [5],
the topological examination of a certain flow field is the subject matter of this
article.

Helicity is a flow property which measures the extent of alignment between a
vector and its curl. Kinetic helicity quantifies that alignment between vorticity
(rotationality) and velocity in the flow. Rotating column of fluid mass in tor-
nado may be an ideal use case of purely helical flow. By virtue of conservation
[6, 7], helicity is a fundamental quantity in explaining the dynamo which is a
spontaneously growing magnetic field in an electrically conducting Earth’s liquid
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core [8, 9]. This has interdisciplinary implications, ranging from examining the
astrophysical magnetism to assessing the stability of magnetic field in thermonu-
clear fusion [10]. It is known that a geometrically constrained advection of helical
flow hosting a repeated sequence of stretch, twist and fold can be described by
a superposition of three orthogonal components of velocity also known as ABC
flow, which is attributed to the contributions by Arnol’d, Beltrami and Childress
[11]. ABC flow is an exact solution to the steady Euler equations of motion. The
modeled flow comprises compartments or cells due to the alternate presence of
saddles and foci which is evident from the application of critical point theory
[12]. The cells may be associated with rigid coherent structures which modulate
fluidic mixing. Rigidity is a measure of increase in timescale of coherence in the
mixing phenomenon. An ideal rigid coherent structure neither grows nor decays
with time.

Fluidic mixing in purely helical flows is an outstanding area of interdisci-
plinary interest. Chaotic advection facilitates mixing which in turn depends on
repelling stationary points [8]. ABC flow is elusively simple but the pathlines
stretch and fold owing to bounded helicity and space-periodicity [13]. Recently,
we have examined the topology and transport of mixing in ABC flows using
the instantaneous and Lagrangian descriptors [14]. The physical connection be-
tween the time-resolved (Eulerian) and time-averaged (Lagrangian) description
of mixing in helical flow is the subject matter of this article.

Here, we claim that a topological change in fluid mass that is advecting be-
tween locally minimized shear and strain in rigid coherent structures promotes
mixing in purely helical unsteady flow. In order to test the hypothesis, we exam-
ine the topology of unsteady streamlines and find an asymptotic match between
material curves that satisfies smooth mixing under constrained shear and strain.
The assessment begins with velocity. Taking cue from the earlier works [15, 16]
on unsteady helical rotationalities, a kinematic template of velocity (u, w) in the
incompressible helical (ABC) flow may be given as:

u = A sin(k(z + sin(A t/λABC))) + C0 cos(k(y + sin(A t/λABC)))
w = C0 sin(k(y + sin(A t/λABC))) +B0 cos(k(x+ sin(A t/λABC)))

(1)

where the unsteady parameter A is given as A0 + 0.5× t× sin(π t), t denotes
time, the constant parameters A0, B0 and C0 obey the constraint A2

0+B2
0+C2

0 =
3, k = 2π/λABC and λABC is the length scale of the domain. The flow field in
Eq. 1 has dimensions in SI. For illustrations in this article, A0 = B0 =

√
3/2,

C0 = 0 and λABC = 1.
The significance of the present work is that it unifies the underlying mix-

ing due to helical rotationalities in apparently distinct physical systems, such as
the Earth’s magnetic dynamo, superfluid helium and tornado. A dynamo com-
prises the nonlinear interactions between the chaotic flow and the magnetic field
within the Earth’s liquid core [10]. Chaos modulates the separation of nearby
fluid parcels which is often measured with the finite-time Lyapunov exponent
(FTLE) that has interdisciplinary applications. For instance, the Lyapunov ex-
ponent is frequently used to diagnose nonlinear signals from the human brain



Chaotic mixing in helical flow 3

[17]. Alexakis [18], in his search for sustained growing dynamos, computed FTLE
in laminar ABC flow and reported certain intervals of the model parameters A,
B and C that define chaos. However, this finding alone does not adequately
explain the underlying mixing, as attributable to a recent study by the present
authors that deliberates the topology of mixing in generalized helical flows by
using FTLE in the coordinate space rather than the parametric space of the
model [14]. Chaotic motions are essential elements of fast dynamos, i.e., dy-
namos that operate over timescales much shorter than the turnover timescales
generating the fluid flow. Within the Earth’s liquid core, a relaxing magnetic
field is topologically equivalent to a state of magnetostatic equilibrium which
is analogous to Euler flow. Core flow, being turbulent, is asymmetric (that is,
chiral with non-zero helicity) [10]. This allows for solving the magnetic field with
a tractable idealized ABC flow. In the study of turbulence in superfluid helium,
4He II, Angstrom(Å)-thick superfluid vortex lines have been modeled [19], their
existence and growth within normal fluid vortex cores have been quantified [20],
and the mechanisms of superfluid – normal fluid vortex matching have been
identified [16]. It is well-known that discrete turbulent normal fluid vortices are
ideally analogous to those appearing in ABC flow, subject to the condition that
the turbulent vortices in 4He II are not closely spaced to initiate any topological
change or reconnection [21]. From a geophysical view, the study of tornadoes
is crucial to the climatic modeling of the Earth’s heat imbalance [22]. Super-
cell storms originate near swirling intersection of warm inflow and cool outflow.
Strong wind shear around bulk updraft orients the vortical flow to be optimally
helical in order for the storm to be a sustainable tornado [23]. Which supercell
storm transforms into tornado is an open problem [24]. This article complements
the progress in these challenges.

Rest of the article is organized as follows. We examine the instantaneous flow
topology and identify characteristic timescales in the modeled flow. We probe the
topology using Lagrangian descriptors such as pathlines and FTLE to emphasize
the fundamental differences between steady and unsteady ABC flow. We then
perturb the deformation of fluid parcels to identify the conditions of smooth
mixing between minimized strain and shear in the flow where FTLE vanishes.
These regions are associated with rigid coherent structures and occupy bulk of
the flow. Finally, we discuss the implications of our results on interdisciplinary
physical systems and conclude this article.

2 Topological regimes in helical flow

We find that the temporal probes of the modeled flow field [Eq. 1] at different
locations in the domain [Fig. 1] suggest that the model is bounded which is
essential for the representation of physical flows. We now consider the topological
evolution of the model to examine the categorically distinct mixing phenomenon
of unsteady helical flow. Figure 2 illustrates the topological bifurcations as a
function of time in the x–z plane at y = 0 where the Cartesian coordinates have
their origin at the centre of the plane. To aid the visualization, we superpose
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) to (f): Variation of flow components (u, w) with time for steady (horizontal
blue) and unsteady (fluctuating red) ABC flow at three specified locations

the streamlines on the vorticity field (ωy) of ABC flow in Fig. 2. We find three
topological regimes where saddles and vortices undergo unique deformations.
First, locally maximum vorticity traces the domain of the unsteady flow with
time (t < 1.15 s, 1.5 s < t < 3.25 s, 3.27 s < t < 3.62 s and 4.2 s < t < 5 s). Please
see Figs. 2(a), 2(b) and 2(c) for illustration. This is reported in the context of
superfluid turbulence as well [16]. Second, there are two occurrences of abrupt
topological bifurcation, 3.25 s < t < 3.27 s [Figs. 2(d), 2(e), 2(f)] and 3.77 s <
t < 3.79 s. The bifurcations are evident from the evolving pattern of streamlines.
Third, there are regions of vorticity which evolve and grow while being stationary
on certain time intervals (1.15 s < t < 1.5 s, 3.62 s < t < 3.77 s and 3.79 s < t <
4.2 s). Please see Figs. 2(g), 2(h) and 2(i) for illustration. Thus, the repeated
sequence of the three regimes is a candidate that facilitates mixing.

Probing further, we examine the continuum deformation that is associated
with flow topology. Two neutrally buoyant neighboring fluid particles sepa-
rate exponentially over time as elucidated by a first-order Taylor series ex-
pansion of the velocity field about a spatial coordinate. This leads to com-
puting the growth rate of a multi-dimensional neighborhood. Consider a two-
dimensional flow map F : (x̄0, t0)→(x̄, t). Initial neighborhood δ(x̄0) acted upon
by the deformation operator ∇̄F results in δ(x̄) = (∇̄F) δ(x̄0). Hence |δ(x̄)|2 =
〈(∇̄F ) δ(x̄0), (∇̄F ) δ(x̄0)〉 = 〈δ(x̄0), (∇̄F )T ∇̄F δ(x̄0)〉 = 〈δ(x̄0), C δ(x̄0)〉. Here
〈., .〉 denotes inner product and C is the Cauchy-Green strain tensor, which is
positive-definite. Accordingly, all its eigenvalues (λi, i = 1, 2, 3) are positive.
Mass conservation between instants t0 and t for an incompressible flow requires
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Topological regimes in unsteady ABC flow. The vorticity field (ωy) and the
interplay of superimposed streamlines suggest that there are three distinct topological
regimes: (a) to (c), (d) to (f) and (g) to (i). The illustrative streamlines are equal in
number from (a) to (i).



6 Priyam Chakraborty

the determinant of C to be unity (§14 of Lamb 25). This implies that, in two
dimensions (2D), λ1 × λ2 = 1, that is, λ1 and λ2 must satisfy the inequality:
0 < λ1≤1≤λ2 [26]. We note that, since the stretch, twist and fold of vortices
in helical systems do not constitute the subject matter of this article, there is
no loss of generality in examining a 2D modeled ABC flow. The 2D velocity
field (u, w) exhibits chaos the way it exists in a three-dimensional system [27].
Moreover, the imposed length scale in the third dimension is far greater than
the mixing scale of the helicity-driven dynamics. For instance, the size of the
Earth and troposphere are orders of magnitude larger than the cross-sections of
the Earth’s liquid core and tornado, respectively. Thus, a 2D model enables a
conservative understanding of mixing.

The extent of deformation of an n-dimensional fluid mass may be defined
in terms of n Lyapunov exponents along principal directions which are given
by the eigenvectors of the tensor C. Since the separation of neighbors in the
flow is exponential, the largest Lyapunov exponent overwhelms the remaining
(n− 1) exponents. Mathematically, the time-averaged logarithmic largest Lya-
punov exponent is known as FTLE, that is, FTLE = 1

∆t log(λn). Thus, the fluid
particles attract and repel along λ1 and λ2, respectively, in 2D flow. When the
eigenvalues of C are each unity, FTLE is zero which implies coherence due to no
net exponential growth or decay. Starting with the velocity of the modeled ABC
flow [Eq. 1], we computed FTLEs that denote the repulsion of fluid parcels from
these structures forward in time. We sampled the model at every 0.01 second for
1000 time steps and customized an open-source software for the computations.
We employed a fourth-order Runge-Kutta scheme to discretize time.

3 Perturbation of coherent fluid parcels

To elucidate the topological changes in coherent structures as shown in Fig. 2, we
may quantify the deformation of a neutrally buoyant material curve in the flow
[Fig. 3]. Mathematically, a length-averaged property Q(γ) = 1

σ

∫ σ
0
L(r̄(s), r̄′(s))ds

of curve γ in ε-neighborhood is invariant with O(ε2)-accuracy if the differential
of Q vanishes (that is, when Q is indifferent to change in γ). Here, s denotes the
length along γ. r̄ is a position on γ and r̄′ is the tangent to γ at that point [Fig. 3].
Minimizing Q gives a set of Euler equations subject to which the total derivative
of a function (known as the first integral) vanishes when L is independent of s
(see supplementary material). The first integral is invariant for the curve γ which
is traveling with the flow given that the Q-minimizing condition is true (known
as Noether’s theorem) [28].

Physically, Q may be constructed to imply that either strain or shear governs
the flow. Firstly, when Q is defined as a strain ratio (lt/l0) by comparing the
parametric lengths of curve γ at a later and initial time instants, the dimensional
scaling of s with respect to r̄′ transforms L to L′(r̄, r̄′) = 〈r̄′, 12 (C−λ2I)r̄′〉, which
is a function of strain energy (Supplementary material of Haller and Beron-
Vera 29) and defines an energy integral. The tensor 1

2 (C − λ2I) in 2D flow has
oppositely signed eigenvalues λ1−λ2 and λ2−λ2, and is known as a symmetric
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Fig. 3. Deformation of a material curve (solid blue) and the vectors attached to it. ξ̄1,
ξ̄2 comprise principal directions in an illustrative 2D deformation.

Lorentzian metric in the geometric sense. The net deformation due to the tensor
has two components: isotropic due to λ, and anisotropic due to λ1 and λ2 [Fig.
3]. The energy integral ensures a minimum-strain deformation of curve γ in the
Lorentzian metric space which confirms that FTLE vanishes at least once within
a coherent vortical region enclosed by curve γ in the flow [29]. The vanishing
FTLE is a fundamental observation in the analysis of ABC flow presented in
this article [Fig. 4].

Secondly, when Q is defined as a shear due to the projection of the advected
unit normal vector on the tangent vector, L transforms into a new L′

which
contains 1

2 (CR−RC) that is again a symmetric Lorentzian metric tensor because

its eigenvalues in 2D, ±
√
C2

12 + (C22−C11)2

4 , have opposite sign. Accordingly, the

energy integral ensures a minimum-shear deformation of curve γ. Here, C =[
C11 C12

C12 C22

]
, and R =

[
0 −1
1 0

]
rotates a vector counter-clockwise by π

2 .

Figure 4 shows that the coherent FTLEs divide the domain into ‘cells’. More-
over, we attribute mixing to the sensitive pathlines of fluid particles which are
spread over greater parts of the domain in the unsteady modeled flow than in
the steady flow. To this end, we have shown earlier that the transport in gener-
alized helical flows is a function of topology and FTLE [14]. Here, we examine
the conditions which underlie the topological differences during the transport of
a material curve through shear- and strain-driven cells of the domain under the
influence of vanishing FTLE. Since the definition of the length-averaged property
Q minimizes either strain or shear of a deforming curve γ, it is incumbent that
there are separate corresponding geometric descriptions of the phenomena. Ac-
cordingly, a tangent r̄′ to a point on the closed material curve γ that is advecting
in the flow with a minimum-strain deformation may be given as [26]:

r̄′(s) =

√
λ2 − λ2√
λ2 − λ1

ξ̄1(r̄)±
√
λ2 − λ1√
λ2 − λ1

ξ̄2(r̄) (2)

which is a linear combination of orthonormal eigenvectors, ξ̄1 and ξ̄2, of the
tensor C. Similarly, r̄′ for a curve γ under minimum shear may be given as [30]:
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r̄′(s) =

√√
λ2√√

λ1 +
√
λ2
ξ̄1(r̄)±

√√
λ1√√

λ1 +
√
λ2
ξ̄2(r̄) (3)

Since the transition of the curve γ from a minimizing strain to shear defor-
mation requires that the Eqs. 2 and 3 are linearly dependent, the corresponding
coefficients of ξ̄1 and ξ̄2 in these two equations must be proportional to each
other. Since the eigenvalues λ1 and λ2 of the tensor C approach unity when
FTLE is vanishing, Eqs. 2 and 3 have characteristic differences. While the coeffi-
cient of either ξ̄1 or ξ̄2 is 1√

2
in Eq. 3, we consider an asymptotic perturbation to

avoid singularity in Eq. 2. Noting that λ2 = 1/λ1, we let ε =
√

1− λ21 to be the
perturbation when λ1 approaches unity. As ε → 0, a transition between shear-
and strain-minimizing curves in the flow will occur when there is asymptotic
matching between Eqs. 2 and 3 with respect to the coefficients of ξ̄1 and ξ̄2.

After some algebra, the matching between the coefficients of ξ̄1 occurs ac-
cording to:

1
ε

√
1− λ2

√
1− ε2 ∼ 1√

2
(4)

which implies that 1 − λ2(1 − ε2

2 −
ε4

8 ) ∼ ε2

2 , and hence λ → 1+. Similarly,
the coefficients of ξ̄2 match when:

1
ε

√
λ2
√

1− ε2 − (1− ε2) ∼ 1√
2

(5)

which leads to λ2 ∼ 1− ε2

2√
1−ε2 , and hence λ → 1+. That is, λ is never less

than one. Thus, we find that the presence of rigid coherent structures (λ on the
order of but not less than one) is a necessary condition for the characteristic
topological modulations in unsteady helical ABC flow.

4 Discussion

Our findings have implications on the study of terrestrial magnetic dynamos, su-
perfluid turbulence and tornadoes. First, the equation of magnetic induction may
be expressed as ∂B̄/∂t = ∇̄×(ū×B̄) + (∇2B̄)/Rm, where ū and B̄ are velocity
and magnetic fields respectively, and Rm = UcLcµ0σ is non-dimensional mag-
netic Reynolds number with Uc and Lc being characteristic velocity and length
respectively, µ0 being free space permeability and σ being electrical conductiv-
ity. Solution to the induction equation reveals the largest Lyapunov exponent
(indicator of chaos) and unstable critical points, both of which can be used as
metrics to find a relation that tweaks the parameters A, B and C of the unsteady
ABC flow with varying Rm (and hence Uc and Lc) so that FTLE contours can
bear equivalent metrics. Actual solutions of induction equation with ABC veloc-
ity field at lower values of Rm are required to establish this relation. This can
provide apriori information about advection of magnetic field when Rm is high
(O(∼ 103) for Earth) and direct solution of the induction equation is delayed due
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Fig. 4. Forward FTLE Contour superimposed with trajectories. (a) unsteady ABC
flow, (b) steady ABC flow
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to constraint on computing power. Moreover, unsteady ABC flow shows promise
in being used as input to induction equation to find growth rates of both large
scale and small scale dynamos over a wide range of Rm [31]. We do realize
that anti-dynamo theorem [32] negates formation of sustained growing dynamo
in 2D flow. However, our analysis in this article can be easily extended and is
applicable to three dimensions. Second, particle image velocimetry and direct
numerical solution of the equation of moving particles in fluid are potent tools
for flow visualization of He II. However, they depend on properties of particles
being injected as tracers [33]. FTLE contour of ABC flow displays presence of
idealized discrete vortices of superfluid He II without requiring tracers. Instan-
taneous maximum vorticity regions in our unsteady model are found to linearly
trace the domain as has been reported with other unsteady models [16]. On-
set of vortex wave instability as mechanism for superfluid – normal fluid vortex
matching [16] can be linked with FTLE contours. Moreover, there is scope to
explore analogy between cell mixing in unsteady ABC flow and turbulent vortex
interactions in superfluid He II at temperatures varying below critical 2.17K.
Third, observations from Doppler Radar [34] can be used to identify unsteady
ABC flow field with matched critical stagnation points. This is to be followed by
tagging the supercell storms, both objectively (largest FTLE) and subjectively
(extent of cell mixing due to zero-level FTLE contours). Thus storm tagging will
help build a database documenting the behavior of storms leading to tornadoes.

5 Conclusion

To summarize, we analyze the significance of macroscopic Lagrangian behav-
ior and mixing characteristics of purely helical flow in understanding the first
principles of interdisciplinary problems. In this regard, we consider an unsteady
model of helical flow, and identify coherent structures in both steady and un-
steady helical flow. Fluid mixing across cells is absent in the steady but evident
in the unsteady flow. We identify distinct topological changes in the unsteady
flow as well. These observations highlight the role of perturbation in unsteady
field and affirms our new analytical procedure to understand how coherent fluid
parcels transition between shear and strain barriers and hence induce cell mixing.
Largest FTLE in the domain and the degree of cell mixing appear to emerge
as two indicators that extend the scope of purely helical flow as a model for
dynamo theory, mixing in superfluid He II and tagging of supercell tornadoes.
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