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Abstract. Sparse tensor compilers simplify the development and op-
timization of operators through high-level abstract representation and
auto-tuning. However, existing work also relies on compilation and hard-
ware knowledge to specify the design space for tuning, and also their
search strategy is limited, which creates unavoidable cost and efficiency
issues. In this paper, we propose a source-to-source auto-tuning frame-
work that targets sparse format and schedule for sparse tensor program.
The framework extracts sparse tensor computational patterns based on
computational graphs to automatically generate design space, and de-
signs a adaptive exploration scheme based on reinforcement learning and
heuristic algorithm to find the optimal format and schedule configura-
tions in it. Preliminary experiments show that we achieve significant per-
formance gains compared to state-of-the-art high-performance arithmetic
libraries, manual optimization schemes, and auto-tuning frameworks.

Keywords: Sparse Computation · Sparse Tensor Compiler · Code Gen-
eration and Optimizations · Auto-Tuning.

1 Introduce

Tensor algebraic computations are crucial across various domains, where tensor
data in practical applications often exhibit large-scale and sparse characteristics.
Over the past few decades, academia have proposed numerous sparse tensor
storage formats and schedule strategies. They aim to improve the efficiency of
sparse tensor program execution through operator optimization.

Currently, sparse tensor computation system commonly rely on manually
high-performance libraries provided by hardware vendors, such as MKL. These
low-level kernel operators implement common storage formats and algorithms.
Recently, there has also been work related to handwritten operators optimizing
sparse tensor computations through tiling reordering algorithms [2]. However,
such solutions require developers to perform a lot of manual optimizations for
storage formats, schedule and compilation levels on different hardware platforms,
which suffers from slow development cycles and poor portability. The deep learn-
ing compiler TVM [1] solves this problem by performing automatic operator gen-
eration and tuning through high-level abstract representations, but it has very
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Fig. 1. Workflow of auto-tuning framework.

limited support for sparse tensor format representations. Recent work WACO [7]
introduces a collaborative auto-tuning scheme for sparse format and loop sched-
ule based on the sparse tensor compiler TACO [3]. However, programmer still
needs to design parameter templates for each new operator that contain format
and schedule to specify the design space, and its effectiveness depends heavily on
the programmer’s professional experience. Meanwhile, WACO constructs KNN
graphs from datasets and executes ANNS algorithms for simple navigation on
them, whose effectiveness is limited to the size of the KNN graph and the search
capability.

Our Approach. To address the above problems, this paper presents a
source-to-source auto-tuning framework for sparse tensor program. Users only
need to describe sparse tensor data and algorithms in the DSL provided in the
front-end of the framework, without relying on any knowledge of compilation
and hardware. The framework automatically generates a design space for for-
mat and schedule for the target workload and hardware platform, and searches
for the optimal configuration.

2 Approach

As shown in Fig. 1, the user describes the sparse tensor algorithm (e.g., SpMM)
while inputting the sparse tensor data of the workload and specifying the target
hardware platform. After receiving the user input, the framework determines the
optimal storage format and schedule configration through a two-phase process
of front-end and back-end co-tuning, which is a fully automated tuning process.

Front-end. We provide a DSL at the top-level programming interface to
accept user descriptions of sparse tensor algorithms, and automatically organize
the algorithms into computational graphs. The format representation of sparse
storage uses TACO’s coordinate hierarchy, where each level is expressed as a
format attribute. We traverse the nodes and edges of the graph to collect in-
formation representing the sparse tensor computational patterns, including the
axis, tensor, and computational graph structure, etc. Based on this information,
front-end automatically adds the format and schedule primitives from Table 1
to generate design space. The points in the space are N-D feature vectors en-
coded by the parameters of the primitives. In addition, we design rules to prune
inefficient and invalid configurations in the space.
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Table 1. Storage format and schedule primitives.

Primitive Type Name Description

Format FSplit Divide tensor axis into several sub-axes.
FReorder Change storage orders of axes.
Mode Set format property for an axis.

Schedule LSplit Divide a loop into several sub-loops.
LReorder Change execution orders of loops.
Parallelize Executing loops in parallel.
Vectorize Leverage vector instruction parallelism.
Unroll Unroll a loop with factor.

Back-end. We adopt an adaptive exploration scheme combining DQN with
heuristic algorithms on the back-end. Relying on DQN, we learn and make de-
cisions about navigational actions in a hyperscale design space. Subsequently,
we propagate the next generation population through simulated annealing al-
gorithm. Finally, back-end finds the optimal format and schedule for the target
sparse data and hardware platform.

3 Evaluation

We evaluate the auto-tuning framework using the typical sparse tensor operator
SpMM on both Intel Xeon E5-2020 v4 and AMD EPYC 7543 platforms. Experi-
ments use TACO [3] and ICC compiler 2021.3.0 as the code generation back-end.
Baseline selects the state-of-the-art high-performance operator library MKL, the
manual optimization scheme ASpT [2], the auto-tuning framework TVM-S [1]
and WACO [7]. TVM-S is a routine on SpMM provided by TVM, and we per-
form 1000 rounds of tuning. We reproduce the ANNS search scheme of WACO
using a pre-training dataset and perform tuning for 100 rounds.

Experiments were conducted on sample of matrices randomly selected from
the SuiteSparse dataset [4] with the number of non-zero elements in the 0.1-5
million range. The operator is tuned for 100 rounds using single precision float-
ing point data. As shown in Fig. 2, our approach obtains average speedups of
1.24-6.34× and 1.19-3.57× on both Xeon and EPYC platforms relative to all
baselines, respectively. ASpT can only outperform MKL on 11 data due to the
inability of the fixed manual optimization to adapt to different sparse patterns.
TVM-S performs poorly in most data scenarios due to it can only be tuned on
schedule. WACO almost always outperforms other baselines due to its coordi-
nated optimization in format and schedule. We have further improved compared
to WACO. MKL achieves optimal performance on the EPYC platform for 4
data, but performs poorly on the Xeon platform for the same data scenarios.

In fact, MKL uses more low-level manual associated with hardware charac-
teristics optimization methods that are effective in all cases, but the impact of
format and schedule is more significant. This means that in most cases, the ben-
efits brought by low-level manual methods cannot offset the performance loss
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Fig. 2. Normalized speedups compared to MKL on different sparse data and CPU.

caused by inefficient format and schedule. Therefore, our optimization of format
and schedule is of great significance, and further in-depth low-level optimization
based on it can theoretically achieve the optimal performance. Attempting to
further analyze manual low-level optimization methods and integrate them into
framwork will be our future work.

4 Conclusion and Future Work

We propose a source-to-source sparse tensor program auto-tuning framework
and achieved significant performance improvements on the CPU platform. In the
future, we plan to extend the framework to support GPUs and domain-specific
FPGA accelerators [5] [6].
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