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FINITE HILBERT-STYLE AXIOMATIZATIONS OF
DISJUNCTIVE AND IMPLICATIVE FINITELY-VALUED

LOGICS WITH EQUALITY DETERMINANT

Abstract. Here, we, first of all, develop a universal method of [effective] con-
structing a [finite] Hilbert-style axiomatization of the logic of a given finite

disjunctive/implicative matrix with equality determinant [and finitely many
connectives]. In addition, using same auxiliary tools, we prove that the lattice
of disjunctive extensions of the logic of a finite [more specifically, one-element]

class of finite disjunctive matrices [with equality determinant] is dual to the
distributive lattice of all ({strict} Horn) universal relative [i.e., relatively hered-

itary] subclasses of the class of all consistent — viz., having non-distinguished

values — submatrices of defining matrices, 〈finite〉 relative axiomatizations of
the latter ones 〈[to be found effectively]〉 being analytically transformed to
those of the former ones.

1. Introduction

Though various universal approaches to (mainly, many-place) sequent axioma-
tizations of finitely-valued logics (cf., e.g., [21] for a most universal approach sub-
suming all preceding ones, in their turn, going back to the independent works [27]
and [26] originating this area of Proof Theory for Many-Valued Logic) have being
extensively developed, the problem of their standard (viz., Hilbert-style) axiomati-
zations (especially, on a generic level) has deserved much less emphasis despite of
the problem’s being especially acute within both General Logic and Proof Theory.

On the other hand, the general study [19], equally subsumed by [21], has sug-
gested a universal method of [effective] constructing a multi-conclusion Gentzen-
style (viz., two-side sequent) axiomatization with structural rules and Cut Elimi-
nation Property of the logic of a given finite matrix with equality determinant —
viz., a set of secondary unary connectives discriminating distinct truth values of
the matrix by the values of one the former ones on the latter ones’ being distin-
guished — [and finitely many connectives] (in particular, any four-valued expansion
of Dunn-Belnap’s “useful” four-valued logic [2, 3] [by finitely many connectives as
well as  Lukasiewicz finitely-valued logics [9, 11]]). In this work, providing the ma-
trix involved is disjunctive/implicative (that equally covers aribitrary/implicative
four-valued expansions of Dunn-Belnap’s four-valued logic/“ as well as  Lukasiewicz
finitely-valued logics), we enhance the mentioned study by [effective] transforming
any [finite] sequential table for the matrix (viz., a collection of context-free skeletons
of uniquely-chosen introduction rules for the matrix and all compound non-constant
connectives — viz., values of elements of the equality determinant on primary non-
constant connectives — not belonging to the equality determinant) and minimal —
under the subsuming quasi-ordering, while treating sequents as first-order clauses
(cf. [25]) — sequent axioms with disjoint sides consisting of solely either elements of
the equality determinant or their values on constant connectives true in the matrix,
actually giving a Gentzen-style axiomatization of the logic of the matrix in [19], to
a [finite] Hilbert-style axiomatization of the logic.
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2 HILBERT-STYLE AXIOMATIZATIONS OF FINITELY-VALUED LOGICS

It appears that practically same auxiliary tools, concerning sequent calculi, go-
ing back to [17], advanced here and used for solving the problem described above,
are equally applicable to that of finding disjunctive extensions of disjunctive not
necessarily uniform/unitary finitely-valued logics not necessarily with equality de-
terminant as well as their finite both matrix semantics and relative axiomatizations,
so we solve this problem as well, laying a special emphasis onto the unitary case
with equality determinant providing the effectiveness of the proposed solution.

The rest of the material is as follows. Its exposition is entirely self-contained. Sec-
tion 2 is a concise summary of basic issues underlying the work. In Section 3, upon
the basis of the rather conventional paradigm “rules as purely-single-conclusion two-
side sequents”, under which logics (formally as finitary rather Tarski-style conse-
quence relations than, equivalently, closure operators) are nothing but calculi closed
under purely-single-conclusion two-side sequent structural rules — Reflexivity, Cut
and Subsuming1 (in its turn, subsuming the traditional one — Enlargement; Permu-
tation and Contraction being implicit, due to treating sequent sides as finite rather
sets than sequences), we propose a really elegant formalism uniformly covering both
Hilbert- and Gentzen-style propositional calculi (in particular, axiomatizing propo-
sitional logics) as well as providing a quite transparent insight into the issue of their
matrix semantics going back to [8] and [30], respectively. Then, in Section 4 we
develop/recall certain advanced key issues concerning disjunctivity/implicativity
used here. Next, Sections 5 and 6 are entirely devoted to the main general results
of the work (cf. the Abstract) further exemplified in Section 7. Finally, Section 8
summarizes principal contributions of the work.

2. General mathematical background

2.1. Set-theoretical background. As usual, natural numbers (including 0) are
treated as finite ordinals (viz., sets of lesser ones), the ordinal of all them being
denoted by ω. Then, given any N ⊆ ω and any n ∈ (ω \ 1), set (N ÷ n) , { i

n |
i ∈ N}. Likewise, functions are treated as binary relations. Finally, any singleton
is identified with its unique element, unless any confusion is possible.

Let S, T and U be sets. Then, an enumeration of S is any bijection from its
cardinality |S| onto S. Next, the set of all subsets of S (including T ) [of cardinality
in α ⊆ ω] is denoted by ℘[α]((T, )S), respectively. Further, in case T ⊆ SS and
U ⊆ S, put T [U ] , {f(a) | f ∈ T, a ∈ U}. As usual, any S-tuple (viz., a function
with domain S) is normally written in the sequence form t̄, its s-th component (viz.,
value under argument s), where s ∈ S, being written as either ts or, to avoid double
subscripts, ts. Put ðS , {〈s, s〉 | s ∈ S}, relations of such a kind being said to
be diagonal, and S∗|+ , (

⋃
i∈(ω\(0|1)) S

i), elements of which being treated as |non-
empty finite tuples constituted by elements of S. Then, any � : S2 → S determines
the equally-denoted mapping � : S+ → S defined by induction on the length of
elements of S+ as follows: for any b ∈ S [and any ā ∈ S+], set (�〈[ā, ]b〉) , ([(�ā)�]b).
In particular, given any f ∈ SS and any n ∈ ω, fn , (◦〈n× {f},ðS〉) ∈ SS is
called the n-th degree of f . Likewise, f determines the equally denoted mapping
f : S∗ → S∗, ā 7→ (f ◦ ā). Then, f is said to be R-[anti-]monotonic, provided
f [R ∩ S2] ⊆ R[−1]. Furthermore, given any � : (S × T ) → S and any b ∈ T ,
set (�b) : S → S, a 7→ (a � b). Finally, any � : (S × T ) → T determines the
equally-denoted mapping � : (S∗ × T ) → T by induction on the length of elements
of S∗ as follows: for any b ∈ T [and any a ∈ S {as well as any c̄ ∈ S∗}], set
(〈[{c̄, }a]〉 � b) , [{(c̄�}(a�]b[){)}]. In general, any B ⊆ ℘(S) is identified with
the poset 〈B,⊆ ∩B2〉. Then, an anti-chain of B is any A ⊆ B such that, for all

1Cf. [25] for roots of this term.



HILBERT-STYLE AXIOMATIZATIONS OF FINITELY-VALUED LOGICS 3

X,Y ∈ A, it holds that (X ⊆ Y ) ⇒ (X = Y ). Likewise, a lower cone of B is any
C ⊆ B such that, for all X ∈ C, it holds that (B ∩ ℘(X)) ⊆ C. Clearly, providing
B is finite (in particular, S is so), C 7→ max(C) and A 7→ (B ∩

⋃
{℘(X) | X ∈ A})

are inverse to one another bijections between the sets of all lower cones and of all
anti-chains of B.

2.2. Algebraic background. In general, to unify notations, unless otherwise spec-
ified, abstract algebras are denoted by capital Fraktur letters [possibly, with indices],
their carriers (viz., underlying sets) being denoted by corresponding capital Italic
letters [with same indices, if any].

Let Σ be an algebraic (viz., functional) signature, constituted by operation sym-
bols of finite arity treated as (propositional/sentential) {primary} connectives, the
set of all n-ary ones, where n ∈ ω, being denoted by Σ�n. Likewise, given any α ∈
({ω}[∪ω]), elements of the set Varω[∩α] , (img x̄ω[∩α]), where x̄ω[∩α] , 〈xi〉i∈(ω[∩α]),
are viewed as (propositional/sentential) variables [of rank α]. Then, [in case α 6= 0,
whenever (Σ�0) = ∅] we have the absolutely-free Σ-algebra Tm

[α]
Σ freely-generated

by the set Varω[∩α] with carrier denoted by Tm[α]
Σ ⊇ Varω[∩α], whose elements are

called Σ-terms [of rank α] and are viewed as (propositional/sentential) Σ-formulas
[of rank α]. Next, the function Var with domain TmΣ assigning the finite set of all
variables actually occurring in an argument Σ-term ϕ is defined by induction on
construction of ϕ with diagonal (under the identification of singletons with their
unique elements) restriction on Varω and setting Var(F (ϕ̄) , (

⋃
Var[img ϕ̄]), for all

F ∈ Σ of arity n ∈ ω and all ϕ̄ ∈ (TmΣ)n. Further, a secondary n-ary connective of
Σ, where n ∈ ω, is any Σ-term of rank n+(1−min(1,max(n, |Σ0|))), any primary n-
ary connective F of Σ being identified with the secondary one F (x̄n), for the sake of
unification. Furthermore, given any T ⊆ TmΣ [and any non-empty α ⊆ ω], the set
Tm[α]

T ⊆ Tm[α]
Σ of T -terms [of rank α] is defined in the standard recursive manner

by means of variables [of rank α] and Σ-terms (viz., secondary connectives of Σ) in
T . (More precisely, Tm[α]

T , (
⋂
{S ∈ ℘(Varω[∩α],Tm[α]

Σ ) | ∀σ ∈ hom(TmΣ,Tm
[α]
Σ ) :

(σ[Varω] ⊆ S) ⇒ (σ[T ] ⊆ S)}) ∈ ℘(T,Tm[α]
Σ ).) Finally, any homomorphism h

from Tmα
Σ [to itself], being uniquely determined by h′ , (h�(Varα[\V ])) [where

V ⊆ Varα such that h�V is diagonal], is identified with h′, in its turn, often written
in the conventional assignment [resp., substitution] form [v/h′(v)]v∈(dom h′).

2.2.1. Logical matrices. As usual, any (logical) Σ-matrix (cf., e.g., [8]), i.e., a couple
of the form A = 〈A, DA〉 with its underlying [ Σ-]algebra A and its truth predicate
(viz., the set of its distinguished values) DA ⊆ A, is treated as a first-order model
structure (viz., an algebraic system; cf. [10]) of the signature Σ ∪ {D} with single
unary predicate D, in which case the notion of a submatrix of A (in particular, the
one of the restriction (A�B) of A on any B ⊆ A forming a subalgebra of A as the
submatrix of A with underlying algebra A�B) is defined in the standard way as
any Σ-matrix of the form 〈B, DA ∩B〉, where B is a subalgebra of A, while, for
any Σ′ ⊆ Σ, (A�Σ′) , 〈A�Σ′, DA〉. (In general, to unify notations, unless otherwise
specified, logical matrices are denoted by capital Calligraphic letters [possibly, with
indicies], their underlying algebras being denoted by corresponding capital Fraktur
letters [with same indicies, if any].) This is said to be consistent, whenever DA 6=
A. Likewise, it is said to be �-disjunctive/-implicative, where � is a (possibly,
secondary) binary connective of Σ, provided, for all a, b ∈ A, it holds that ((a�Ab) ∈
DA) ⇔ ((a 6∈ / ∈ DA) ⇒ (b ∈ DA))/“, in which case it is Y�-disjunctive, where
(x0 Y� x1) , ((x0 � x1) � x1)”, and so is any submatrix of A. Finally, according to
[19], an equality determinant for A is any = ⊆ Tm1

Σ such that every a, b ∈ A are
equal, whenever, for each ι ∈ =, it holds that (ιA(a) ∈ DA) ⇔ (ιA(b) ∈ DA), in
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which case it is so for any submatrix of A, and so is any/“some finite” =′ ⊆ Tm1
Σ

such that =′ ⊇ / ⊆ =/“, in case A is finite”. Then, given any a ∈ A, set =Aa,+|− ,

{ι ∈ = | ιA(a) ∈ | 6∈ DAn}, respectively.

3. Abstract languages and their sequentializations

A(n) (abstract) language is any couple of the form L , 〈FmL,SbL〉, where FmL

is a set, whose elements are called L-formulas, and SbL ⊆ FmFmL

L contains ðFmL

and is closed under composition ◦, whose elements are called L-substitutions. Then,
an L-substitutional instance of a Φ ∈ FmL is any L-formula of the form σ(Φ), where
σ ∈ SbL. Next, [given any α ⊆ ω] any 〈Γ,∆〉 ∈ Seq[α]

L , (℘ω(FmL)×℘ω[∩α](FmL))
is called an [α-conclusion] L-sequent and normally written as Γ ` ∆, elements of
Γ/∆ being referred to as premises/conclusions of it, “(purely-)multi|single” stand-
ing for “(ω|2)(\1)”, respectively, ` Γ and ∆ ` standing for ∅ ` Γ and ∆ ` ∅, respec-
tively, as usual. This is said to be disjoint, whenever Γ and ∆ are so. Further, an
L-rule/-axiom is any purely-single-conclusion L-sequent Γ ` Φ /“without premises”
in which case it is often written in the displayed form Γ

Φ /“and identified with Φ”,
sets of them being referred to as /axiomatic L-calculi . Then, given any Φ,Ψ ∈ FmL,
Φ
Ψ l stands for (Φ a` Ψ) , {Φ ` Ψ; Ψ ` Φ}. Furthermore, any X ⊆ FmL is said to
be closed under an L-sequent Γ ` ∆, provided (Γ ⊆ X) ⇒ ((∆∩X) 6= ∅). Finally,
any unary operation f on FmL (including L-substitutions) determines the equally-
denoted mapping f : Seq[α]

L → Seq[α]
L , (Γ ` ∆) 7→ (f [Γ] ` f [∆]). In this way,

$[α](L) , 〈Seq[α]
L ,SbL〉 is a language, called the [α-conclusion] sequentialization

of L, “[α-conclusion] (n-order) sequent|Gentzen-style L-” standing for “$(n)
[α] (L)-”

(where n ∈ (ω \ 2)). Then, an L-rule R = (Γ ` Φ) is said to be derivable in an
L-calculus C, provided there is a C-derivation of R, that is, a proof d̄ ∈ Fm∗

L of
Φ by means of axioms in Γ (to be treated as hypotheses) and L-rules in SbL[C], in
which case, for any σ ∈ SbL, σ ◦ d̄ is a C-derivation of σ(R), because SbL is closed
under composition, while 〈Γ,Φ〉 is a C-derivation of R, for ðFmL

∈ SbL. Likewise,
it is said to be admissible in C, provided any L-axiom is derivable in C, whenever
this is derivable in C ∪ {R}, that is, the set of all L-axioms derivable in C is closed
under every L-substitutional instance of R.

We use the following “sign sequent” notation: given any i ∈ 2 and any Γ ∈
℘ω(FmL), put (i : Γ) , {〈i,Γ〉, 〈1− i,∅〉} ∈ SeqL.

Given two L-sequents Φ = (Γ ` ∆) and Ψ = (Λ ` Θ), we have their sequent
disjunction (Φ]Ψ) , (((Γ∪Λ) ` (∆∪Θ)) ∈ SeqL. Likewise, we have their sequent
implication (Φ B Ψ) , {Ψ ] (0 : ψ) | ψ ∈ ∆} ∪ {Ψ ] (1 : φ) | φ ∈ Γ}) ∈ ℘ω(SeqL),
in which case, for any Ω ∈ ℘ω(SeqL) we set (Φ B Ω) , (

⋃
(CΦ)[Ω]). Finally, Φ

is said to [diagonally] subsume Ψ (Φ �[ð] Ψ, in symbols), provided there is some
σ[= ðFmL

] ∈ SbL such that both σ[Γ] ⊆ Λ and σ[∆] ⊆ Θ, in which case �[ð] is a
quasi-ordering [more specifically, partial ordering] on SeqL.

Then, a sequent L-calculus G is said to be [deductively] multiplicative, provided,
for every sequent L-rule R [derivable] in G and each L-sequent Ψ, (]Ψ)(R) is deriv-
able in G.

The following sequent L-rules are said to be [native] structural :

Reflexivity Φ ` Φ
[Diagonal] Subsuming Φ

Ψ (Φ �[ð] Ψ)

Cut {(Λ ∪ Γ) ` (∆ ∪ {Φ}), (Γ ∪ {Φ}) ` (∆ ∪Θ)}
(Λ ∪ Γ) ` (∆ ∪Θ)
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where Λ,Γ,∆,Θ ∈ ℘ω(FmL) and Φ,Ψ ∈ FmL, the set of all (α-conclusion of)
them (where α ⊆ ω) being denoted by [N]S(α)

L , respectively. {Instances of Diagonal
Subsuming with distinct premise and conclusion are nothing but instances of mul-
tiple Enlargement.} Likewise, the set of all instances of Diagonal Subsuming and
Reflexivity/Cut is denoted by (R/C)DSL, respectively.

Lemma 3.1 (Sequent Deduction Theorem; cf. Theorem 4.2 of [17]). Let G be a
sequent L-calculus, Ω ∈ ℘ω(SeqL) and Φ,Ψ ∈ SeqL. Suppose Diagonal Subsuming
as well as Cut/Reflexivity are derivable in G (while this is deductively multiplica-

tive). Then, Ω ∪ {Φ}
Ψ is derivable in G if/(only if), for each Υ ∈ (Φ B Ψ), Ω

Υ is
so.

Proof. Let Φ = (Γ ` ∆). Consider any [(Λ|Θ) ⊆](Γ|∆) 3 ϕ[6∈ (Λ|Θ)]. [Then, both
Φ

Ψ ] Φ and {Ψ ] ((1|0) : ϕ); (Λ ` Θ) ] ((0|1) : ϕ)}
Ψ ] (Λ ` Θ) are derivable in CDSL. In this

way, the “if” part is by induction on |Γ\Λ|+ |∆\Θ|, for Ψ = (Ψ](`)).] Conversely,
Φ]((1|0) : ϕ) is derivable in RDSL. Therefore, once G is deductively multiplicative,

by Diagonal Subsuming, Ω
Ψ ] ((1|0) : ϕ) is derivable in G, whenever Ω ∪ {Φ}

Ψ is so,

as required. �

An L-logic is any L-calculus closed under each element of S
2\1
L . This is said to

be [in]consistent, whenever it is [not] distinct from Seq2\1
L . Given any [sequent]

L-calculus C [in which each element of NS
2\1
L is admissible], the set LC of all those

L-rules, which are derivable in C, is an L-logic said to be axiomatized by C. (Clearly,
any L-logic is axiomatized by itself.) Then, a [proper] extension of an L-logic L is
any L-logic L′ ⊇ L [distinct from] L, in which case L is refereed to as a [proper]
sublogic of L′. This is said to be axiomatized by an L-calculus C′ relatively to
L, whenever it is axiomatized by L ∪ C′, that is, by C ∪ C′, where C is any L-
calculus axiomatizing L. An extension L‘ of L is said to be axiomatic, whenever
it is relatively axiomatized by an axiomatic L-calculus A, that is, by the set of all
L-axioms in L′, in which case:

L′ = {Φ ∈ Seq2\1
L | ∃Γ ∈ ℘ω(SbL[A]) : ((0 : Γ) ] Φ) ∈ L}. (3.1)

3.1. Sentential languages, calculi and logics. Let Σ be an algebraic signa-
ture. Then, LΣ , 〈TmΣ,hom(TmΣ,TmΣ)〉 is an abstract language, called the
(propositional/sentential/Hilbert-style) Σ-language, “(propositional/sentential/Hil-
bert-style) Σ-” standing for “LΣ-”. Likewise, to avoid appearance of redundant
double subscripts, we normally use the subscript Σ alone for the double one LΣ ,
unless any confusion is possible. Any $n(LΣ)-sequent, where ω 3 n = | 6= 0,
Φ = (Γ ` ∆) is identified with the first-order equality-free clause|“quantifier-free
formula” (

∧
Γ) → (

∨
∆) of the signature Σ ∪ {D} under the identification of any

Σ-term ϕ with the first-order atomic formula D(ϕ) of the signature involved. In
that case, sequent subsuming fits clause one adopted in [25], while sequent disjunc-
tion/implication is logically equivalent to formula disjunction/“implication under
identification of any finite set of first-order formulas with its conjunction”. Like-
wise, we get the notion of Φ’s being true‖satisfied in any Σ-matrix A (under any
h ∈ hom(TmΣ,A)) which fits that adopted in [17, 19, 30], and so the one of a model
of any set S of $n(LΣ)-sequents, the class of all them being denoted by Mod(S).
And what is more, Var : Seq$n(LΣ) → ℘ω(Varω), (Γ ` ∆) 7→ (

⋃
Var[Γ ∪∆]) assigns

finite sets of free variables of the first-order equality-free clauses|“quantifier-free
formulas” identified with $n(LΣ)-sequents.

Lemma 3.2. Any multiplicative sequent Σ-calculus G is deductively multiplicative.
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Proof. Consider any R ∈ G, any σ ∈ SbΣ and any Φ = (Γ ` ∆) ∈ SeqΣ. Let
(m|n) , |Γ|∆|. Take any enumeration Γ|∆ of Γ|∆. Then, V , Var(R) ∈ ℘ω(Varω),
in which case |Varω \V | = |Varω | = ω ⊇ (m + n), for ω is infinite, while each
element of it is finite, and so there is some injective v̄ ∈ (Varω \V )m+n. Let Ψ ,
(v̄[m] ` v̄[(m+n)\m]) and σ′ ∈ SbΣ extend (σ� Varω\(m+n))∪ (Γ◦ (v̄�m)−1)∪ (∆◦
(v̄�((m+ n) \m))−1). Then, (]Ψ)(R) is derivable in G, for this is multiplicative,
while σ′(R) = σ(R), whereas σ′(Ψ) = Φ, in which case (]Φ)(σ(R)) = σ′((]Ψ)(R))
is derivable in G, and so induction on the length of G-derivations completes the
argument. �

Clearly, every element of S$[n+1](LΣ) [where n ∈ (ω \ 1)] is true in any Σ-matrix

A, and so is that of S
2\1
$[n+1](LΣ)

, in which case, given a class of Σ-matrices M, the set

L
[n]
M of all $0[+n](LΣ)-rules true in M is a [deductively multiplicative] $0[+n](LΣ)-

logic called the [n-order sequent] logic of/“defined by” M (cf. [8] for the non-
optional case with one-element M), the reservation “n-order” being omitted, when-
ever n = 1, unless any confusion is possible. Then, the class of all “isomorphic
copies”/“[consistent] submatrices” of members of M is denoted by I/S[∗](M), re-
spectively, any class of Σ-matrices K[⊆ M] being said to be [( M-)relatively] ab-
stract/hereditary, whenever (I/S(K)[∩M]) ⊆ K, respectively. Likewise, M is said
to be [ultra-]multiplicative (up to isomorphisms), whenever every [ultra-]product of
each tuple constituted by members of M is (isomorphic to) a member of M (i.e.,
I(M) is [ultra-]multiplicative). Clearly, any [abstract] class is (ultra-)multiplicative
[if and] only if it is so up to isomorphisms. And what is more, the class of models
of any $[0·]n(LΣ)-calculus, being a universal [strict Horn] first-order model class,
is well-known to be both abstract, hereditary and ultra-multiplicative [as well as
multiplicative] (cf., e.g., [10]). Likewise, any finite class of finite Σ-matrices is well-
known to be ultra-multiplicative up to isomorphisms (cf., e.g., Corollary 2.3 of [5]
for the purely-algebraic case immediately extended to the general one of algebraic
systems).

Lemma 3.3. Let M be a class of Σ-matrices, while [n ∈ (ω \ 1), whereas] A ⊆
Fm$0[+n](LΣ). Suppose M is ultra-multiplicative up to isomorphisms (in particular,
both it and all members of it are finite). Then, the axiomatic extension L′ of the
[n-order sequent] logic L of M relatively axiomatized by A is defined by M′ ,
(S(M) ∩Mod(A)).

Proof. Clearly, M′ ⊆ Mod(L ∪ A) = Mod(L′), for Mod(L) ⊇ M is hereditary.
Conversely, consider any $0[+n](LΣ)-rule Φ 6∈ L, in which case, by (3.1), for each
X ∈ ℘ω(SbΣ[A]), there are some A ∈ M and some h ∈ hom(TmΣ,A) such that
A 6|= Φ[h], while, for all Ψ ∈ X, A |= Ψ[h], and so, by Mal’cev- Loś Compactness
Theorem factually for ultra-multiplicative up to isomorphisms classes of algebraic
systems (cf., e.g., [10]), there are some A ∈ M and some h ∈ hom(TmΣ,A) such that
A 6|= Φ[h], while, for all Ψ ∈ SbΣ[A], A |= Ψ[h]. Then, B , (A�(img h)) ∈ S(M),
while h ∈ hom(TmΣ,B) is surjective, whereas B 6|= Φ[h]. Consider any Υ ∈ A and
any g ∈ hom(TmΣ,B), in which case there is some σ ∈ SbΣ such that g = (h ◦ σ),
and so A |= σ(Υ)[h], that is, B |= Υ[g] (in particular, B ∈ M′, as required). �

4. Preliminary issues

From now on, we fix any algebraic signature Σ as well as any ε : ℘ω(FmΣ) → Fm∗
Σ

such that, for each Γ ∈ ℘ω(FmΣ), ε(Γ) is an enumeration of Γ.
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4.1. Disjunctivity. From now on, we fix a (possibly, secondary) binary connective
Y of Σ.

Let Gα
Y, where 1 ∈ α ⊆ ω, be the α-conclusion sequent Σ-calculus constituted by

the following α-conclusion sequent Σ-rules:

Left Right

Disjunctivity {(Γ ∪ {x0}) ` ∆; (Γ ∪ {x1}) ` ∆}
(Γ ∪ {(x0 Y x1)}) ` ∆ xi ` (x0 Y x1)

where i ∈ 2, while Γ ∈ ℘ω(Varω), whereas ∆ ∈ ℘α(Varω), in which case

(x0 Y x1) ` (x1 Y x0), (4.1)
(x0 Y x1) ` x0, (4.2)

((x0 Y x1) Y x2) a` (x0 Y (x1 Y x2)). (4.3)

are derivable in Gα
Y ∪NSα

∅, any Y-disjunctive Σ-matrix being a model of it. Then, a
Σ-logic is said to be Y-disjunctive, whenever it contains Right Disjunctivity Σ-rules
and is closed under all Σ-substitutional instances of Left Disjunctivity purely-single-
conclusion sequent Σ-rules.

4.1.1. Disjunctivity versus multiplicativity. Likewise, a Σ-logic is said to be [ β-]Y-
multiplicative [where β ⊆ ω], provided it is closed under

([Γ∪]∆) ` φ
([Γ∪](Yψ)[∆] ` (φ Y ψ)

, (4.4)

where ∆ ∈ ℘ω[∩β](FmΣ) and φ, ψ ∈ FmΣ [as well as Γ ∈ ℘ω(FmΣ)]. Let (A)M[γ]
j,Y,

where j ∈ 2 [and γ ⊆ ω], be the purely-single-conclusion sequent Σ-calculus resulted
from NS

2\1
∅ by adding Right Disjunctivity with i = j, (4.1), (4.2) and the [non-]non-

optional version of (4.4) [with β = γ] (as well as (4.3)).

Lemma 4.1. Let j ∈ 2 [and γ ⊆ ω]. Then, any of rules of either of the calculi
G

2\1
Y ∪NS

2\1
∅ or (A)M[γ]

j,Y is derivable in another one. In particular, any Σ-logic is
Y-disjunctive iff it both contains Right Disjunctivity with i = j, (4.1) and (4.2) (as
well as (4.3)), and is [ γ-]Y-multiplicative {that is 〈in the “[]”-non-optional case〉,
for any Hilbert-style axiomatization C of it, each R ∈ C, every Σ-substitution σ and
all ϕ ∈ TmΣ, (Yϕ)(σ(R)) is derivable in C}.

Proof. First, we prove the derivability of the optional version of (4.4) with β = ω

in G
2\1
Y ∪ NS

2\1
∅ by induction on n , |∆| ∈ ω. The case, when ∆ = ∅, is by Cut

and Right Disjunctivity with i = 0. Otherwise, there is some ϕ ∈ ∆, in which
case Θ , (∆ \ {ϕ}) ∈ ℘n(FmΣ), and so, by the induction hypothesis, the optional
version of (4.4) with β = ω but with (Γ ∪ {ϕ})|Θ instead of Γ|∆, respectively, is
derivable in G

2\1
Y ∪ NS

2\1
∅ . And what is more, by Reflexivity, Right Disjunctivity

with i = 1 and basic native structural rules, (Γ∪(Yψ)[Θ]∪{ψ}) ` (φYψ) is derivable
in G

2\1
Y ∪ NS

2\1
∅ . Hence, by Left Disjunctivity, the optional version of (4.4) with

β = ω as such is derivable in G
2\1
Y ∪ NS

2\1
∅ , and so is [that with β = γ, for γ ⊆ ω,

as well as] the non-optional one, when taking Γ = ∅.
Conversely, by Right Disjunctivity with i = j, Cut and (4.1), Right Disjunctivity

with i = (1 − j) is derivable in M
[γ]
j,Y. Then, by Right Disjunctivity with i = 0 ∈

2 = {j, 1− j}, applying Cut and basic native structural rules |Γ| times, we see that
(Yψ)[Γ] ∪ (Yψ)[∆]) ` (φ Y ψ)

(Γ ∪ (Yψ)[∆]) ` (φ Y ψ) is derivable in Mj,Y in which case, by the non-optional

version of (4.4) but with Γ ∪∆ instead of ∆, the optional one with β = (ω[∩γ]) is
derivable in Mj,Y, and so it is derivable in M

[γ]
j,Y. And what is more, by Cut, (4.1)
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and the optional version of (4.4) with β = (ω[∩γ]), ∆ = x0, ψ = x1, Γ ∈ ℘ω(Varω)

and φ ∈ Varω, (Γ ∪ {x0}) ` φ
〈Γ, x0 Y x1〉 ` (x1 Y φ) is derivable in M

[γ]
j,Y. Likewise, by Cut, (4.2)

and (4.4) with ∆ = x1, ψ = φ and the same β|Γ|φ, (Γ ∪ {x1}) ` φ
(Γ ∪ {x1 Y φ}) ` φ is derivable in

M
[γ]
j,Y. Thus, by basic native structural rules and Cut, Left Disjunctivity is derivable

in M
[γ]
j,Y, as required. �

Given any Φ = (Γ ` [φ]) ∈ Seq2[\1]
Σ , where Γ ∈ ℘ω(FmΣ) [and φ ∈ FmΣ], and

any ψ ∈ FmΣ, set (Yψ)\1(Φ) , ((Yψ)[Γ] ` ([φY]ψ))[= (Yψ)(Φ)] ∈ Seq2\1
Σ .

Lemma 4.2. Let L be a Σ-logic, Φ ∈ Seq2
Σ, ψ ∈ FmΣ, σ ∈ SbΣ and v ∈

(Varω \Var(Φ)). Suppose L contains both (4.3) and R , (Yv)\1(Φ). Then, it
contains (Yψ)(σ(R)).

Proof. Let σ′ ∈ SbΣ extend (σ�(Varω \{v}))∪ [v/(σ(v) Yψ)], in which case σ(Φ) =
σ′(Φ), for v 6∈ Var(Φ), and so L contains σ′(R) = (Y(σ(v) Yψ))\1(σ(Φ)), (in partic-
ular, by (4.3), it contains (Yψ)((Yσ(v))\1(σ(Φ))) = (Yψ)(σ(R)), as required). �

Let σ+m ∈ hom(TmΣ,TmΣ), where m ∈ ω, extend [xi/xi+m]i∈ω. Given any
S ⊆ Seq[2]

Σ , put S\1 , ((S∩Seqω\1
Σ )∪{(σ+1[Γ] ` x0) | Γ ∈ Fm∗

Σ, (Γ`) ∈ S}) ⊆ Seqω\1
Σ

[and <Y(S) , ((S∩ ((Fm0
Σ×Fm1

Σ)∪
⋃

j∈ω(Var1{j}×(Tmω\{j}
Σ )1)))∪ (Yx0)\1[σ+1[S\

((Fm0
Σ×Fm1

Σ) ∪
⋃

j∈ω,k∈2(Var1{j}×(Tmω\{j}
Σ )k))]] ∪ {xj+1 ` x0 | j ∈ ω, (xj `) ∈

S}) ⊆ Seq2\1
Σ ].

Corollary 4.3. Let L be a Y-disjunctive Σ-logic, S ⊆ Seq2
Σ and L′ the extension

of L relatively axiomatized by <Y(S). Then, the following hold:
(i) L′ is Y-disjunctive;
(ii) S\1 ⊆ L′.

In particular, any axiomatic extension of any Y-disjunctive Σ-logic is Y-disjunctive.

Proof. (i) is proved with applying the “()”-optional “[]”-non-optional version of
the “only if” {resp., “if”} part of the second assertion of Lemma 4.1 with j = 0
and C = (L{∪<Y(S)}) to L{′}, respectively. For consider any Σ-substitution
σ and any ϕ ∈ FmΣ. Then, for any φ ∈ FmΣ such that (∅ ` φ) ∈ S,
φ ∈ <Y(S) ⊆ (L ∪ <Y(S)), in which case σ(φ) is derivable in L ∪ <Y(S),
and so is σ(φ) Y ϕ, in view of Right Disjunctivity with i = 0. And what is
more, for any j ∈ ω and any φ ∈ Tmω\{j}

Σ such that R = (xj ` φ) ∈ S,
R ∈ <Y(S) ⊆ (L ∪<Y(S)), in which case σ′(R) = ((σ(xj) Y ϕ) ` σ(φ)), where
σ′ ∈ SbΣ extends (σ� Varω\{j}) ∪ [xj/(σ(xj) Y ϕ)], is derivable in L ∪ <Y(S),
and so is (Yϕ)(σ(R)), in view of Right Disjunctivity with i = 0. Likewise,
for any j ∈ ω such that (xj `) ∈ S, R , (xj+1 ` x0) ∈ <Y(S) ⊆ (L ∪ <Y(S)),
in which case σ′′(R) = ((σ(xj+1) Y ϕ) ` (σ(x0) Y ϕ)) = (Yϕ)(σ(R)), where
σ′′ ∈ SbΣ extends [xl/(σ(xl) Y ϕ)]l∈ω, is derivable in L ∪ <Y(S). In this way,
Lemma 4.2 with v = x0 and ψ = ϕ completes the argument.

(ii) Consider any Φ ∈ S. Then, in case Φ ∈ ((Fm0
Σ×Fm1

Σ) ∪
⋃

j∈ω(Var1{j}×
(Tmω\{j}

Σ )1)) ⊆ Seq2\1
Σ , Φ\1 = Φ ∈ <Y(S) ⊆ L′. Likewise, in case Φ =

(xj `), for some j ∈ ω, Φ\1 ∈ <Y(S) ⊆ L′. Otherwise, Φ = (Γ ` [ϕ]), for
some Γ ∈ ℘ω\1(FmΣ) [and some ϕ ∈ FmΣ], in which case ((Yx0)[σ+1[Γ]] `
([σ+1(ϕ)Y]x0)) ∈ <Y(S) ⊆ L′, and so, by (i) and Right Disjunctivity with i =
0, (σ+1[Γ] ` ([σ+1(ϕ)Y]x0)) ∈ L′. [Let σ′ ∈ SbΣ extend [x0/ϕ;xi+1/xi]i∈ω, in
which case (Γ ` (ϕYϕ)) = σ′(σ+1[Γ] ` (σ+1(ϕ)Yx0)) ∈ L′, and so, by (i) and
Lemma 4.1(4.2), (Γ ` ϕ) ∈ L′.] Thus, in any case, Φ\1 ∈ L′, as required. �
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4.1.2. Single- and purely- versus multi-conclusion sequent calculi. Let

τY : SeqΣ → Seq2
Σ, (Γ ` ∆) 7→

{
Γ ` ∆ if ∆ = ∅,
Γ ` (Yε(∆)) otherwise.

Then,
σ(τY(Φ)) = τY(σ(Φ)), (4.5)

for all Φ ∈ SeqΣ and all σ ∈ SbΣ.

Lemma 4.4. Let ψ ∈ TmY, v ∈ Var(ψ) and α ∈ ℘(2 \ 1, ω). Then, v ` ψ is
derivable in Gα

Y ∪NSα
∅.

Proof. By induction on construction of ψ. For consider the following complemen-
tary cases:

(1) ψ ∈ Varω.
Then, Var(ψ) = {ψ} 3 v, in which case ψ = v, and so Reflexivity completes
the argument.

(2) ψ 6∈ Varω.
Then, ψ = (ϕ0 Y ϕ1), for some ϕ0, ϕ1 ∈ TmY, in which case v ∈ Var(ψ) =
(
⋃

j∈2 Var(ϕj)), and so v ∈ Var(ϕj), for some j ∈ 2. Hence, by induction
hypothesis, v ` ϕj is derivable in Gα

Y ∪ NSα
∅. In this way, Cut and Right

Disjunctivity with i = j complete the argument. �

Corollary 4.5. Let φ, ψ ∈ TmY and α ∈ ℘(2 \ 1, ω). Suppose Var(φ) ⊆ Var(ψ).
Then, φ ` ψ is derivable in Gα

Y ∪NSα
∅.

Proof. By induction on construction of φ. For consider the following complementary
cases:

(1) φ ∈ Varω.
Then, Var(ψ) ⊇ Var(φ) = {φ}, in which case φ ∈ Var(ψ), and so Lemma
4.4 completes the argument.

(2) φ 6∈ Varω.
Then, φ = (ϕ0 Y ϕ1), for some ϕ0, ϕ1 ∈ TmY, in which case Var(ψ) ⊇
Var(φ) = (

⋃
j∈2 Var(ϕj)), and so Var(ψ) ⊇ Var(ϕj), for each j ∈ 2. Hence,

by induction hypothesis, ϕj ` ψ is derivable in Gα
Y ∪NSα

∅, for every j ∈ 2.
In this way, Left Disjunctivity completes the argument. �

Theorem 4.6. For every R ∈ G
ω[\1]
Y ∪NS

ω[\1]
∅ , τY(R) is derivable in G

2[\1]
Y ∪NS

2[\1]
∅ .

In particular, for all (S∪{Φ}) ⊆ Seqω[\1]
Σ such that Φ is derivable in G

ω[\1]
Y ∪NS

ω[\1]
∅ ∪

S, τY(Φ) is derivable in G
2[\1]
Y ∪NS

2[\1]
∅ ∪ τY[S].

Proof. Consider the following exhaustive cases:

(1) R is either in G
ω[\1]
Y or Reflexivity or an instance of Cut with ∆ = ∅,

in which case τY(R) is a Σ-substitutional instance of a rule in G
2[\1]
Y ∪NS

2[\1]
∅ ,

and so is derivable in it.
(2) R is an instance of Diagonal Subsuming,

in which case τY(R) is of the form Λ ` φ
Θ ` ψ , where Λ,Θ ∈ ℘ω(Vω) and φ, ψ ∈

TmY such that (Λ ⊆ Θ and Var(φ) ⊆ Var(ψ), and so Corollary 4.5 as well
as both Diagonal Subsuming and Cut complete the argument of the first
assertion.

(3) R is an instance of Cut with ∆ 6= ∅.

Then, τY(R) is of the form {(Λ ∪ Γ) ` ϕ, (Γ ∪ {v}) ` ψ}
(Λ ∪ Γ) ` ψ , where v ∈ Varω,

ϕ , (Yε(∆ ∪ {v})) ∈ TmY, φ , (Yε(∆)) ∈ TmY and ψ , (Yε(∆ ∪ Θ)) ∈
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TmY, in which case Var(φ) ⊆ Var(ψ), while (φ Y v) ∈ TmΣ, whereas
Var(φ Y v) = Var(ϕ), and so, by Corollary 4.5, both φ ` ψ and ϕ `
(φ Y v) are derivable in G

2[\1]
Y ∪ NS

2[\1]
∅ , and so are both (Γ ∪ {φ}) ` ψ

and (Λ ∪ Γ) ` ϕ
(Λ ∪ Γ) ` (φ Y v) , by Diagonal Subsuming and Cut, respectively. In

particular, by Left Disjunctivity, the rule (Γ ∪ {v}) ` ψ
(Γ ∪ {φ Y v}) ` ψ is derivable

in G
2[\1]
Y ∪ NS

2[\1]
∅ . In this way, Cut completes the argument of the first

assertion.
Finally, the second assertion is by the first one, the induction on the length of
(Gω[\1]

Y ∪NS
ω[\1]
∅ ∪ S)-derivations and (4.5). �

Lemma 4.7. Let S ⊆ SeqΣ. Then, any purely-multi-conclusion Σ-sequent is deriv-
able in G

ω\1
Y ∪NS

ω\1
∅ ∪ S\1, whenever it is derivable in Gω

Y ∪NS∅ ∪ S.

Proof. Consider any Φ = (Γ ` ∆) ∈ Seqω\1
Σ derivable in Gω

Y ∪ NS∅ ∪ S. Take any
ϕ ∈ ∆ 6= ∅. Clearly, Gω

Y ∪NS∅ is multiplicative, and so deductively so, in view of
Lemma 3.2. In particular, for any Σ-substitutional instance R of any rule in it, (](`
ϕ))(R) is derivable in it, and so, being purely-multi-conclusion, in G

ω\1
Y ∪NS

ω\1
∅ ∪S\1.

Now, consider any Ψ = (Λ ` Θ) ∈ S and any σ ∈ SbΣ. If Θ 6= ∅, then Ψ ∈ S\1,
in which case σ(Ψ) �ð (σ(Ψ) ] (` ϕ)) is derivable in G

ω\1
Y ∪ NS

ω\1
∅ ∪ S\1, and so

is σ(Ψ) ] (` ϕ), by Diagonal Subsuming. Otherwise, Υ , (σ+1(Λ) ` x0) ∈ S\1, in
which case (σ(Ψ)](` ϕ)) = σ′(Υ), where σ′ ∈ SbΣ extends [x0/ϕ;xi+1/σ(xi)]i∈ω, is
derivable in G

ω\1
Y ∪NS

ω\1
∅ ∪S\1, and so, by induction on the length of (Gω

Y∪NS∅∪S)-

derivations, we conclude that (Φ ] (` ϕ) �ð Φ is derivable in G
ω\1
Y ∪ NS

ω\1
∅ ∪ S\1

(in particular, Φ is so, by Diagonal Subsuming). �

Corollary 4.8. Let S ⊆ SeqΣ. Then, any [purely-]single-conclusion Σ-sequent is
derivable in G

2[\1]
Y ∪NS

2[\1]
∅ ∪ τY[S[\1]], whenever it is derivable in Gω

Y ∪NS∅ ∪ S.

Proof. By Theorem 4.6 [and Lemma 4.7], for τY� Seq2[\1]
Σ is diagonal. �

4.1.3. The basic disjunctive Hilbert-style calculus. By BY we denote the Σ-calculus
constituted by the following Σ-rules:

B1 B2 B3 B4

x0 Y x0
x0

x0
x0 Y x1

(x0 Y x1) Y x2

(x1 Y x0) Y x2

(x0 Y (x1 Y x2)) Y x3

((x0 Y x1) Y x2) Y x3

Lemma 4.9. Let L be a Σ-logic, R = (Γ ` φ) a Σ-rule and v ∈ (Var \Var(R)).
Suppose L contains both Right Disjunctivity with i = 0 and (4.2) as well as (Yv)(R).
Then, R ∈ L.

Proof. In that case, L contains ((Yv)(R)[v/φ]) = (Yφ)(R), and so Γ ` (φYφ), in view
of Right Disjunctivity with i = 0. In this way, (4.2) completes the argument. �

Taking B1 and B2 into account and applying Lemma 4.9 with L = LBY to both
B3 and B4, we immediately get:

Corollary 4.10. The following rules are derivable in BY:
x0 Y x1

x1 Y x0
, (4.6)

x0 Y (x1 Y x2)
(x0 Y x1) Y x2

. (4.7)
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Lemma 4.11. The following rules are derivable in DY:

(x0 Y x1) Y x2

x0 Y (x1 Y x2)
, (4.8)

(x0 Y x0) Y x1

x0 Y x1
, (4.9)

x0 Y x2

(x0 Y x1) Y x2
. (4.10)

Proof. First, in view of Corollary 4.10, (4.8) is by the following LBY -derivation:
(1) (x0 Y x1) Y x2 — hypothesis;
(2) (x1 Y x0) Y x2 — B3: 1;
(3) x2 Y (x1 Y x0) — (4.6)[x0/(x1 Y x0), x1/x2]: 2;
(4) (x2 Y x1) Y x0 — (4.7)[x0/x2, x2/x0]: 3;
(5) (x1 Y x2) Y x0 — B3[x0/x2, x2/x0]: 4;
(6) x0 Y (x1 Y x2) — (4.6)[x0/(x1 Y x0), x1/x0]: 5.

Then, in view of Corollary 4.10, (4.9) is by the following LBY -derivation:
(1) (x0 Y x0) Y x1 — hypothesis;
(2) x0 Y (x0 Y x1) — (4.8)[x1/x0, x2/x1]: 1;
(3) (x0 Y x1) Y x0 — (4.6)[x1/(x0 Y x1)]: 2;
(4) ((x0 Y x1) Y x0) Y x1 — B2[x0/((x0 Y x1) Y x0)]: 3;
(5) (x0 Y x1) Y (x0 Y x1) — (4.8)[x0/(x0 Y x1), x1/x0, x1/x2]: 4;
(6) (x0 Y x1) — B1[x0/(x0 Y x1)]: 5.

Finally, in view of Corollary 4.10, (4.10) is by the following LBY -derivation:
(1) x0 Y x2 — hypothesis;
(2) (x0 Y x2) Y x1 — B2[x0/(x0 Y x2)]: 1;
(3) x0 Y (x2 Y x1) — (4.8)[x1/x2, x2/x1]: 2;
(4) (x2 Y x1) Y x0 — (4.6)[x1/(x2 Y x1)]: 3;
(5) x2 Y (x1 Y x0) — (4.8)[x0/x2, x2/x0]: 4;
(6) (x1 Y x0) Y x2 — (4.6)[x0/x2, x1/(x1 Y x0)]: 5;
(7) (x0 Y x1) Y x2 — B3[x0/x1, x1/x0]: 6. �

Theorem 4.12. L , LBY is the least Y-disjunctive Σ-logic. In particular, each
rule of BY is true in every Y-disjunctive Σ-matrix.

Proof. Let L′ be a Y-disjunctive Σ-logic, in which case, by the “()”-optional “[]”-
non-optional version of Lemma 4.1, it is Y-multiplicative as well as contains Right
Disjunctivity with i = 0 (viz., B2), (4.1), (4.2) = B1 and includes (4.3), in which
case it contains|includes (((Yx2)(4.1))|(Yx3)[4.3])(= | 3)B3|4, and so is an extension
of L.

Finally, we prove the Y-disjunctivity of L with using the “()”-non-optional “[]”-
non-optional version of Lemma 4.1 with C = BY. First, by B1, B2, Corollary 4.10
and Lemma 4.11(4.8), Right Disjunctivity with i = 0, (4.1), (4.2) and (4.3) are in
L.

Next, consider any σ ∈ SbΣ, any ψ ∈ FmΣ and any j ∈ (5 \ 1). The case, when
j 6∈ 3, is due to Lemma 4.2 with v = xj−1 and such R that Bj = (Yv)(R). Oth-
erwise, we have Var(Bj) = Vi 63 xj . Then, by Lemma 4.11(4.9)/(4.10), (Yxj)(Bj),
where j = (1/2), is derivable in BY. Let σ′ ∈ SbΣ extend (σ�Vω\{j}) ∪ [xj/ψ], in
which case σ′(Bj) = σ(Bj), and so we eventually conclude that (Yψ)(σ(Bj)) =
(Yσ′(xj))(σ′(Bj)) = σ′((Yxj)(Bj)) is derivable in BY, as required. �

The following auxiliary observation has proved quite useful for reducing the
number of rules of calculi to be constructed in Section 7 according to the universal
method to be elaborated in Section 6:
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Corollary 4.13. Let C[′] be Σ-calculi, φ, ψ, ϕ ∈ FmΣ and v ∈ (Varω \(
⋃

Var[{φ, ψ,
ϕ}])). Suppose L , LC ⊆ L′ , LC′ is Y-disjunctive (in particular, C = BY; cf.
Theorem 4.12). Then, the rules (φ Y v) ` (ϕ Y v) and (ψ Y v) ` (ϕ Y v) are both
derivable in C′ iff the rule ((φ Y ψ) ∨ v) ` (ϕ ∨ v) is so.

Proof. First of all, by the “()”-optional “[]”-non-optional version of Lemma 4.1, L is
Y-multiplicative as well as contains both (4.1), (4.2) and (4.3). Then, the “if” part
is by Right Disjunctivity with i = (0/1) and the non-optional version of (4.4) with
ψ = v and ∆ = (φ/ψ), for L ⊆ L′. Conversely, assume both (φ Y v) ` (ϕ ∨ v) and
(ψYv) ` (ϕ∨v) are derivable in C′, applying [v/(ψYv)] and [v/(vYϕ)], respectively,
to which, we see that both (φY(ψYv)) ` (ϕY(ψYv)) and (ψY(vYϕ)) ` (ϕY(vYϕ))
are derivable in C′. In this way, as L ⊆ L′, by the non-optional version of (4.4)
with ψ = v and ∆ = (ϕYϕ) as well as (4.2), we have (((ϕYϕ) Y v) ` (ϕY v)) ∈ L′,
in which case, by (4.1) and (4.3), we get the following L′-derivation 〈((φ Y ψ) Y
v), (φ Y (ψ Y v)), (ϕ Y (ψ Y v)), ((ψ Y v) Y ϕ), (ψ Y (v Y ϕ)), (ϕ Y (v Y ϕ)), ((v Y ϕ) Y
ϕ), (v Y (ϕ Y ϕ)), ((ϕ Y ϕ) Y v), (ϕ Y v)〉 of (((φ Y ψ) ∨ v) ` (ϕ ∨ v)), and so this is
derivable in C′, as required. �

4.2. Implicativity. From now on, we fix any (possibly, secondary) binary connec-
tive A of Σ.

A Σ-logic is said to have Deduction Theorem (DT) with respect to A, provided it
is closed under all Σ-substitutional instances of the pure-single-conclusion sequent
Σ-rule:

(Γ ∪ {x0}) ` x1

Γ ` (x0 A x1)
, (4.11)

where Γ ∈ ℘ω(Varω). Then, a Σ-logic is said to be [strongly] A-implicative, when-
ever it has DT with respect to A and contains [both] the Modus Ponens rule:

{x0, x0 A x1} ` x1 (4.12)

[and the Peirce Law axiom (cf. [13]):

(x0 A x1) YA x0], (4.13)

in which case it also contains:

x0 A (x1 A x0) (4.14)

(x0 A (x1 A x2)) A ((x0 A x1) A (x0 A x2)), (4.15)

x0 YA (x0 A x1). (4.16)

Let I[S](PL)
A be the [purely-single-conclusion sequent] Σ-calculus constituted by

(4.12) and both (4.14) and (4.15) [resp., (4.11) and all native structural purely-
single-conclusion sequent ∅-rules] (as well as (4.13)), each element of it being true
in every A-implicative {in particular, YA-disjunctive} Σ-matrix. Then, using the
well-known derivability of x0 A x0 in IA as well as Herbrand’s method (cf., e.g.,
the proof of Proposition 1.8 of [12]), we have:

Lemma 4.14. Any axiomatic extension of IA has DT with respect to A. In par-
ticular, [strongly] A-implicative Σ-logics are exactly axiomatic extensions of I

[PL]
A ,

in which case this is the least one, and so its rules are true in any A-implicative
Σ-matrix.

4.2.1. Implicativity versus disjunctivity.

Lemma 4.15. Let Y , YA. Then, both the optional version of (4.4) with β = (2\1)
and Right Disjunctivity with i = 1 [as well as both (4.1) and (4.2)] are derivable
in IS

[PL]
A . In particular, any A-implicative Σ-logic (i.e., an axiomatic extension of

IA; cf. Lemma 4.14)
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(i) is (2 \ 1)-Y-multiplicative;
(ii) is Y-disjunctive iff it contains (4.1)/ (4.13) iff it is strongly A-implicative

(i.e., an axiomatic extension of IPL
A ; cf. Lemma 4.14).

Proof. First, consider any Γ ∈ ℘ω(FmΣ) and any φ, ψ, ϕ ∈ FmΣ. Clearly,

(Γ ∪ {φ}) ` ψ
(Γ ∪ {ψ A ϕ}) ` (φ A ϕ)

(4.17)

is derivable in IS
[PL]
A . Then, applying (4.17) once more but with (φ|ψ) A ϕ instead

of ψ|φ, respectively, we see that the optional version of (4.4) with β = (2 \ 1) is
derivable in ISA. Next, the derivability of Right Disjunctivity with i = 1 in ISA is by
Reflexivity, Diagonal Subsuming and (4.11)[x0/(x0 A x1)] with Γ = x1. [Further,
the derivability of (4.2) in ISPL

A is by (4.13)[x1/x0], (4.12)[x0/(x0 Y x0), x1/x0] and
Cut. Finally, by (4.12)[x0/(x1|(x0 A x1)), x1/x0|1], both of {x1|(x0 A x1), (x1 A
x0)|(x0 Y x1)} ` x0|1 are derivable in ISA, and so is {x0 Y x1, x1 A x0, x0 A x1} `
x0, in view of Diagonal Subsuming and Cut, in which case, by (4.11)[x0/(x0 A
x1), x1/x0, x2/(x0 Y x1), x3/(x1 A x0)] with Γ = {x2, x3}, {x0 Y x1, x1 A x0} `
((x0 A x1) A x0) is derivable in ISA. On the other hand, by (4.12)[x0/((x0 A
x1) A x0), x1/x0], (4.13) and Cut, ((x0 A x1) A x0) ` x0 is derivable in ISPL

A , and
so is {x0 Y x1, x1 A x0} ` x0, in view of Cut, in which case, by (4.11)[x0/(x1 A
x0), x1/x0, x2/(x0 Y x1)] with Γ = x2, (4.1) is derivable in ISPL

A . In this way, the
“()“-non-optional “[]”-optional version of Lemma 4.1 with j = 1 and γ = (2 \ 1)
completes the argument.] �

Corollary 4.16. Let L be a strongly A-implicative Σ-logic (i.e., an axiomatic
extension of IPL

A ; cf. Lemma 4.14), ϕ ∈ FmΣ, n ∈ (ω \ 1), ψ̄ ∈ Fmn
Σ, φ̄ ∈ Fm∗

Σ,
v ∈ (Var \(

⋃
Var[{ϕ} ∪ ((img ψ̄) ∪ (img φ̄))])) and ζ̄ , (@ φ̄)((A v)(ψ̄)). Then, the

following hold:
(i) (φ̄ A ((YAψ̄) A ϕ)) ∈ L iff, for each i ∈ n, (φ̄ A (ψi A ϕ)) ∈ L;
(ii) (φ̄ A (ϕ A (YAψ̄))) ∈ L iff (ζ̄ A (φ̄ A (ϕ A v))) ∈ L.

Proof. In that case, by Lemma 4.15, L is YA-disjunctive. Then, Left Disjunctivity
with Γ = φ̄, Right disjunctivity, (4.11), (4.12) and the induction on n immediately
yield (i). Next, the “if” part of (i) with v and ζ̄ ∗ φ̄ instead of ϕ and φ̄, respectively,
(4.11) and (4.12) yield the “only if” part of (ii). Finally, applying the substitution
[v/(YAψ̄)], the “only if” part of (i) with YAψ̄ instead of ϕ, (4.11) and (4.12) imply
the “if” part of (ii), as required. �

5. Disjunctive extensions of disjunctive finitely-valued logics

Lemma 5.1 (First Key Lemma). Let M be a class of Y-disjunctive Σ-matrices and
S ⊆ SeqΣ. Suppose M is ultra-multiplicative up to isomorphisms (in particular, both
it and all members of it are finite). Then, the extension L′ of the logic L of M

relatively axiomatized by <Y(τY[S]) is defined by M′ , (S∗(M) ∩Mod(S)).

Proof. Let A be the set of all Σ-sequents true in M, in which case, by the Y-
disjunctivity of members of M, τY[A] ⊆ A, and so τY[A\1] = τY[A]\1 ⊆ (A ∩
Seq2\1) = L ⊆ L′, while M ⊆ Mod(Gω

Y ∪ NS∅ ∪ A), and so, by Lemma 3.1, the
sequent logic S of M, being deductively multiplicative, is axiomatized by Gω

Y∪NS∅∪
A, for any axiom of S belongs to A, and so is derivable in Gω

Y ∪ NS∅ ∪ A. Then,
Mod(L) ⊇ M, being hereditary, includes S∗(M) ⊇ M′, in which case L ⊆ L , LM′ ,
and so, L′ ⊆ L, for τY[S]\1 ⊆ L, by the Y-disjunctivity of members of S∗(M) ⊇ M′ ⊆
Mod(S). Conversely, by the Y-disjunctivity of L and Corollary 4.3, L′ ⊇ τY[A\1]
is Y-disjunctive and includes τY[S]\1 = τY[S\1], in which case it is closed under all
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Σ-substitutional instances of rules in G2\1
Y ∪NS

2\1
∅ ∪ τY[(A ∪ S)\1], and so contains

all Σ-rules derivable in G2\1
Y ∪NS

2\1
∅ ∪ τY[(A ∪ S)\1] (in particular, those derivable

in Gω
Y ∪NS∅ ∪A∪ S, in view of Corollary 4.8). On the other hand, by Lemma 3.3,

the sequent logic of M′′ , (S(M)∩Mod(S)) is axiomatized by Gω
Y ∪NS∅ ∪A∪ S, in

which case every Σ-sequent true in M′′ is derivable in Gω
Y ∪NS∅ ∪A∪ S, and so, in

particular, L′ ⊇ LM′′ = L, because every Σ-rule is true in each member of M′′ \M′,
for this is inconsistent, as required. �

Lemma 5.2. Let A be a consistent Y-disjunctive Σ-matrix and S ⊆ Seq2
Σ. Then,

the following are equivalent:
(i) A ∈ Mod(S);
(ii) A ∈ Mod(<Y(S));
(iii) A ∈ Mod(S\1).

Proof. First, (i)⇒(ii) is immediate by the Y-disjunctivity of A. Next, (ii)⇒(iii) is
by the Y-disjunctivity of A and Corollary 4.3(ii) with L = LA. Finally, assume
(iii) holds. Consider any Φ = (Γ ` ∆) ∈ S, where Γ,∆ ∈ Fm∗

Σ. Then, in case
∆ 6= ∅, Φ ∈ S\1, and so Φ is true in A. Otherwise, Ψ , (σ+1(Γ) ` x0) ∈ S\1 is
true in A. Consider any h ∈ hom(TmΣ,A). Take any a ∈ (A \ DA) 6= ∅. Let
g ∈ hom(TmΣ,A) extend [x0/a;xi+1/h(xi)]i∈ω, in which case A |= Ψ[g], and so,
for some ϕ ∈ (img Γ), h(ϕ) = g(σ+1(ϕ)) 6∈ DA, because g(x0) = a 6∈ DA. Thus,
A |= Φ[h], in which case Φ is true in A, and so (i) holds, as required. �

A ([strict] Horn) universal relative {equality-free first-order model} subclass of
a class M of Σ-matrices is any subclass of M of the form M ∩ Mod(S), where
S ⊆ Seq(2[\1])

Σ , in which case it is said to be relatively axiomatized by S. Clearly, the
intersection of any non-empty family of ([strict] Horn) universal relative subclasses
of M is a ([strict] Horn) universal relative subclass of M relatively axiomatized by the
union of their relative axiomatizations. Likewise, M|∅ is the strict| Horn universal
relative subclass of M relatively axiomatized by ∅|{`}, respectively. And what is
more, given any S,T ⊆ SeqΣ, ((M ∩ Mod(S)) ∪ (M ∩ Mod(T)) = (M ∩ Mod({Φ ]
σ+m(Ψ) | Φ ∈ S,Ψ ∈ T,m = (max(x−1

ω [Var(Φ)]) + 1)})) is a universal relative
subclass of M, so universal relative subclasses of M form a bounded distributive
lattice. By Lemma 5.2, we also have:

Corollary 5.3. Let M be a class of consistent Y-disjunctive Σ-matrices and S ⊆
SeqΣ. Then, the universal relative subclass of M relatively axiomatized by S is the
Horn one relatively axiomatized by τY[S], and so the strict one relatively axiomatized
by either <Y(τY[S]) or τY[S]\1. In particular, universal relative subclasses of M are
exactly [strict] Horn ones.

Theorem 5.4. Let M be a class of Y-disjunctive Σ-matrices. Suppose M is ultra-
multiplicative up to isomorphisms (more specifically, both it and all members of it
are finite). Then, the following hold:

(i) The mappings

L 7→ (S∗(M) ∩Mod(L))
S 7→ LS

are inverse to one another dual isomorphisms between the posets of all Y-
disjunctive extensions of LM and of all [ {strict} Horn] universal relative
subclasses of S∗(M), both being (finite) distributive lattices;

(ii) for any S ⊆ SeqΣ, the universal relative subclass of S∗(M) relatively ax-
iomatized by S corresponds to the Y-disjunctive extension of LM relatively
axiomatized by <Y(τY[S]).
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(In particular, any Y-disjunctive extension of LM is finitely-relatively-axiomatizab-
le.)

Proof. Consider any Y-disjunctive extension L of LM. Then, by the second assertion
of the “[]”-non-optional version of Lemma 4.1, L is Y-multiplicative, in which case
it includes <Y(L), and so the extension L′ of L relatively axiomatized by <Y(L).
Conversely, by Corollary 4.3(ii), L′ includes L2\1 = L, in which case L = L′,
and so, by Lemma 5.1, L is defined by the strict Horn universal relative subclass
S∗(M) ∩ Mod(L) of S∗(M). In this way, Corollaries 4.3(i), 5.3 and Lemma 5.1
complete the argument. �

5.1. Implicative case. Let θA : Seq2\1
Σ → FmΣ, (Γ ` ϕ) 7→ (ε(Γ) A ϕ). Then, the

strict Horn universal relative subclass of any class M of A-implicative Σ-matrices
relatively axiomatized by any S ⊆ Seq2\1

Σ is relatively axiomatized by θA[S] =
<Y(θA[S]). In this way, by Corollaries 4.3, 5.3, Lemma 4.14 and Theorem 5.4, we
immediately get:

Corollary 5.5. Let M be a class of A-implicative Y-disjunctive Σ-matrices. Sup-
pose M is ultra-multiplicative up to isomorphisms (more specifically, both it and all
members of it are finite). Then, the following hold:

(i) The mappings

L 7→ (S∗(M) ∩Mod(L))
S 7→ LS

are inverse to one another dual isomorphisms between the posets of all ax-
iomatic extensions of LM and of all [ {strict} Horn] universal relative sub-
classes of S∗(M), both being (finite) distributive lattices;

(ii) for any S ⊆ SeqΣ, the universal relative subclass of S∗(M) relatively axioma-
tized by S corresponds to the axiomatic extension of LM relatively axiomatized
by θA[τY[S]\1];

(iii) Y-disjunctive extensions of LM are exactly A-implicative/axiomatic ones.
(In particular, any axiomatic extension of LM is relatively axiomatized by a finite
axiomatic Σ-calculus.)

5.2. The unitary finitely-valued case with equality determinant.

Lemma 5.6. Let A be a finite Σ-matrix with finite equality determinant = and
K ⊆ S(A). Then, relative universal subclasses of K are exactly relatively hereditary
subclasses of it.

Proof. Submatrices of A are uniquely determined by (and so identified with) the
carriers of their underlying algebras. And what is more, any relatively hereditary
subclass S of K is the union of the finite set {K∩S(B) | B ∈ max(S)}, for K is finite,
because A is so. Consider any B ∈ max(S) and any C ∈ (K \ S(B)), in which case
C * B, and so there is some c ∈ (C \B) 6= ∅. Let Φ0/1

C[,c] , (=Ac,+/−∩
⋃

b∈B =Ab,−/+),
in which case ΦC,c ∈ SeqΣ is not true in C under [x0/c] but is true in B (in particular,
in K ∩ S(B)), because every b ∈ B is distinct from c 6∈ B, in which case, as = is an
equality determinant for A, there is some ι ∈ = such that either ιA(c) ∈ DA 63 ιA(b),
and so ι ∈ Φ0

C,c, or ιA(c) 6∈ DA 3 ιA(b), and so ι ∈ Φ1
C,c (in particular, in any case,

B |= ΦC,c[x0/b]). Thus, K ∩ S(B) is the universal relative subclass of K relatively
axiomatized by {ΦC | C ∈ (K \ S(B))}, as required. �

It is remarkable that the proof of Lemma 5.6, being constructive, provides an
effective (though non-deterministic, because of choice of some c ∈ (C \ B)) proce-
dure of finding finite relative axiomatizations of relatively hereditary subclasses of
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classes of submatrices of finite matrices with equality determinant. Then, combin-
ing Theorem 5.4 with Lemma 5.6, we eventually get:

Corollary 5.7. Let A be a Y-disjunctive Σ-matrix with equality determinant.
Then, the following hold:

(i) The mappings

L 7→ (S∗(A) ∩Mod(L))
S 7→ LS

are inverse to one another dual isomorphisms between the posets of all Y-
disjunctive extensions of LA and of all relatively hereditary subclasses of
S∗(A), both being finite distributive lattices;

(ii) for any S ⊆ SeqΣ, the relatively hereditary subclass of S∗(A) relatively ax-
iomatized by S corresponds to the Y-disjunctive extension of LA relatively
axiomatized by <Y(τY[S]);

(iii) for any K ⊆ S∗(A), the Y-disjunctive extension of LA defined by K corre-
sponds to S∗(K).

In particular, any Y-disjunctive extension of LA is finitely-relatively-axiomatizable.

As a matter of fact, despite of the alternative appearing in the formulation of
Corollary 5.3, <Y((τY[)S(])) cannot be replaced by (τY[)S(])\1 in the formulation(s)
of Lemma 5.1 (resp., Corollaries 4.3, 5.7 and Theorem 5.4), as we show in Subsub-
section 7.2.4 below.

5.2.1. Implicative case. Likewise, combining Corollary 5.5 with Lemma 5.6, we also
get:

Corollary 5.8 (Theorem 3.5 of [24]). Let A be an A-implicative Y-disjunctive
Σ-matrix with equality determinant. Then, the following hold:

(i) The mappings

L 7→ (S∗(M) ∩Mod(L))
S 7→ LS

are inverse to one another dual isomorphisms between the posets of all ax-
iomatic extensions of LM and of all relatively hereditary subclasses of S∗(M),
both being finite distributive lattices;

(ii) for any S ⊆ SeqΣ, the relatively hereditary subclass of S∗(M) relatively ax-
iomatized by S corresponds to the axiomatic extension of LM relatively ax-
iomatized by θA[τY[S]\1];

(iii) Y-disjunctive extensions of LM are exactly A-implicative/axiomatic ones;
(iv) for any K ⊆ S∗(A), the axiomatic extension of LA corresponding to S∗(K)

is defined by K.
In particular, any axiomatic extension of LM is relatively axiomatized by a finite
axiomatic Σ-calculus.

6. Finite Hilbert-style axiomatizations

Let A be a finite Σ-matrix with finite equality determinant = 3 x0. Then,
elements of =[Σ(�n)] (where n ∈ ω) are referred to as =-compound connectives of
Σ (of arity n) — these are secondary (n-ary) connectives of Σ.

According to [19],2 a Σ-sequent(ial) =-table (of rank (0, 0)) for A is any couple
T = 〈λT , ρT 〉 of mappings from =[Σ \ (Σ�0)] \ = to ℘ω(℘ω(=[Varω])2) such that,

2Although, as opposed to the present study, the mentioned one deals with sequent sides as

finite rather sequences than sets, its notions and results, being properly re-formulated, are clearly
retained within the formalism adopted here.
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for every F ∈ Σ of arity n ∈ (ω \ 1) and all ι ∈ = with ι(F ) 6∈ =, each element of
(λ|ρ)T (ι(F )) ⊆ ℘ω(=[Varn])2 is disjoint, while

A |= ∀x̄n(((0|1) : ι(F )) ↔ (
∧

(λ|ρ)T (ι(F )))), (6.1)

in which case all elements of (λ|ρ)T (ι(F )) , (](0|1) : ι(F )))[(ρ|λ)T (ι(F ))] are true
in A, while, according to (the constructive proof of) Theorem 1 therein, it exists
(and can be found effectively, in case Σ is finite), and so, from now on, unless
otherwise specified, we fix any one.

Let A′ , {(i : ι(c)) | i ∈ 2, ι ∈ =, c ∈ (Σ�0),A |= (i : ι(c))}.
Next, the set Ax(=) of all disjoint elements of ℘ω(=)2 is finite and partially

ordered by �[ð], because, for all φ, ψ ∈ Tm1
Σ, φ = x0 = ψ, whenever φ(ψ) = x0.

Let Ax(A) , {Φ ∈ Ax(=) | A |= ∀x0Φ} and A′′
[ð] , min�[ð](Ax(A)).

6.1. Disjunctive case. Here, A is supposed to be Y-disjunctive, in which case we
have:

Remark 6.1. When Y is a primary binary connective of Σ (in particular, Y 6∈ =), one
can always take λT (Y) = {x0 `, x1 `} and ρT (Y) = {` {x0, x1}} to satisfy (6.1),
in which case λT (Y) = {(x0 Y x1) ` {x0, x1}} and ρT (Y) = {x0 ` (x0 Y x1), x1 `
(x0 Y x1)}, and so their elements are all derivable in Gω

Y ∪NSω
∅. �

Let A′′′
[ 6ς] , (

⋃
{λT (ι(F )) ∪ ρT (ι(F )) | (Var1×{Y[, ς]}) 63 〈ι, F 〉 ∈ (= × (Σ \

(Σ�0))), ι(F ) 6∈ =)}) [where ς ∈ (Σ \ (Σ�0))] and A(ð)[(,) 6ς] , (A′ ∪ A′′
(ð) ∪ A′′′

[ 6ς]), in
which case this is finite, whenever Σ is so, while every element of it is true in A.

Lemma 6.2 (Second Key Lemma). Any Σ-sequent true in A is derivable in Gω
Y ∪

NSω
∅ ∪A[ð].

Proof. By Theorem 2 of [19], because each rule of the sequent Σ-calculus S(0,0)
A,T spec-

ified in Definition 1 therein is derivable in Gω
Y ∪NSω

∅ ∪A[ð], as we argue throughout
the rest of the proof.

First, for every axiom Φ in the item (i) of Definition 1 of [19], there is some
σ ∈ SbΣ such that Ψ , σ(x0 ` x0) �ð Φ, in which case Ψ, being a Σ-substitutional
instance of Reflexivity, is derivable in Gω

Y ∪ NSω
∅ ∪ A[ð], and so is Φ, in view of

Diagonal Subsuming. Likewise, for every axiom Φ in the items (iii,iv) of Definition
1 of [19], there is some Ψ ∈ A′ such that Ψ �ð Φ, in which case Ψ is derivable
in Gω

Y ∪ NSω
∅ ∪ A[ð], and so is Φ, in view of Diagonal Subsuming. Next, for every

axiom Φ in the item (ii) of Definition 1 of [19], there is some Ψ ∈ Ax(A) such that
Ψ � Φ, in which case there is some Υ ∈ A′′

[ð] such that Υ �[ð] Ψ, and so Υ � Φ.
Then, there is some σ ∈ SbΣ such that Ω , σ(Υ) �ð Φ, in which case Ω, being a
Σ-substitutional instance of Υ ∈ A′′

[ð] ⊆ A[ð], is derivable in Gω
Y ∪ NSω

∅ ∪ A[ð], and
so is Φ, in view of Diagonal Subsuming.

Finally, consider any F ∈ (Σ \ (Σ�0)) and any ι ∈ = such that ι(F ) 6∈ =. We
start from proving that

λT (ι(F )) ∪ ρT (ι(F ))
`

(6.2)

is derivable in Gω
Y ∪NSω

∅ ∪A[ð]. For note that, by (6.1), (6.2) is true in A, and so
is every element of S , (Ω B (`))) ⊆ ℘ω(=[Varω])2, where Ω is any enumeration of
(λT (ι(F )) ∪ ρT (ι(F )). Consider any Φ = (Γ ` ∆) ∈ S. If it is not disjoint, then
there is some σ ∈ SbΣ such that Ψ , σ(x0 ` x0) �ð Φ, in which case Ψ, being a
Σ-substitutional instance of Reflexivity, is derivable in Gω

Y ∪ NSω
∅ ∪ A[ð], and so is

Φ, in view of Diagonal Subsuming. Otherwise, for each i ∈ ω, (Φ�i) , ({ι ∈ = |
ι(xi) ∈ Γ} ` {ι ∈ = | ι(xi) ∈ ∆})) ∈ Ax(=), in which case ((Φ�i)[x0/xi]) �ð Φ,
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and so (Φ�i) � Φ, while (Γ|∆) = (
⋃

i∈ω π0|1(Φ�i)), and so, if, for each i ∈ ω, (Φ�i)
was not true in A, then there would be some ai ∈ A such that φA[x0/ai] would
/not be in DA, for every φ ∈ π0/1(Φ�i) (in particular, Φ would not be true in A
under ā ◦ x−1

ω ). Hence, (Φ�i) ∈ Ax(A), for some i ∈ ω, in which case there is some
Υ ∈ A′′

[ð] such that Υ �[ð] (Φ�i), and so Υ � Φ. In this way, there is some σ ∈ SbΣ

such that Ξ , σ(Υ) �ð Φ, in which case Ξ, being a Σ-substitutional instance of
Υ ∈ A′′

[ð] ⊆ A[ð], is derivable in Gω
Y ∪ NSω

∅ ∪ A[ð], and so is Φ, in view of Diagonal
Subsuming. Thus, in any case, Φ is derivable in Gω

Y ∪ NSω
∅ ∪ A[ð]. Therefore,

applying |λT (ι(F ))∪ρT (ι(F ))| times Lemma 3.1, we eventually conclude that (6.2)
is derivable in Gω

Y∪NSω
∅∪A[ð]. On the other hand, this is clearly multiplicative, and

so deductively so, in view of Lemma 3.2. Hence, (]((0|1) : ι(F )))(6.2) is derivable
in Gω

Y ∪ NSω
∅ ∪ A[ð]. In this way, as every element of (λ|ρ)T(ι(F )), being either

in A′′′ ⊆ A[ð] (in particular, derivable in Gω
Y ∪ NSω

∅ ∪ A[ð]), if 〈ι, F 〉 6= 〈x0,Y〉, or
derivable in Gω

Y ∪ NSω
∅ ∪ A[ð], otherwise, in view of Remark 6.1, is derivable in

Gω
Y ∪ NSω

∅ ∪ A[ð], we conclude that (λ|ρ)T (ι(F ))
(0|1) : ι(F )) is derivable in Gω

Y ∪ NSω
∅ ∪ A[ð],

and so is each Σ-substitutional instance of it, in which case, by the deductive
multiplicativity of Gω

Y ∪NSω
∅ ∪A[ð], each rule in the item (v) of Definition 1 of [19]

is derivable in Gω
Y ∪NSω

∅ ∪A[ð], as required. �

In this way, combining Lemma 6.2 with Corollary 4.8, we eventually get:

Corollary 6.3. Any [purely-]single-conclusion Σ-sequent true in A is derivable in
G

2[\1]
Y ∪NS

2[\1]
∅ ∪ τY[A[\1]

(ð) ].

Theorem 6.4. The logic of A is axiomatized by D(ð) , (BY ∪ <Y(τY[A(ð)])).

Proof. First, in view of the Y-disjunctivity of A and Theorem 4.12, elements of
D(ð) are true in A, for those of τY[A(ð)] are so, because those of A(ð) are so.

Conversely, by Corollary 4.3 and Theorem 4.12, L , LD(ð) is Y-disjunctive

and includes τY[A(ð)]2\1 = τY[A\1
(ð)], in which case it is closed under every Σ-

substitutional instance of each element of G
2\1
Y ∪NS

2\1
∅ ∪ τY[A\1

(ð)], and so contains

all Σ-rules derivable in G
2\1
Y ∪ NS

2\1
∅ ∪ τY[A\1

(ð)] [including all Σ-rules true in A, in
view of Corollary 6.3]. �

6.1.1. Implicative subcase. Here, it is supposed that A is A-implicative, in which
case it is Y-disjunctive, where Y , YA 6∈ Σ, and so ((Var1×{Y})∩(=×(Σ\(Σ�0)))) =
∅.

Remark 6.5. When A is a primary binary connective of Σ (in particular, A 6∈ =),
one can always take λT (A) = {` x0, x1 `} and ρT (A) = {x0 ` x1} to satisfy (6.1),
in which case λT (A)[\1] = {(4.12)} and ρT (Y)[\1] = {` {x0, (x0 A x1)}, x1 ` (x0 A
x1)}, and so elements of both θA[τY[λT (A)\1]] = {θA(4.12)} and θA[τY[ρT (A)\1]] =
{((4.16), (4.14)[x0/x1, x1/x0]} are derivable in IA, in view of Lemma 4.14, (4.11),
(4.12), (4.14) and (4.16). �

Theorem 6.6. The logic of A is axiomatized by J(ð)[(,) 6A] , (IPL
A ∪θA[τY[A\1

(ð)[(,) 6A]]]).

Proof. First, by Remark 6.5, we have L , LJ(ð) = LJ(ð,)6A . Next, in view of the
A-implicativity (in particular, Y-disjunctivity) of A, by Lemma 4.14, all elements
of J(ð) are true in A, for those of θθ[τY[A\1

(ð)]] are so, because those of τY[A\1
(ð)]

are so, as those of A
\1
(ð) are so, since those of A(ð) are so. Conversely, by (4.12),
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each R ∈ τY[A\1
(ð)] belongs to L, for θA(R) ∈ J(ð) ⊆ L, and so does every Σ-

substitutional instance of it. And what is more, by Lemma 4.15, L is Y-disjunctive,
in which case it is closed under every Σ-substitutional instance of each element of
G

2\1
Y ∪NS

2\1
∅ ∪τY[A\1

(ð)], and so contains all Σ-rules derivable in G
2\1
Y ∪NS

2\1
∅ ∪τY[A\1

(ð)]
{including all Σ-rules true in A, in view of Corollary 6.3}. �

Since ` is not true in any Σ-matrix (in particular, in A), it does not belong to
A[ð], for every element of this is true in A. Therefore, combining Corollary 4.16
with Theorem 6.6, we eventually get:

Corollary 6.7. The logic of A is axiomatized by K(ð)[(,) 6A] , (IPL
A ∪ {Yε(∆) | ∆ ∈

℘ω\1(FmΣ), (` ∆) ∈ A(ð)[(,) 6A]} ∪ θA[(A\1
(ð)[(,) 6A] ∩ Seq2

Σ) ∪ {((@ ε(Γ))[(A x0)[∆]] ∪
Γ ∪ {ϕ}) ` x0 | ϕ ∈ FmΣ,Γ ∈ ℘ω(FmΣ),∆ ∈ ℘ω\1(FmΣ), ((Γ ∪ {ϕ}) ` ∆) ∈
σ+1[A\1

(ð)[(,) 6A]]}]).

7. Application and examples

Here, we follow Sections 5, 6 and use Corollary 6.7/“4.13 and Theorem 6.4” as
well as Corollary 5.8/5.7 tacitly in the implicative/disjunctive case, respectively.

7.1. Disjunctive and implicative positive fragments of the classical logic.
Here, we deal with the signature Σ(⊃)

+[,01] , ({∧,∨}[∪{⊥,>}](∪{⊃})). By D
(⊃)
n[,01],

where n(= 2) ∈ (ω\1), we denote the Σ(⊃)
+[,01]-algebra such that D

(⊃)
n[,01]�Σ+[,01] is the

[bounded] distributive lattice given by the chain poset n ⊆ ℘(ω) (and (i ⊃D⊃
2[,01]

j) , (max(1 − i, j), for all i, j ∈ 2). Then, the logic of the ∨-disjunctive (and
⊃-implicative) D(⊃)

2[,01] , 〈D(⊃)
2[,01], {1}〉 with equality determinant = = {x0} {cf.

Example 1 of [19]} is the Σ(⊃)
+[,01]-fragment of the classical logic. Throughout the

rest of this subsection, it is supposed that Σ ⊆ Σ(⊃)
+,01 and A = (D(⊃)

2,01�Σ), in which
case A′′

{ð} = ∅.
First, in case Σ = {⊃}, both A′′′

6⊃ and A′ are empty, and so is A{ð,}6⊃. In this
way, we have the following well-known result:

Corollary 7.1. The {⊃}-fragment of the classical logic is axiomatized by IPL
⊃ . In

particular, the latter can be replaced by any other Hilbert-style axiomatization of
the former in the formulations of Theorem 6.6 and Corollary 6.7.

Likewise, in case Σ = {∨}, both A′ and A′′′ are empty, and so is A{ð}. In this
way, we get the following seemingly new result:

Corollary 7.2. The {∨}-fragment of the classical logic is axiomatized by B∨. In
particular, the latter can be replaced by any other Hilbert-style axiomatization of
the former in the formulation of Theorem 6.4.

Next, let Σ = Σ+. Then, A′ = ∅, while one can take λT (∧) = {{x0, x1} `}
and ρT (∧) = {` x0,` x1} to satisfy (6.1), in which case λT (∧) = {(x0 ∧ x1) `
x0, (x0 ∧ x1) ` x1} and ρT (∧) = {{x0, x1} ` (x0 ∧ x1)}, and so A{ð} = A′′′ =
{(x0 ∧ x1) ` x0, (x0 ∧ x1) ` x1, {x0, x1} ` (x0 ∧ x1)}. Thus, we get:

Corollary 7.3. The Σ+-fragment of the classical logic is axiomatized by the cal-
culus PC+ resulted from B∨ by adding the following rules:

C1 C2 C3

(x1 ∧ x2) ∨ x0
x1 ∨ x0

(x1 ∧ x2) ∨ x0
x2 ∨ x0

{x1 ∨ x0, x2 ∨ x0}
(x1 ∧ x2) ∨ x0
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It is remarkable that the calculus PC+ consists of seven rules, while that which
was found in [4] has nine rules. This demonstrates the practical applicability of
our generic approach (more precisely, its factual ability to result in really “good”
calculi to be enhanced a bit more by replacing appropriate pairs of rules/premises
with single ones upon the basis of Corollary 4.13 and rules Ci, where i ∈ (4 \ 1),
whenever it is possible, to be done below tacitly — “on the fly”).

Likewise, let Σ = Σ⊃
+. Then, A′ = ∅, and so, taking Remark 6.1 into account,

we have the following well-known result:

Corollary 7.4. The Σ⊃
+-fragment of the classical logic is axiomatized by the cal-

culus PC⊃+ resulted from IPL
⊃ by adding the following axioms:

(x0 ∧ x1) ⊃ xi x0 ⊃ (x1 ⊃ (x0 ∧ x1))

xi ⊃ (x0 ∨ x1) (x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∨ x1) ⊃ x2))

where i ∈ 2.

Finally, let Σ = Σ[⊃]
+,01, in which case A′′′

{ð} is as above, while A′ = {` >,⊥ `},
and so we get:

Corollary 7.5. The Σ[⊃]
+,01-fragment of the classical logic is axiomatized by the

calculus PC[⊃]
+,01 resulted from PC

[⊃]
+ by adding the axiom > and the rule ⊥ ∨ x0

x0
[resp., the axiom ⊥ ⊃ x0].

7.2. Miscellaneous four-valued expansions of Dunn-Belnap’s four-valued
logic. Let Σ(⊃)

∼,+[,01] , (Σ(⊃)
+[,01]∪{∼}), where ∼ — weak negation — is unary. Here,

it is supposed that Σ ⊇ Σ∼,+[,01], (A�Σ∼,+[,01]) = DM4[,01], where (DM4[,01]�Σ+[,01]

) , D2
2[,01], while ∼DM4[,01]〈i, j〉 , 〈1− j, 1− i〉, for all i, j ∈ 2, in which case we

use the following standard notations for elements of 22 going back to [2]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉,

and A , 〈A, {b, t}〉, in which case it is ∨-disjunctive, while = = {x0,∼x0} is an
equality determinant for it {cf. Example 2 of [19]}, whereas A′′

〈ð〉 = ∅. Since
the logic DB4[,01] of DM4[,01] , (A�Σ∼,+[,01]) is the [bounded version of] Dunn-
Belnap’s logic [2, 3], the logic of A is a four-valued expansion of DB4[,01].

First, let Σ = Σ∼,+, in which case A′ = ∅, while the case of the =-compound
connective ∧ is as in the previous subsection, for x0 ∈ =, whereas others not
belonging to = (i.e., distinct from ∼) but ∨ are as follows. First of all, one can
take λT (∼∨) = {{∼x0,∼x1} `} and ρT (∼∨) = {` ∼x0,` ∼x1} to satisfy (6.1),
in which case λT (∼∨) = {∼(x0 ∨ x1) ` ∼x0,∼(x0 ∨ x1) ` ∼x1} and ρT (∼∨) =
{{∼x0,∼x1} ` ∼(x0∨x1)}. Likewise, one can take λT (∼∧) = {∼x0 `,∼x1 `} and
ρT (∼∧) = {` {∼x0,∼x1}} to satisfy (6.1), in which case λT (∼∧) = {∼(x0 ∧ x1) `
{∼x0,∼x1}} and ρT (∼∧) = {∼x0 ` ∼(x0 ∧ x1),∼x1 ` ∼(x0 ∧ x1)}. Finally, one
can take λT (∼∼) = {x0 `} and ρT (∼∼) = {` x0} to satisfy (6.1), in which case
λT (∼∼) = {∼∼x0 ` x0} and ρT (∼∼) = {x0 ` ∼∼x0}. In this way, we get:

Corollary 7.6. DB4 is axiomatized by the calculus D resulted from PC+ by adding
the following rules:

NN ND NC

x1 ∨ x0∼∼x1 ∨ x0
l (∼x1 ∧ ∼x2) ∨ x0

∼(x1 ∨ x2) ∨ x0
l (∼x1 ∨ ∼x2) ∨ x0

∼(x1 ∧ x2) ∨ x0
l

The calculus D has 13 rules, while the very first axiomatization ofDB4 discovered
in [15] (cf. Definition 5.1 and Theorem 5.2 therein) has 15 rules, “two rules win”
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being just due to the advance of the present work with regard to [4] (cf. the previous
subsection).

Now, let Σ = Σ∼,+,01, in which case A′′′ is as above, while A′ = {>,∼⊥,⊥ `
,∼> `}, and so we get:

Corollary 7.7. DB4,01 is axiomatized by the calculus D01 resulted from D∪PC+,01

by adding the axiom ∼⊥ and the rule ∼> ∨ x0
x0

.

7.2.1. The classically-negative expansion. Let Σ(⊃)
',+[,01] , (Σ(⊃)

∼,+[,01] ∪ {¬}), where
¬ — classical negation — is unary.

Here, it is supposed that Σ = Σ',+[,01], while ¬A〈i, j〉 , 〈1− i, 1− j〉, for all
i, j ∈ 2. Then, one can take λT ({∼}¬) = {` {∼}x0} and ρT ({∼}¬) = {{∼}x0 `}
to satisfy (6.1), in which case λT ({∼}¬) = {{{∼}x0, {∼}¬x0} `} and ρT ({∼}¬) =
{` {{∼}x0, {∼}¬x0}}. Thus, we get:

Corollary 7.8. The logic of A is axiomatized by the calculus CD[01] resulted from
D[01] by adding the following rules:

N1 N2 N3 N4

(x1 ∧ ¬x1) ∨ x0
x0

x0 ∨ ¬x0
(∼x1 ∧ ∼¬x1) ∨ x0

x0
∼x0 ∨ ∼¬x0

7.2.2. The bilattice expansions. Let Σ(⊃)
∼/',2:+[,01] , (Σ(⊃)

∼/',+[,01] ∪ {u,t}[∪{0,1}]),
where u and t — knowledge conjunction and disjunction, respectively — are binary
[while 0|1 — the “under-|over-defined” constant, respectively — are nullary].

Here, it is supposed that Σ = Σ∼/',2:+[,01], while

(〈i, j〉(u|t)A〈k, l〉) , 〈(min |max)(i, k), (max |min)(j, l)〉,

for all i, j, k, l ∈ 2 [whereas 0A , n and 1A , b].
First, let Σ = Σ∼,2:+, in which case A′ = ∅. Then, one can take λT ({∼}u) =

{{{∼}x0, {∼}x1} `} and ρT ({∼}u) = {` {∼}x0,` {∼}x1} to satisfy (6.1), in
which case λT ({∼}u) = {{∼}(x0 u x1) ` {∼}x0, {∼}(x0 u x1) ` {∼}x1} and
ρT ({∼}u) = {{{∼}x0, {∼}x1} ` {∼}(x0 u x1)}. Likewise, one can take λT ({∼}t)
= {{∼}x0 `, {∼}x1 `} and ρT ({∼}t) = {∅ ` {{∼}x0, {∼}x1}} to satisfy (6.1),
in which case λT ({∼}t) = {{∼}(x0 t x1) ` {{∼}x0, {∼}x1}} and ρT ({∼}t) =
{{∼}x0 ` {∼}(x0 t x1), {∼}x1 ` {∼}(x0 t x1)}. Thus, we get:

Corollary 7.9. The logic of A is axiomatized by the calculus BL resulted from
adding to D the following rules:

KC KD NKC NKD

(x1 ∧ x2) ∨ x0

(x1 u x2) ∨ x0
l (x1 ∨ x2) ∨ x0

(x1 t x2) ∨ x0
l (∼x1 ∧ ∼x2) ∨ x0

∼(x1 u x2) ∨ x0
l (∼x1 ∨ ∼x2) ∨ x0

∼(x1 t x2) ∨ x0
l

Likewise, let Σ = Σ∼,2:+,01, in which case A′′′ is as above, while A′ = ({⊥ `
,>} ∪ {∼i0 `,∼i1 | i ∈ 2}), and so we have:

Corollary 7.10. The logic of A is axiomatized by the calculus BL01 resulted from

adding to BL ∪D01 the axioms ∼i1 and the rules ∼i0 ∨ x0
x0

, where i ∈ 2.

Finally, when Σ = Σ',2:+[,01], we have:

Corollary 7.11. The logic of A is axiomatized by the calculus CD ∪BL[01].
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7.2.3. Implicative expansions. Here, it is supposed that ⊃ ∈ Σ, while (〈i, j〉 ⊃A

〈k, l〉) , 〈max(1− i, k),max(1− i, l)〉, for all i, j, k, l ∈ 2, in which case A is ⊃-
implicative, whereas DB⊃

4[,01] is defined to be the logic of DM⊃
4[,01] , (A�Σ⊃

∼,+[,01]).
First, let Σ = Σ⊃

∼,+. Clearly, one can take λT (∼ ⊃) = {{x0,∼x1} `} and
ρT (∼ ⊃) = {` x0,` ∼x1} to satisfy (6.1), in which case λT (∼ ⊃) = {∼(x0 ⊃ x1) `
x0,∼(x0 ⊃ x1) ` ∼x1} and ρT (∼ ⊃) = {{x0,∼x1} ` ∼(x0 ⊃ x1)}. Therefore,
taking Remark 6.1 into account, we get:

Corollary 7.12. DB⊃
4 is axiomatized by the calculus D⊃ resulted from PC⊃+ by

adding the following axioms:

∼∼x0 ⊃ x0 x0 ⊃ ∼∼x0 (7.1)

∼(x0 ∨ x1) ⊃ ∼xi ∼x0 ⊃ (∼x1 ⊃ ∼(x0 ∨ x1)) (7.2)

∼xi ⊃ ∼(x0 ∧ x1) (∼x0 ⊃ x2) ⊃ ((∼x1 ⊃ x2) ⊃ (∼(x0 ∧ x1) ⊃ x2)) (7.3)

∼(x0 ⊃ x1) ⊃ ∼ixi x0 ⊃ (∼x1 ⊃ ∼(x0 ⊃ x1))

where i ∈ 2.

It is remarkable that D⊃ is actually the calculus Par introduced in [14] but
regardless to any semantics. In this way, the present study provides a new (and
quite immediate) insight into the issue of semantics of Par first being due to [17] but
with using the intermediate purely-multi-conclusion sequent calculus GPar actually
introduced in [14] regardless to any semantics too and then studied semantically in
[17].

Likewise, in case Σ = Σ⊃
∼,+,01, we have:

Corollary 7.13. DB⊃
4,01 is axiomatized by the calculus D⊃

01 resulted from D⊃ ∪
PC⊃+,01 by adding the axioms ∼⊥ and ∼> ⊃ x0.

Now, let Σ = Σ⊃
∼,2:+. Then, we have:

Corollary 7.14. The logic of A is axiomatized by the calculus BL⊃ resulted from
D⊃ by adding the following axioms:

(x0 u x1) ⊃ xi x0 ⊃ (x1 ⊃ (x0 u x1))

xi ⊃ (x0 t x1) (x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 t x1) ⊃ x2))

∼(x0 u x1) ⊃ ∼xi ∼x0 ⊃ (∼x1 ⊃ ∼(x0 u x1))

∼xi ⊃ ∼(x0 t x1) (∼x0 ⊃ x2) ⊃ ((∼x1 ⊃ x2) ⊃ (∼(x0 t x1) ⊃ x2))

where i ∈ 2.

Likewise, when Σ = Σ⊃
∼,2:+,01, we have:

Corollary 7.15. The logic of A is axiomatized by the calculus BL⊃
01 resulted from

BL⊃ ∪D⊃
01 by adding the axioms ∼i1 and ∼i0 ⊃ x0, where i ∈ 2.

Further, let Σ = Σ⊃
',+[,01]. Then, taking (4.12) and Corollary (4.16)(i) into

account, we have:

Corollary 7.16. The logic of A is axiomatized by the calculus CB⊃
[01] resulted from

D⊃
[01] by adding the axioms N2, N4 and ∼ix1 ⊃ (∼i¬xi ⊃ x0), where i ∈ 2.

Finally, when Σ = Σ⊃
',2:+[,01], we have:

Corollary 7.17. The logic of A is axiomatized by the calculus CB⊃ ∪BL⊃
[01].
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7.2.4. Disjunctive extensions. Let L = LA, LC , LL∪C, where C is a Σ-calculus,
and A[ 6b]([,] 6n) , (A[\{b}](\{n})). Though A has two distinct non-distinguished
values f and n, we have the following partial analogue of Lemma 2.2 of :

Lemma 7.18. L is A-implicative iff A is so.

Proof. The “if” part is immediate. Conversely, assume L is A-implicative, in which
case, by Lemma 4.15, it is YA-disjunctive, and so, being ∨-disjunctive, for A is so,
contains (x0 YA x1) ` (x0∨x1) (in particular, by (4.13), it contains (x0 A x1)∨x0).
In this way, (4.12), (4.14) and the ∨-disjunctivity of A complete the argument. �

Next, under the identification of submatrices ofA with the carriers of their under-
lying algebras we follow below tacitly (in which case relatively hereditary subclasses
of S∗(A) become actually lower cones of it, and so for finding all former ones it
suffices to find all anti-chains of it), S∗(A) ⊆ S∗(DM4) = {A,A 6b, A 6n, A 6b, 6n, {n}} =
(S[∗](DM4,01) ∪ {n}), in which case {A6b, A 6n} and {A6n, {n}} are the only non-
one-element anti-chains of S∗(A) \ {A 6b, 6n}), while S∗(A 6b, 6n) = (S∗(A 6b) ∩ S∗(A 6n)),
whereas S∗(B), where B ∈ (S∗(A) \ {A 6b, 6n}), is relatively axiomatized, according
to the constructive proof of Lemma 5.6, as follows. First, if B = {n}, then, for
each C ∈ (S∗(A) \ S(B)), c , t ∈ (C \ B), in which case ΦC,c = (x0 `), and so
this is a relative axiomatization of S∗(B). Likewise, if B = A6b|6n, then, for each
C ∈ (S∗(A) \ S(B)), c , (b|n) ∈ (C \ B), in which case ΦC,c = ((0|1) : {x0,∼x0}),
and so this is a relative axiomatization of S∗(B). In this way, taking (4.14) and
Lemma 7.18 into account, we eventually get:

Theorem 7.19. ∨-disjunctive[(/ A-implicative/axiomatic)] extensions of L [hav-
ing axioms (more specifically, being A-implicative)] form an image of the (9[−3])-
element poset of all ∨-disjunctive extensions of DB4[,01] depicted at Figure 1 [with
merely solid circles], where:

` x0 ∨ ∼x0, (7.4)
x1 ` x0 ∨ ∼x0, (7.5)

` x0, (7.6)
x1 ` x0, (7.7)

{x1 ∨ x0,∼x1 ∨ x0} ` x0, (7.8)
{x1 ∨ x0,∼x1 ∨ x0} ` (x2 ∨ ∼x2) ∨ x0, (7.9)

` (∼x1 A (x1 A x0), (7.10)
` (∼x1 A (x1 A (x0 ∨ ∼x0)), (7.11)

and are “relatively axiomatized”|“defined” by the “(axiomatic) Σ-calculi”|“anti-
chains of S∗(A) being the intersections of this and the anti-chains of S∗(DM4[,01])”
marking corresponding nodes, in which case different nodes may correspond to just
different relative axiomatizations of same ∨-disjunctive[(/ A-implicative/axiomat-
ic)] extensions of L.

In case Σ = Σ∼,+, Theorem 7.19 subsumes both Corollary 5.3 of [15] and, in
view of Theorem 4.1 therein, the reference [Pyn 95 a] of [16] as well as shows both
that Kleene’s three-valued logic [7] is the extension of DB4 relatively axiomatized
by the Resolution (cf. [25] for roots of this terminology) rule (7.8), and, collectively
with Theorem 4.13 of [18], that <Y((τY[)S(])) cannot be replaced by (τY[)S(])\1

in the formulation(s) of Lemma 5.1 (resp., Corollaries 4.3, 5.7 and Theorem 5.4),
when taking S = {i : {x0,∼x0} | i ∈ 2}. Likewise, in case Σ = Σ⊃

∼,+[,01] (cf.
Subsubsection 7.2.3), Theorem 7.19 with A = ⊃ subsumes Corollary 5.4 of [24].
And what is more, in case Σ = Σ⊃

∼,+, Theorem 7.19 shows that the calculus PCont,
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Figure 1. The poset of ∨-disjunctive(/⊃-implicative/axiomatic)
extensions of DB(⊃)

4[,01] [with merely solid circles] (with merely solid
circles and A=⊃) and their “relative axiomatizations”|“defining
anti-chains of S∗(DM(⊃)

4[,01])”.

resulted from GPar = D⊃ by adding (7.4) and introduced in [14] regardless to any
semantics as well as, axiomatizes the logic of antinomies LA [1] being defined by
A6n. Concluding this Subsubsection, we discuss other two representative classes of
expansions of DB4 involved above as well as in [17, 24] and being rectangular to
one another in a sense.
7.2.4.1. Classically-negative expansions. Here, it is supposed that Σ ⊇ Σ',+ (cf.
Subsubsection 7.2.1), in which case A is A-implicative, where (x0 A x1) , (¬x0 ∨
x1), while S{∗}(A) = {A[, A 6b6n]}, and so we get:

Corollary 7.20 (cf. Corollary 5.1(i) of [24]). L has no proper consistent ∨-
disjunctive/ A-implicative/axiomatic extension, if A6b6n does not form a subalgebra of
A, and has a unique one, otherwise, in which case this is equal to L(7.4) = L(7.9) =
LA 6b6n , while L(7.8)|(7.10) is inconsistent.

7.2.4.2. Bilattice expansions. Here, it is supposed that Σ ⊇ Σ∼,2:+ (cf. Subsubsec-
tion 7.2.2), in which case S∗(A) = {A[, {n}]}, and so we get:

Corollary 7.21 (cf. Corollary 5.2 of [24]). L has no proper consistent ∨-disjunctive
extension, if {n} does not form a subalgebra of A, and has a unique one, otherwise,
in which case this is equal to L(7.8) = L(7.9) = L(7.7) = L{n}, and so has no axiom,
while L(7.4) is inconsistent. In particular, L has no proper consistent axiomatic
extension.

7.3.  Lukasiewicz’ finitely-valued logics. Let Σ , {⊃,¬}, n ∈ (ω \ 2) and Ln

the Σ-matrix with Ln , (n÷ (n−1)), DLn , {1}, ¬Lna , (1−a) and (a ⊃Ln b) ,
min(1, 1 − a + b), for all a, b ∈ Ln. The logic  Ln of Ln is known as  Lukasiewicz’
n-valued logic [11] (cf. [9] for the three-valued case alone though). By induction on
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any m ∈ (ω \ 1), define the secondary unary connective m⊗ of Σ as follows:

(m⊗ x0) ,

{
x0 if m = 1,
¬x0 ⊃ ((m− 1)⊗ x0) otherwise,

in which case (m ⊗Ln a) = min(1,m · a), for all a ∈ Ln, and so, in particular,
(m⊗)Ln is 6-monotonic. Then, set (�x0) , (¬min(1,n−2)(n − 1) ⊗ ¬min(1,n−2)x0)
and (x0 A x1) , (�x0 ⊃ �x1), being secondary, unless n = 2, when (�x0) = x0,
and so A = ⊃ is primary. In that case, �Ln = ((((n−1)÷(n−1))×{0})∪{〈1, 1〉}),
and so Ln is A-implicative, for (Ln�2) = L2 is ⊃-implicative.

According to the constructive proof of Proposition 6.10 of [20], for each i ∈ ((n−
1) \ 2), there is some ιi ∈ Tm1

{¬,2⊗} such that (ιLn
i ( i

n−1 ) = 1) ⇔ (ιLn
i ( i−1

n−1 ) 6= 1).
In addition, put ιn−1 , x0 ∈ Tm1

{¬,2⊗} and, in case n 6= 2, ι1 , ¬x0 ∈ Tm1
{¬,2⊗}.

In this way, for each i ∈ (n \ 1), it holds that (ιLn
i ( i

n−1 ) = 1) ⇔ (ιLn
i ( i−1

n−1 ) 6= 1).
On the other hand, for every ι ∈ Tm1

{¬,2⊗}, ι
Ln is either 6-monotonic or 6-anti-

monotonic, for both xLn
0 = ðn and (2⊗)Ln are 6-monotonic, while ¬Ln is 6-anti-

monotonic. Therefore, for each i ∈ N0/1 , {j ∈ (n \ 1) | ιLn
j ( j

n−1 ) = / 6= 1},
ιLn
i is 6-monotonic/-anti-monotonic, in which case (ιLn

i )
−1

[{1}] = (((n \ i)÷ (n−
1))/(i ÷ (n − 1))), respectively, and so = , (img ῑ) ⊇ ({x0} ∪ {¬x0 | n 6= 2}) is a
finite equality determinant for Ln, ῑ being injective, in which case ¬ ∈ =, unless
n = 2, when all =-compound connectives are not in = = Var1. And what is more,
as it follows from the constructive proof of Proposition 6.10 of [20], =-compound
connectives of Σ belonging to = other than ¬ are exactly those of the form ιi(¬),
where n−1

2 > i ∈ (n \ 2), and so an =-compound connective of Σ of the form (ιi(¬),
where i ∈ (n \ 1), is not in = iff i ∈ Nc , {j ∈ ((n−min(1, n− 2)) \ 1) | (j 6= 1) ⇒
((n − 1) ∈ (2 · j))}. In particular, in case n ∈ (5 \ 3), ¬ is the only =-compound
connective of Σ belonging to =. As (N0 ∩ N1) = ∅ and (N0 ∪ N1) = (n \ 1), we
have the mapping µ , {〈i, k〉 ∈ ((n \ 1)× 2) | i ∈ Nk} : (n \ 1) → 2.

Let A , Ln. Then, A′ = ∅. Moreover, under the conventions adopted in both
[22] and [23], we see that both

{Ii−1 : ϕ} ↔ (µ(i) : ιi(ϕ)),
{Fi : ϕ} ↔ ((1− µ(i)) : ιi(ϕ)),

where i ∈ (n\1) and ϕ ∈ FmΣ, are true in A. Hence, in view of Corollary 2.4 of [22],
A′′

ð = {((1−µ(i)) : ιi)] (µ(j) : ιj) | i, j ∈ (n \ 1), i ∈ j}. And what is more, in view
of Lemma 2.1 of [23], we have the Σ-sequent =-table T for A given as follows. First,
for all i ∈ Nc and all m ∈ 2, let πm(T )(ιi(¬)) , {(1−)µ(i)(1−)m(1−µ(n−i)) : ιn−i}.
Next, for all i ∈ (n\1), let π1−µ(i)(T )(ιi(⊃)) , {(µ(n−1−k) : νn−1−k)]((1−µ(i−
k)) : νi−k(x1)) | k ∈ i} and πµ(i)(T )(ιi,⊃) , ({{((1− µ(n− k)) : ιn−k)] (µ(i− k) :
ιi−k(x1)) | k ∈ (i \ 1)} ∪ {(1 − µ(n − i)) : ιn−i, µ(i) : ιi(x1)}). In this way, we
eventually get:

Corollary 7.22.  Ln is axiomatized by the finite calculus Ln resulted from IPL
A by

adding the following axioms:

ιi A ιj (〈i, j〉 ∈ ((kerµ) ∩ (∈ ∩ n2)(2·µ(i))−1)

ιi YA ιj (〈i, j〉 ∈ (µ−1[∈ ∩ 22] ∩ (∈ ∩ n2))

ιi A (ιj A x1) (〈i, j〉 ∈ (µ−1[3 ∩ 22] ∩ (∈ ∩ n2))

ιn−i YA ιi(¬x0) (i ∈ Nc, µ(i) = µ(n− i))

ιn−i A (ιi(¬x0) A x1) (i ∈ Nc, µ(i) = µ(n− i))

ιn−i A ιi(¬x0) (i ∈ Nc, µ(i) 6= µ(n− i))
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ιi(¬x0) A ιn−i (i ∈ Nc, µ(i) 6= µ(n− i))

ιn−1−k A (ιi−k(x1) A (ιi(x0 ⊃ x1) A x2)) (k ∈ i ∈ (n \ 1), µ(i) =

µ(n− 1− k) = 0 6= µ(i− k))

ιn−1−k A (ιi(x0 ⊃ x1) A ιi−k(x1)) (n 6= 2, k ∈ i ∈ (n \ 1), µ(i) =

µ(n− 1− k) = 0 = µ(i− k))

ιn−1−k A (ιi−k(x1) A ιi(x0 ⊃ x1)) (k ∈ i ∈ (n \ 1), µ(i) 6=
µ(n− 1− k) = 0 6= µ(i− k))

ιi−k(x1) A (ιi(x0 ⊃ x1) A ιn−1−k) (k ∈ i ∈ (n \ 1), µ(i) =

0 6= µ(n− 1− k) = µ(i− k))

(ιn−1−k YA ιi−k(x1)) YA ιi(x0 ⊃ x1) (k ∈ i ∈ (n \ 1), µ(i) =

µ(n− 1− k) = 1 6= µ(i− k))

(ιn−1−k A x2) A ((ιi−k(x1) A x2) A

(ιi(x0 ⊃ x1) A x2)) (k ∈ i ∈ (n \ 1), µ(i) =

0 = µ(i− k) 6= µ(n− 1− k))

(ιn−1−k A x2) A ((ιi(x0 ⊃ x1) A x2) A

(ιi−k(x1) A x2)) (k ∈ i ∈ (n \ 1), µ(i) =

1 = µ(n− 1− k) = µ(i− k))

(ιi−k(x1) A x2) A ((ιi(x0 ⊃ x1) A x2) A

(ιn−1−k A x2)) (k ∈ i ∈ (n \ 1), µ(i) 6=
0 = µ(n− 1− k) = µ(i− k))

ιn−k A (ιi−k(x1) A (ιi(x0 ⊃ x1) A x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) = µ(n− k) = 1 6= µ(i− k))

ιn−k A (ιi−k(x1) A ιi(x0 ⊃ x1)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) 6= µ(n− k) = 1 6= µ(i− k))

ιn−k A (ιi(x0 ⊃ x1) A ιi−k(x1)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) = µ(n− k) = 1 = µ(i− k))

ιi−k(x1) A (ιi(x0 ⊃ x1) A ιn−k) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) 6= µ(n− k) = 0 = µ(i− k))

(ιn−k YA ιi−k(x1)) YA ιi(x0 ⊃ x1) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) = µ(n− k) = 0 6= µ(i− k))

(ιn−k A x2) A ((ιi−k(x1) A x2) A

(ιi(x0 ⊃ x1) A x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) 6= µ(n− k) = 0 6= µ(i− k))

(ιn−k A x2) A ((ιi(x0 ⊃ x1) A x2) A

(ιi−k(x1) A x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) = µ(n− k) = 0 = µ(i− k))

(ιi−k(x1) A x2) A ((ιi(x0 ⊃ x1) A x2) A

(ιn−k A x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) 6= µ(n− k) = 1 = µ(i− k))

ιn−i A ιi(x0 ⊃ x1) (i ∈ N0 63 (n− i))
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ιi(x0 ⊃ x1) A ιn−i (i ∈ N1 63 (n− i))

ιn−i A (ιi(x0 ⊃ x1) A x2) (i ∈ N1 3 (n− i))

ιn−i YA ιi(x0 ⊃ x1) (n 6= 2, i ∈ N0 3 (n− i))

ιi(x1) A ιi(x0 ⊃ x1) (n 6= 2, i ∈ N0)

ιi(x0 ⊃ x1) A ιi(x1) (i ∈ N1)

It is remarkable that, in the classical case, when n = 2, the additional axioms of
Ln are exactly the Excluded Middle Law axiom (x0 YA¬x0) = ((x0 ⊃ ¬x0) ⊃ ¬x0)
and the Ex Contradictione Quodlibet axiom x0 ⊃ (¬x0 ⊃ x1), L2 being a well-
known natural Hilbert-style axiomatization of the classical logic. And what is more,
Ln grows just polynomially (more precisely, quadratically) on n, so it eventually
looks relatively good, the additional axioms of L3 being as follows, where i ∈ 2:

¬x1 A (x1 A x0) ¬ixi A ((x0 ⊃ x1) A ¬ix1−i) ¬x0 A (x0 ⊃ x1)

x0 A ¬¬x0 x0 A (¬x1 A ¬(x0 ⊃ x1)) x1 A (x0 ⊃ x1)

¬¬x0 A x0 (x0 YA ¬x1) YA (x0 ⊃ x1) ¬(¬x0 ⊃ x1) A ¬x1

Concluding this discussion, we should like to highlight that, though, in general, an
analytical expression (if any, at all) for ῑ has not been known yet, the constructive
proof of Proposition 6.10 of [20] has been implemented upon the basis of SCWI-
Prolog resulting in a quite effective logical program (taking less than second up to
n = 1000) calculating ῑ, and so immediately yielding definitive explicit formulations
of both T (in particular, of the Gentzen-style axiomatization S(0,0)

A,T of  Ln; cf. [19])
and the Hilbert-style axiomatization Ln of  Ln found above. It is also remarkable
that our deductive approach seems to be convergent with (though not absolutely
identical to) the well-known one [28].

7.4. Ha lkowska-Zajac logic. Here, it is supposed that Σ , Σ∼,+, (A�Σ+) , D3,
∼Ai , (min(1, i)·(3−i)), for all i ∈ 3, andDA , {0, 2}, in which caseA, defining the
logic HZ [6], is ⊃-implicative, where (x0 ⊃ x1) , ((∼x0 ∧∼x1) ∨ x1) is secondary,
while {x0,∼x0} is an equality determinant forA (cf. Example 2 of [19]), and so A′ =
∅ and A′

{ð} = {` {∼x0, x0}}. First, we have ∼A∼Aa = a, for all a ∈ A. Therefore,
one can take λT (∼∼) = {x0 `} and ρT (∼∼) = {` x0} to satisfy (6.1), in which
case λT (∼∼) = {∼∼x0 ` x0} and ρT (∼∼) = {x0 ` ∼∼x0}. Next, consider any
a, b ∈ A. Then, ∼A(a(∧/∨)Ab) ∈ DA iff either/both ∼Aa ∈ DA or/and ∼Ab ∈ DA.
Therefore, one can take λT (∼∨) = {{∼x0,∼x1} `} and ρT (∼∨) = {` ∼x0,` ∼x1}
to satisfy (6.1), in which case λT (∼∨) = {∼(x0∨x1) ` ∼x0,∼(x0∨x1) ` ∼x1} and
ρT (∼∨) = {{∼x0,∼x1} ` ∼(x0 ∨ x1)}. Likewise, one can take λT (∼∧) = {∼x0 `
,∼x1 `} and ρT (∼∧) = {` {∼x0,∼x1}} to satisfy (6.1), in which case λT (∼∧) =
{∼(x0 ∧ x1) ` {∼x0,∼x1}} and ρT (∼∧) = {∼x0 ` ∼(x0 ∧ x1),∼x1 ` ∼(x0 ∧ x1)}.
Moreover, (a(∧/∨)Ab) ∈ DA iff both (a = 1) ⇒ (b = (0/2)) and (b = 1) ⇒ (a =
(0/2)). Therefore, one can take ρT (∧) = {` {x0, x1},` {∼x0, x1},` {∼x1, x0}}
and λT (∧) = {{x0, x1} `, {x0,∼x0} ` {x1,∼x1} `} to satisfy (6.1), in which case
λT (∧) = {(x0 ∧ x1) ` {x0, x1}, (x0 ∧ x1) ` {∼x0, x1}, (x0 ∧ x1) ` {∼x1, x0}} and
ρT (∧) = {{x0, x1} ` (x0 ∧ x1), {x0,∼x0} ` (x0 ∧ x1), {x1,∼x1} ` (x0 ∧ x1)}.
Likewise, one can take ρT (∨) = {` {x0, x1},∼x1 ` x0,∼x0 ` x1} and λT (∨) =
{{x0, x1} `,` ∼x0,` ∼x1} to satisfy (6.1), in which case λT (∨) = {(x0 ∨ x1) `
{x0, x1}, {∼x1, (x0 ∨ x1)} ` x0, {∼x0, (x0 ∨ x1)} ` x1} and ρT (∨) = {{x0, x1} `
(x0 ∨ x1),` {∼x0, (x0 ∨ x1)},` {∼x1, (x0 ∨ x1)}}. In this way, we eventually get:

Corollary 7.23. HZ is axiomatized by the calculus HZ resulted from IPL
⊃ by adding

the axioms (7.1), (7.2), (7.3) and the following ones, where i ∈ 2:

(x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∧ x1) ⊃ x2)) x0 ⊃ (x1 ⊃ (x0 ∧ x1))
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(∼xi ⊃ x2) ⊃ ((x1−i ⊃ x2) ⊃ ((x0 ∧ x1) ⊃ x2)) xi ⊃ (∼xi ⊃ (x0 ∧ x1))

(x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∨ x1) ⊃ x2)) x0 ⊃ (x1 ⊃ (x0 ∨ x1))

(∼xi ⊃ (x0 ∨ x1)) ⊃ (x0 ∨ x1) ∼x1−i ⊃ ((x0 ∨ x1) ⊃ xi)

(∼x0 ⊃ x0) ⊃ x0

In this connection, recall that an infinite Hilbert-style axiomatization of HZ has
been due to [29].

8. Conclusions

As a matter of fact, Subsection 7.2 has provided finite Hilbert-style axioma-
tizations of all miscellaneous expansions of DB4 studied in [17] as well as their
disjunctive extensions (in this connection, it is remarkable that we have avoided
any guessing their relative axiomatizations right — though such would not be diffi-
cult, as it has originally been done in the reference [Pyn 95 a] of [16] — but rather
have just followed the constructive proof of Lemma 5.6 to demonstrate its practi-
cal applicability to effective/computational finding “good” relative axiomatizations
in other more complicated cases like  Lukasiewicz’ logics). Even though Section 7
does not exhaust all interesting applications of Sections 5 and 6, it has definitely
incorporated most acute ones.
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9. J.  Lukasiewicz, O logice trójwartościowej, Ruch Filozoficzny 5 (1920), 170–171.
10. A. I. Mal’cev, Algebraic systems, Springer Verlag, New York, 1965.

11. G. Malinowski, Many-valued logics, Clarendon, Oxford, 1993.

12. E. Mendelson, Introduction to mathematical logic, 2nd ed., D. Van Nostrand Company, New
York, 1979.

13. C. S. Peirce, On the Algebra of Logic: A Contribution to the Philosophy of Notation, American

Journal of Mathematics 7 (1885), 180–202.
14. V. M. Popov, Sequential formulations of some paraconsistent logical systems, Syntactic and

semantic investigations of non-extensional logics (V. A. Smirnov, ed.), Nauka, Moscow, 1989,

In Russian, pp. 285–289.
15. A. P. Pynko, Characterizing Belnap’s logic via De Morgan’s laws, Mathematical Logic Quar-

terly 41 (1995), no. 4, 442–454.

16. , On Priest’s logic of paradox, Journal of Applied Non-Classical Logics 5 (1995), no. 2,

219–225.
17. , Functional completeness and axiomatizability within Belnap’s four-valued logic and

its expansions, Journal of Applied Non-Classical Logics 9 (1999), no. 1/2, 61–105, Special

Issue on Multi-Valued Logics.

18. , Subprevarieties versus extensions. Application to the logic of paradox, Journal of
Symbolic Logic 65 (2000), no. 2, 756–766.

19. , Sequential calculi for many-valued logics with equality determinant, Bulletin of the
Section of Logic 33 (2004), no. 1, 23–32.



HILBERT-STYLE AXIOMATIZATIONS OF FINITELY-VALUED LOGICS 29

20. , Distributive-lattice semantics of sequent calculi with structural rules, Logica Univer-

salis 3 (2009), no. 1, 59–94.

21. , Many-place sequent calculi for finitely-valued logics, Logica Universalis 4 (2010),
no. 1, 41–66.

22. , Minimal sequent calculi for monotonic chain finitely-valued logics, Bulletin of the
Section of Logic 43 (2014), no. 1/2, 99–112.

23. , Minimal Sequent Calculi for  lukasiewicz’s Finitely-Valued Logics, Bulletin of the

Section of Logic 44 (2015), no. 3/4, 149–153.
24. , Four-valued expansions of Dunn-Belnap’s logic (I): Basic characterizations, Bulletin

of the Section of Logic 49 (2020), no. 4, 401–437.

25. J.A. Robinson, A machine-oriented logic based on the resolution principle, Journal of Asso-
ciation of Computing Machinery 12 (1965), 23–41.

26. G. Rousseau, Sequents in many-valued logic I, Fundamenta Mathematicae 60 (1967), 23–33.
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