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Abstract
Distributional models characterize the meaning of a word by its observed contexts. They have
shown great success in many natural language processing tasks, however they are unable to
differentiate clearly between different semantic relations. In cognitive psychology, a word is rep-
resented by its relations with properties. In this work, we propose that the mathematical structure
of formal concept lattice (FCL) can be attached to property-based concepts in the property norm
space to model the conceptual hierarchies. The k-nearest neighbors (KNN) method is then used
to build a mapping from a distributional semantic space onto a FCL-based property space auto-
matically for predicting property norms of unknown concepts. We evaluate our method on word
embeddings learned with different types of contexts and demonstrate the potential of learning
large-scale property-based concept representations from a modest-sized human-annotated per-
ceptual data.

1 Introduction

Semantic word representation plays important roles in a broad range of natural language processing
(NLP) tasks, such as query expansion, machine translation, information extraction and question answer-
ing. Previous work addressing the problem can be roughly classified into two categories: (1) distri-
butional semantic models learned with different types of contexts from large collections of text using
variants of neural networks (Mikolov et al. 2013a; Mikolov et al. 2013b; Levy and Goldberg 2014);
(2) property-based representation in terms of constituent properties generated by participants in prop-
erty norming studies (McRae et al. 2005; Devereux et al. 2014), or extracted from manually-curated
knowledge bases,such as FreeBase and Wikidata (Gupta et al. 2015).

Distributional semantic models characterize the meaning of a word through the contexts in which
it appears. Word2vec (W2V) is one of the most popular word embedding methods that learn word
vectors from raw text by setting different sizes of context window. Levy and Goldberg (2014) propose
the dependency-based word embeddings (DEP), which generalize the skip-gram model with negative
sampling, and can deal with syntactic contexts that are derived from automatically produced dependency
parse-trees. All these models depend in some way or another on the distributional hypothesis which states
that words that occur in similar contexts tend to have similar meanings (Harris 1954; Firth 1957). The
empirical evidence shows that distributional models can do a good job in capturing word similarities.
However, the basis vectors of distributional models tend to be uninterpretable, unlike property-based
representations where each bit encodes the presence or absence of a particular property for that concept.
For example, distributional models can tell us that motorcycle is similar to motorbike and mudguard with
different similarity scores, but it is difficult to differentiate how motorcycle is related to motorbike from
how it is related to mudguard based on these models. This is one of the main drawbacks of distributional
models (Murphy 2002).

There is a wide consensus in cognitive psychology that the meaning of a concept is a complex as-
sembly of properties that characterize how they are related to the concept. For example, the concept
ambulance can be represented by properties like has a siren, has flashing lights, is fast,
and used by hospitals. There are several ways to obtain a comprehensive set of concept proper-
ties. The widely used property norm dataset is from (McRae et al. 2005), which consists of 541 concepts



and 2526 properties. However, it is expensive and time-consuming to produce property norms by human
annotations. Moreover, it is still unrealistic to extract accurate properties from a large-scale text corpus
(Devereux et al. 2009). This raises the question of how we predict property norms for new concepts.

We detail our main contributions as follows. (1) In this paper, we propose that the mathematical
structure of formal concept lattice (FCL) can be attached to property-based concepts in the property
norm space. (2) We predict properties for new concepts by learning a mapping from a distributional
semantic space to FCL-based property space. (3) We evaluate our method on word embeddings learned
with different types of contexts and show the effectiveness of our method.

2 Related Work

Several previous works addressed property inference from distributional data. Baroni and Lenci (2008)
explore the capability of producing property-based descriptions of concepts from computational models
which are derived from word co-occurrence statistics. Strudel (Baroni et al. 2010) is an unsupervised
algorithm to extract a structural and comprehensive set of concept descriptions directly from an En-
glish corpus and then represent concepts by weighted properties. Herbelot and Vecchi (2015) present
an approach to automatically map a standard distributional semantic space onto a set-theoretic model.
Făgărăşan, Vecchi, and Clark (2015) explore the possibility of generalizing property-based representa-
tion to a large scale dataset. The method they used was based on partial least square regression (PLSR).
Dernoncourt (2016) introduces three methods: random vectors, mode and nearest neighbor to build the
mapping between the two spaces. Erk (2016) proposes a probabilistic mechanism for distributional prop-
erty inference. Boleda and Herbelot (2017) present an overarching semantic framework called “formal
distributional semantics” which combines formal and distributional semantics together. There are also
some papers that focus on formal concept lattice-based knowledge representation. Priss (1998) describes
WordNet’s hierarchical and relational structure in the form of a mathematical lattice. Ikeda and Ya-
mamoto (2017) solves the problem of extending various thesauri by finding synonym sets from a formal
concept lattice.

3 A Formal Concept Lattice-based Property Norms

3.1 Mathematical Foundations

Formal concept analysis was first proposed by Rudolf Wille in 1980s (Ganter and Wille 1999; Davey
and Priestley 1990; Grätzer 1998). It has two key components: the generation of concepts from data and
the identification of the inherent structure of these concepts. The formal definitions of formal concept
analysis are given below (Ganter and Wille 1999) .

Definition 1 A formal context is a triple (G,M, I), where G and M are sets and I is a binary relation
between the two sets. The elements g ∈ G are called the objects of the context and the elements m ∈M
are called the attributes of the context. If the object g has the attribute m, the relationship will be written
as (g,m) ∈ I or gIm.

Definition 2 Let (G,M, I) be a formal context. A formal concept of (G,M, I) is a pair (X,Y ), where
X ⊆ G, Y ⊆ M , X = {g ∈ G|gIm, ∀m ∈ Y } and Y = {m ∈ M |gIm, ∀g ∈ X}. We call X and
Y the extent and the intent of the concept (X,Y ) respectively. The set of all concepts of the context
(G,M, I) is denoted as C(G,M, I).

Definition 3 Let (G,M, I) be a formal context and let (Xa, Ya) and (Xb, Yb) be two formal concepts in
C(G,M, I). We write (Xa, Ya) � (Xb, Yb) if and only if Xa ⊆ Xb or equivalently Yb ⊆ Ya. We call
(Xa, Ya) a subconcept of (Xb, Yb). Alternatively, we call (Xb, Yb) a superconcept of (Xa, Ya).

The relation � on the formal concepts is a partial ordered relation. A formal concept lattice is a
partially ordered set of formal concepts in which every pair of formal concepts has a unique least upper
bound and a unique greatest lower bound.



3.2 Formal Concept Analysis for Property Norms

Semantic property norms have been used to explore and enhance many aspects of the semantic repre-
sentation and the processing of concepts in cognitive science. The semantic property norms described in
(McRae et al. 2005) is one of the most widely used property norm datasets to date. The dataset is col-
lected from approximately 725 participants for 541 living (alligator) and nonliving (airplane) basic-level
concepts. Each named concept corresponds to an English noun, which are normed by 30 participants
through a questionnaire. The 541 concepts are annotated by a total of 2526 properties. It is a very sparse
dataset in which each concept has an average of 13 properties. Table 1 lists some properties of the con-
cept for bayonet in the McRae dataset and their production frequencies, i.e., the number of subjects out
of 30 participants that listed a property.

Concept Some Properties Production Frequency
bayonet used in wars 8

is dangerous 6
a long knife 5

is sharp 5

Table 1: Some properties for the concept bayonet in McRae and their production frequencies.

Conceptual hierarchies, such as hyponymy/hypernymy and meronymy/holonymy, are very important
relationships for many natural language processing applications. We attach the mathematical structure of
formal concept lattice to property-based concepts and then discover many interesting abstractions from
a modest-sized human-annotated perceptual data based on that structure. We use the following simple
example to explain the modeling process.

Example 1 Given four property-based concepts, bayonet, grenade, spear, harpoon, we can obtain a
4× 7 incidence matrix (Table 2) by setting nonzero production frequency to 1.

is sharp is dangerous used in war found on boats a long knife has a head explodes
bayonet 1 1 1 0 1 0 0
grenade 0 1 1 0 0 0 1
spear 1 1 0 0 0 1 0
harpoon 1 0 0 1 0 0 0

Table 2: A concept-property matrix

In this example, since no other concept includes the two properties is sharp and
found on boats, ({harpoon}, {is sharp, found on boats}) is a formal concept according
to Definition 2. Property is sharp is the only property common to the concepts bayonet,
spear and harpoon. Thus, ({bayonet, spear, harpoon}, {is sharp}) is a formal concept. Since
{harpoon} ⊆ {bayonet, spear, harpoon}, we have ({harpoon}, {is sharp, found on boats}) �
({bayonet, spear, harpoon}, {is sharp}). In a similar way, we can obtain other formal concepts of the
formal context and partial order relations among them. A Hasse diagram in Figure 1 is used to visualize
the hierarchical structure of the concept lattice, where each node represents a formal concept and each
edge denotes the subconcept-superconcept relationship between two formal concepts.
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Figure 1: The concept lattice generated from the formal context in Table 2.

4 Experiments and Evaluation

4.1 Data preparation

For the distributional semantic space, we use the 300-dimensional W2V and DEP vectors pretrained
on a concatenation of three large, diverse English corpora: (1) English Wikipedia 2015, (2) UMBC
web corpus (Han et al. 2013), and (3) English Gigaword newswire corpus (Parker et al. 2011). The
concatenated corpus comprises about 10B words and yields a vocabulary of about 500K words after
filtering words with frequency lower than 100. The word embeddings W2V1, W2V5, and W2V10 are
learned with context window sizes of 1, 5 and 10 respectively. For learning DEP, the corpus is tagged
with parts-of-speech and parsed into Stanford dependencies by CoreNLP (Manning et al. 2014). Those
vectors are described in (Melamud et al. 2016) and available for downloading 1.

The McRae-based property norm space contains 541 concepts as described in section 3. We delete
3 concepts (axe, armour, dunebuggy) from the McRae dataset because they are not available in the
word2vec vocabulary. For the concepts with multiple meanings in McRae, they are disambiguated by
providing some cue, for example, bat (animal) and bat (baseball). In distributional semantic space, their
vector representations are also different by computing the average vectors of the concept and its cues
respectively. The 538 concepts are split randomly into 400 training data and 138 test data. There are 437
out of 2526 properties which are not seen in the training set. We normalize each property vector by the
sum of its production frequencies at training time. Our goal is to learn a mapping from distributional
semantic space (400 * 300) to property norm space (400 * 2526), and then predict property norms for
138 new concepts from their distributional semantic representation.

By applying formal concept lattice to these 400 training data, we can generate 3609 formal concepts.
We delete two formal concepts with empty intent and empty extent, and use 3607 formal concept as new
training data. For each generated formal concept, the input representation of the concept is the average of
distributional vectors for words in the extent, and the output representation of the concept is represented
by the average of words’ property norms for the properties in the intent (those properties not appearing
in the intent are set to 0).

1http://u.cs.biu.ac.il/˜nlp/resources/downloads/embeddings-contexts/



4.2 Task and Baseline
We model the problem of learning the property-based representation of a concept as a multinomial clas-
sification problem. Let X denote the distributional semantic space, and Y denote the property semantic
space. Then we learn a function

Φ : X → Y, (1)

where X ⊆ Rn and Y ⊆ Rm. Given a test concept x ∈ Rn, we want to estimate an m-dimensional
vector (whose elements sum to 1) which represents the probabilities for m property classes. In this work,
we compare two methods: KNN and FCL-based KNN, where for each concept in the test dataset, we
choose k most similar concepts from the 400 original training dataset and the 3607 formal concepts-
based training dataset respectively. Similarity is based on the cosine similarity of the concept vectors in
the distributional semantic space. Then the property vector of the concept in the test dataset is represented
by the average of property vectors of these k most similar concepts. We set k to 5, 10, 15, 20 and 25 in
our experiments.

4.3 Quantitative Evaluation
In the following experiments, we use the properties in McRae as the gold standard that models are
compared against. We study the properties of 138 test concepts from McRae, in which each test concept
has 13.39 properties in average. For each test concept, we rank the properties from the predicted property
vector in term of their values and pick the top 10 properties from the list. Given the top 10 ranked
properties generated by different methods from different distributional models, precision and recall are
used for evaluation. The definitions of two standard performance measurements at the 10th property in
the ranked list are specified as follows.

Precision is the fraction of the predicted properties that are correct, i.e.,

P =
number of correct properties

total number of properties returned
.

Recall is the fraction of the properties that have been predicted correctly, i.e.,

R =
number of correct properties

total number of gold standard properties
.

Table 3 report percentage average precisions and recalls across 138 test concepts by each method
matched against the McRae gold standard. Four kinds of word embeddings W2V1, W2V5, W2V10
and DEP are used in the experiments. From the average precision and recall, we see that when k > 5,
FCL-based KNN is clearly better than KNN, and that higher k (5,10,15,20,25) continues to improve
the performance of FCL-based KNN but not that of KNN. The better experimental results of FCL-
based KNN illuminate the advantage of formal concept lattice, which has the ability to learn and model
potential hierarchical relationships among concepts.

4.4 Qualitative Evaluation
Table 4 reports the top 5 predicted properties returned by KNN(k=10) and FCL-KNN (k=25) based on
W2V1 for eight test concepts. We also list their top 5 gold-standard properties annotated by participants
in McRae. From Table 4, we see that FCL-based KNN can provide more reasonable properties for these
eight concepts than KNN. Properties annotated with ∗ in the table are not listed in McRae. Although we
call the property norms in McRae as “gold standard”, these annotated properties are sometimes not com-
pletely true representations of concepts because the annotation depends on the knowledge background
or linguistic habits of participants. A property with zero production frequency for a concept in McRae
simply means that the property is not elicited from the conceptual knowledge of participants during the
questionnaire.

To further evaluate the quality of property inference, we perform nearest neighbor search for the
predicted vector of a concept. The predicted vectors are produced by FCL-based KNN (k=25)and
KNN(k=10) based on W2V1. The ideal performance is that the predicted vector of a concept should



Parameters Distributional Models
Precision Recall

KNN FCL-KNN KNN FCL-KNN
k=5 W2V1 36.01 32.68 27.76 24.87

W2V5 34.63 33.11 26.47 25.50
W2V10 34.85 32.24 26.74 24.74

DEP 35.79 32.68 27.26 25.20
k=10 W2V1 36.01 38.18 27.89 29.15

W2V5 35.86 38.26 27.73 29.36
W2V10 36.37 37.89 27.95 28.75

DEP 36.66 38.98 28.08 29.82
k=15 W2V1 36.08 40.79 28.10 31.17

W2V5 36.37 40.94 28.33 31.31
W2V10 36.30 40.28 28.05 30.73

DEP 36.01 41.01 27.65 31.28
k=20 W2V1 35.21 41.44 27.40 31.72

W2V5 35.57 41.59 27.61 31.73
W2V10 35.65 42.10 27.44 31.97

DEP 36.15 42.02 27.87 32.15
k=25 W2V1 33.76 41.73 26.15 31.85

W2V5 35.28 41.52 27.28 31.64
W2V10 34.56 42.46 26.90 32.31

DEP 35.36 41.52 27.39 31.64

Table 3: The average precisions and recalls (%) of KNN and FCL-based KNN methods for different
distributional models.

be close to its gold standard vector in McRae (Herbelot and Vecchi 2015). Table 5 shows the Top 5
neighbors of the predicted vectors among the 138 gold standard property vectors for above eight con-
cepts. For the FCL-based KNN method, six out of eight gold standard vectors are the 1-nearest neighbor
to their predicted vectors, while four out of eight gold standard vectors are the 1-nearest neighbor to their
predicted vectors based on the KNN method.

5 Conclusion

Distributional semantics and property norms play important roles in many linguistic applications. In this
work, we attach the mathematical structure of formal concept lattice to property-based concepts, which
can model the potential conceptual hierarchies in the property norm space. The impressive performance
has been demonstrated when building a mapping from a distributional semantic space onto a FCL-based
property space. In future work, we will do further analysis about the lattice-based property norm space
and explore how to generalize property-based representations to a large-scale dataset.



Concept Method Top 5 Predicted Properties

jar
McRae has a lid, made of glass, used for holding things, a container, is breakable,

FCL-KNN made of plastic, made of glass, ∗found in kitchens, ∗made of metal, used for holding things
KNN ∗made of metal, made of plastic, ∗found in kitchens, used for holding things, ∗a utensil

sparrow
McRae a baby bird, beh flies, has feathers, beh lays eggs, has wings

FCL-KNN a baby bird, beh flies, has feathers, has wings, has a beak
KNN a baby bird, beh flies, has feathers, has wings, has a beak

spatula
McRae a utensil, has a handle, made of plastic, used for cooking, is flat,

FCL-KNN made of metal, found in kitchens, made of plastic, a utensil, used for cooking
KNN made of metal, found in kitchens, ∗a tool, made of plastic, has a handle

sofa
McRae found in living rooms, furniture, is comfortable, used by sitting on, has cushions

FCL-KNN is comfortable, is soft, used by sitting on, furniture, ∗made of material
KNN is comfortable, is soft, ∗made of wood, ∗worn for warmth, used for sleeping

bracelet
McRae worn on wrists, made of gold, made of silver, a fashion accessory, a jewelry

FCL-KNN ∗worn around neck, made of silver, made of gold, ∗is long, ∗different colours
KNN ∗worn for warmth, ∗clothing, ∗is long, ∗worn by women, ∗different colours

doll
McRae has own clothes, used for playing, a toy, used by girls, has hair

FCL-KNN ∗is soft, ∗is comfortable, ∗has 4 legs, ∗different colours, ∗is dirty
KNN ∗is comfortable, ∗worn for warmth, ∗worn at night, ∗is warm, ∗clothing

walrus
McRae an animal, is large, beh swims, lives in water, is fat

FCL-KNN an animal, beh swims, ∗beh lays eggs, hunted by people, a mammal
KNN an animal, ∗has a tail, has teeth, ∗is green, ∗is furry

platypus
McRae an animal, lives in water, a mammal, beh swims, has a bill

FCL-KNN an animal, ∗is green, ∗a reptile, beh swims, ∗has legs
KNN an animal, ∗is green, ∗has 4 legs, ∗beh eats, ∗has a tail

Table 4: Top 5 Properties returned by FCL-KNN and KNN. Properties annotated with ∗ are not listed in
McRae.

Concept Method Top 5 Neighbors

jar
FCL-KNN jar, spatula, bucket, tongs, plate

KNN spatula, tongs, bucket, grater, pan

sparrow
FCL-KNN sparrow, raven, finch, buzzard, parakeet

KNN sparrow, raven, finch, buzzard, parakeet

spatula
FCL-KNN spatula, tongs, grater, pan, skillet

KNN spatula, tongs, hatchet, grater, bucket

sofa
FCL-KNN sofa, cushion, jeans, bench, sandals

KNN sofa, cushion, socks, bench, cabinet

bracelet
FCL-KNN bracelet, tie, crown, skirt, cape

KNN skirt, socks, cape, tie, jacket

doll
FCL-KNN cushion, sofa, sheep, bear, rice

KNN socks, bracelet, cape, skirt, bench

walrus
FCL-KNN platypus, walrus, otter, ox, elk

KNN walrus, ox, platypus, otter, cougar

platypus
FCL-KNN platypus, ox, walrus, otter, elk

KNN cougar, ox, buffalo, elk, walrus

Table 5: Top 5 Neighbors returned by FCL-KNN and KNN.
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code referential attributes. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 12–21.

Lushan Han, Abhay L. Kashyap, Tim Finin, James Mayfield, and Johnathan Weese. 2013. Umbc
ebiquity-core: semantic textual similarity systems. In Proceedings of the Second Joint Conference
on Lexical and Computational Semantics. Association for Computational Linguistics.

Zellig S. Harris. 1954. Distributional structure. Word, 10(23):146–162.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Building a shared world: Mapping distributional to
model-theoretic semantic spaces. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (Best Paper Award), pages 22–32.

Madori Ikeda and Akihiro Yamamoto. 2017. Extending various thesauri by finding synonym sets from a
formal concept lattice. Journal of Natural Language Processing, 24:323–349.

Omer Levy and Yoav Goldberg. 2014. Dependency-based word embeddings. In Proceedings of the 52nd
Anua Meeting of the Associations for Computational Linguistics (short papers), pages 302–308.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 55–
60.

Ken McRae, George S. Cree, Mark S. Seidenberg, and Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving things. Behavior Research Methods, 37:547–559.



Oren Melamud, David McClosky, Siddharth Patwardhan, and Mohit Bansal. 2016. The role of context
types and dimensionality in learning word embeddings. In Proceedings of NAACL-HLT, pages 1030–
1040.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. In arXiv preprint arXiv: 1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013b. Distributed
representations of words and phrases and their compositionality. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems, pages 3111–3119, Nevada, USA.

Gregory Murphy. 2002. The Big Book of Concepts. The MIT Press, Cambridge, MA.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. 2011. English gigaword fifth
edition. In Linguistic Data Consortium, LDC2011T07.

Uta E. Priss. 1998. The formalization of wordnet by methods of relational concept analysis. In WordNet:
An Electronic Lexical Database and Some of its Applications, pages 179–196. MIT Press.


