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Abstract—This paper presents the development of a nonlinear
controller for the reaction wheel pendulum (RWP) via an
interconnection and damping assignment passivity-based control
(IDA-PBC) approach. The IDA-PBC approach works with the
port-Hamiltonian open-loop dynamics of the RWP to propose a
nonlinear controller that preserves the Hamiltonian structure in
closed-loop by guaranteeing stability properties in the sense of
Lyapunov. Numerical results confirm the theoretical development
presented throughout simulations in Simulink package from
MATLAB. Comparison with a Lyapunov-based approach is also
provided.

Index Terms—Energy functions, Lyapunov’s stability analysis,
reaction wheel pendulum, passivity-based control.

I. INTRODUCTION

Nonlinear dynamic systems are common components at in-
dustrial systems [1]. The nonlinear dynamic is even increased
in those systems after including control strategies as in the
following examples: thermal processes [2], [3], transportation
systems [4], [5], electrical machines (motors/generators) [6],
[7], power electronic converters [8], [9], pendulums [10], [11],
mobile bots [12], among others.

The development of control strategies in these systems could
imply difficulties, since it is needed to lead with problems such
as parametric uncertainties [13], strong nonlinear functions
[14] or the need of measures of all the state variables [15].
In addition, most of the dynamic systems have under-actuate
structures [16], which complicate their control design.

Here, we are interested in analyzing the reaction wheel
pendulum (RWP) since it is a nonlinear dynamic system
typically employed to validate control strategies [13], [16].
Additionally, this system has a similar structure to the classical
model of a synchronous machine to make a transient analysis.
Therefore, developing efficient control strategies on it can be
extrapolated for large-scale and complex systems [9].

The RWP was introduced initially by Spong [10]. This is a
variant of the inverted pendulum, which has a bar which can
spin freely around the support point (pivot) at one of its end, as
is depicted in Fig. 1. Note that the RWP has a motor coupled
to the opposite end of the pivot, acting on a wheel of inertia
to control ϕ through the reaction torque τ . The angle ϕ of
the pendulum (from the vertical) and the angle α between the
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Fig. 1. Representative scheme of the RWP

pendulum and the wheel are measured with sensors located
on each of the axes of rotation [15].

The analysis of the RWP can be concentrated in two
different objectives. Firstly, the possibility of controlling the
pendulum in the inverted position (upright) [16]. Secondly, it
is to develop swinging-up strategies to carry-out the pendulum
from its rest position to the inverted position [13]. For the first
objective, it has been proposed in specialized literature control
strategies such as artificial neural networks [14], fuzzy logic
[17], trajectory tracking [18], and regulation energy strategies
[19], [20]. In the second objective, control approaches such as
fuzzy logic [21], extended-feedback linearization [16], [14],
Lyapunov-based control approach [13], sliding control [22],
exact feedback linearization [10], [18] and passivity-based
control based on a Lagrangian formulation [1], have proposed
in specialized literature.

In the literature there are absence of works about pas-
sivity controlling this system; therefore, we proposed an
interconnection and damping passivity-based control (IDA-
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PBC) to maintain the pendulum to the upright position. For
this purpose, a port-Hamiltonian analysis is presented, which
allows preserving passivity properties during the closed-loop
operation by designing a nonlinear control law based on energy
storage functions (Lyapunov-like analysis). The theoretical
development, as well as the simulation results, confirm the ef-
ficiency and effectiveness of the proposed IDA-PBC approach
even if it is compared with a Lyapunov-based approach.

This paper is organized as follows: Section II presents the
nonlinear dynamic formulation of the RWP system as well
as the main assumption for reducing the order of the model.
Section III presents the general theory related to the IDA-PBC
approach. In Section IV, the control design based on IDA-PBC
method is presented by highlighting the advantage of using
the open-loop Hamiltonian function for generating the closed-
loop one. Section V shows the numerical results that validate
the proposed control approach in comparison with a nonlinear
controller based on Lyapunov functions. Finally, Section VI
shows the concluding remarks of this paper as well as the
possible future works.

II. DYNAMIC MODEL OF THE RWP
The development of the dynamic model of the RWP is based

on the schematic representation presented in Fig. 1. If we
employ Lagrangian or Newtonian formulations, the following
dynamic model of the RWP is attained,

Defining θ = ϕ + α, the dynamical model of the RWP
system can be written as follows:

ϕ̈ = a sin (ϕ)− bu,
θ̈ = cu,

(1)

where a, b and c are constants related to the physical param-
eters of the system, ϕ represents the angular position of the
pendulum measured from the vertical axis, and θ is the relative
angle of the reaction wheel measured from the same vertical
reference.

To transform the set of equations (1) to a state-space rep-
resentation, the following state variables are defined: x1 = ϕ,
x2 = ẋ1 and x3 = θ̇. After substituting these into (1), one
obtains

ẋ1 = x2,

ẋ2 = a sin (x1)− bu,
ẋ3 = cu.

(2)

Assumption 1. The dynamics of the angular speed variable
depend exclusively on the control input structure, which im-
plies that its behavior is stable if and only if the control input
is bounded and well defined. Based on this, the third term of
(2) will be completely solved as follows

x3 = c

∫ t

t0

u (z) dz. (3)

Based on the Assumption 1, the dynamic system (2) is
reduced to

ẋ1 = x2,

ẋ2 = a sin (x1)− bu,
(4)

Power systems literature refers to this equation as the swing
equation [23].

Lemma 1. Dynamic system (4) can be represented as a port-
Hamiltonian structure as follows

ẋ = J∇H (x) + gu, (5)

where J is a skew-symmetric matrix known as the intercon-
nection matrix, i.e., J − J T = 0; H (x) is the Hamiltonian
function, typically named as energy storage function1; g is the
control input vector.

Proof. The dynamic system (4) can be rewritten as (5) by
comparing both systems, which produces(

ẋ1
ẋ2

)
=

[
0 1
−1 0

](
Hx1

Hx2

)
+

(
0
b

)
u

Hxi = ∂
∂xi
H (x1, x2)

(6)

in addition, as recommended in [13], the Hamiltonian function
of the system can ba calculated as the algebraic sums of the
potential and kinetic energies of the pendulum, which can be
written as

H (x1, x2) = 2acos2
(

1

2
x1

)
+

1

2
x22. (7)

which completes the proof.

A. Equilibrium points

To determine the possible equilibrium points of the RWP, we
can recur the location of the maximums or minimums of the
Hamiltonian function. In addition, to know it, the equilibrium
points are stable or unstable, the Jacobian criterion can be
used.

Note that if we applied the gradient operator on H (x1, x2)
to obtain the equilibrium points, then, the following equality
must be hold(

Hx1

Hx2

)
=

(
−a sin (x1)

x2

)
=

(
0
0

)
(8)

which corresponds exactly to the same equilibrium points of
(4). Now, by solving (8), the following equilibrium points are
reached

x?1 = nπ
x?2 = 0

(9)

where n ∈ Z. For representing in better way the vertical up
position or vertical down positions, the number n can be split
for pair and impair numbers as follows: pair numbers n = 2k,
impair numbers n = 2k + 1, with k ∈ Z. This substitution
produce two possible equilibrium points, i.e., p1(2kπ, 0) and
p2((2k + 1)π, 0).

1Note that ∇ is the gradient operator.
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B. Nature of the equilibrium points

To determine the nature of the equilibrium points p1 and
p2, the Jacobian matrix is employed in conjunction with the
eigenvalues criteria. Let us calculate the Jacobian matrix from
(8) as follows

∇2H (x) =

[
−a cos (x1) 0

0 1

]
(10)

due to (10) is a diagonal matrix, then, the eigenvalues corre-
sponds to each diagonal value, which implies that

λ1 = −a cos (x1)
λ2 = 1

(11)

Definition 1. If the function H (x1, x2) has a critical point
in p, and ∇2H (x1, x2) is its Jacobian matrix, then p can be
classified by using the eigenvalues of J (x1, x2) as follows:

1. If ∇2H (x1, x2) is positive definite, that is, λ1 > 0 and
λ2 > 0 with λ1, λ2 ∈ R, then p is a local minimum.

2. If ∇2H (x1, x2) is positive definite, that is, λ1 < 0 and
λ2 < 0 with λ1, λ2 ∈ R, then p is a local maximum.

3. If ∇2H (x1, x2) is neither positive nor negative definite,
that is, if either λ1 > 0 and λ2 < 0 or λ1 < 0 and
λ2 > 0 with λ1, λ2 ∈ R, then p is a saddle point.

4. If ∇2H (x1, x2) has complex eigenvalues, then this cri-
terion is indecisive.

When Definition 1 is applied over p1 and p2, the following
conclusions are reached

p1 →
x1 = 2kπ
x2 = 0

}
k ∈ Z saddle point→ unstable

p2 →
x1 = (2k + 1)π

x2 = 0

}
k ∈ Z local min.→ stable

(12)

Remark 1. The main objective of controlling a reaction wheel
pendulum is held the vertical up position, i.e., the focus of
control is becoming p1 into a stable equilibrium point with
some bounded and well defines control input u.

III. IDA-PBC APPROACH

The passivity-based control approach works with the open-
loop Hamiltonian model of the dynamic system under analysis
(see Eq. (6)) for proposing a closed-loop structure that guar-
antees stability in the sense of Lyapunov.

Definition 2. Consider that for the dynamic system () there is
a control input u such that it can be transformed into

ẋ = [Jd −Rd]∇Hd (x) , (13)

where Jd and Rd are the skew-symmetric and damping
matrices, which implies that Jd = −J T

d and Rd � 0 (positive
definite); Hd (x) is the Hamiltonian function under closed-
loop operation.

Lemma 2. If the Hamiltonian function Hd (x) fulfills the first
two Lyapunov conditions, i.e., Hd (0) = 0 and Hd (x) >

0 ∀x 6= 0; then, the dynamical model (13) is asymptotically
stable in the sense of Lyapunov.

Proof. Suppose thatHd (x) fulfills the first two Lyapunov con-
ditions; then, if we take is temporal derivative, the following
result is reached

Ḣd(x) = ∇Hd(x)T ẋ, (14)

now, if we substitute the dynamic system (13) into (14), then,
the following result is achieved

Ḣd(x) = ∇Hd(x)T [Jd −Rd]∇Hd (x) . (15)

If we take the advantage that the desired interconnection
matrix is skew-symmetric, then, the expression (15) is reduced
to

Ḣd(x) = −∇Hd(x)TRd∇Hd (x) > 0, (16)

which is clearly a quadratic form, implying that it is negative
definite if and only if the damping matrix is positive definite,
and the proof is complete, since the second condition of the
Lyapunov’s theorem is guaranteed by the IDA-PBC approach.

Remark 2. All the analysis presented in this paper take focus
on the origin of coordinates since p1 is the equilibrium point
under interest, which is achieved when k = 0 as can be seen
in (12).

IV. CONTROL DESIGN

To obtain a general control input that allows transforming
the open-loop dynamics (6) into the close-loop structure (13),
let us assume that the desired Hamiltonian function is

Hd(x) = H(x) + h(x1), (17)

where h(x1) is the energy storage component added for guar-
anteeing that Hd(x) fulfills the first two Lyapunov’s theorem
conditions.

To guarantee that p1 is an stable equilibrium point, let us
obtain from (17) the Jacobian matrix, which produces

∇2Hd (x) =

[
−a cos (x1) + d2

dx2
1
h(x1) 0

0 1

]
(18)

which implies by following Definition 1 that p1 be stable if
and only if λ1 > 0; which implies that the next constraint
must be satisfied

−a cos (x1) +
d2

dx21
h(x1) > 0. (19)

To solve the constraint (19), we assume that the following
equality must be hold with α1 > 0

d2

dx21
h(x1) = α1 + a cos (x1) . (20)

Note that the solution of (20) can be easily achieved using
ordinary differential equation methods as reported in [24]. A
possible (feasible) solution of (20) is presented below

h(x1) =
1

2
α1x

2
1 − a cos (x1) + α2x1 + α3. (21)
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where α2 and α3 are real constants.
With the solution reported in (21), the desired Hamiltonian

function (17), takes the following form

Hd(x) =

(
2acos2

(
1
2x1
)

+ 1
2x

2
2+

1
2α1x

2
1 − a cos (x1) + α2x1 + α3

)
, (22)

now, to fulfill that Hd(x) is equal to zero when x = 0, let
us select α2 = 0 and α3 = a. In addition, to proof that
Hd(x) > 0, ∀x 6= 0, let us to recur to the following classical
trigonometric property

cos

(
1

2
x1

)
= ±

√
1 + cos (x1)

2
, (23)

If we substitute (23) into (22), then the desired closed-loop
Hamiltonian function takes the following form

Hd(x) =
1

2
x22 +

1

2
α1x

2
1, (24)

which clearly shows thatHd(x) is a positive definite Lyapunov
function, and the stability of p1 is guaranteed.

To select the control input, let us also define the desired
interconnection and damping matrices as

Jd −Rd =

[
r1 j1
−j1 r2

]
(25)

Note that, the closed-loop dynamics (13) can be represented
by using (24) and (25) as follows(

ẋ1
ẋ2

)
=

[
r1 j1
−j1 r2

](
α1x1
x2

)
(26)

now, by equaling the open-loop dynamics (6) with the closed-
loop dynamics (26), the following control law is obtained

u =
1

b
(a sin(x1)− j1α1x1 + r2x2) (27)

Remark 3. To guarantee the same numerical convergence
reported in [13] for a Lyapunov controller, we select here
r1 = 0, j1 = −1, α1 = 3500 and r2 = 135, which are the
values that we will use in the simulation section.

Remark 4. Due to r1 is equal to zero, it is necessary to recur
to the Barbalat’s lemma for proving that p1 is asymptotically
stable as can be consulted in [24].

V. NUMERICAL RESULTS

The numerical validation of the proposed approach is carry-
out by MATLAB software with its Ordinary Differential Equa-
tion (ODE45) package. The parameters of the RWP system are
presented in Table I. In addition, the initial conditions for all
tasks are x1 = 0.12 rad and x2 = 0 rad/s, and also the limits
of the control signal are assumed to be between −10 and 10.

As comparative approach, we employ a recent developed
nonlinear controller based on Lyapunov functions recently
proposed in [13]; the resultant control law is as follow

u =
1

b
(k1x1 + k2x2 + 2a sin (x1)) , (28)

where k1 = 3500 and k2 = 135 as feedback gains.

TABLE I
RWP PARAMETERS [15]

a b c

78.4
(

rad
s

)2
1.08 rad

s2
198 rad

s2
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Fig. 2. Dynamical performance of the proposed and comparative control
approaches without uncertainties: (a) angular position of the pendulum, (b)
angular speed of the pendulum, and (c) control input

A. Operation under ideal conditions

In this scenario, we consider that all the parameters of
the pendulum are perfectly known, i.e., without uncertainties.
Fig. 2 shows the comparison between the proposed IDA-PBC
approach and the Lyapunov-based controller.

Note that both controllers reach the control objective after
0.4 s as can be seen in Fig 2(a), with minimal overpass
(0.0012 for IDA-PBC and 0.0023 for Lyapunov-based control),
by responding as quasi first order dynamical system. On the
other hand, Fig. 2(b) shows the dynamical performance of
the angular speed of the pendulum, which achieves the zero
value at the same time that the angular position reaches the
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vertical up position. For controlling the RWP from the in
initial position to the equilibrium point p1 the control input
has some zones undersaturation (from 0 s to 0.36 s), due to
the physical constraint imposed in this input (see Fig. 2(c));
notwithstanding, this numerical simulation shows that the
stability performance of the RWP system is not compromised
under these conditions.

B. Operation under model uncertainties

A parametric uncertainty in the RWP model can be ex-
pressed by rewritten (6) as follows [25], [26],(

ẋ1
ẋ2

)
=

(
x2

a sin (x1)

)
+ ∆

(
x1
x2

)
+

(
0
−b

)
u

with ∆ being the parametric uncertainty with all the elements
equal to 1.5 as recommended in [13].

Fig. 3 shows the dynamical performance of the state vari-
ables and control input when IDA-PBC and Lyapunov-based
control approaches are tested under parametric uncertainties;
note that the angular position of the pendulum experiences in
both cases a second-order dynamic behavior by reaching the
control goal when time is 0.5 s (see Fig. 3(a)). In addition,
the maximum overpass of the IDA-PBC is 0.0403 rad (about
2.3075◦), while the Lyapunov-based controller has an overpass
about 0.0420 rad (2.4052◦), which implies that our proposed
IDA-PBC method has minor overpass (about 0.1◦), being
efficient in comparison to the Lyapunov-based method.

Fig. 3(b) shows that the uncertainties imply that the angular
speed of the pendulum has higher efforts in comparison to the
first case, since the control input (see Fig. 3(c)) with uncer-
tainties has three periods of saturation against two when un-
certainties were inexistent. Finally, it is important to mention
as that under this scenario of operation the RWP experiences a
stable performance independently of the saturation conditions
of the control input, which is an advantage considering the
strong nonlinearities of the RWP system.

VI. CONCLUSIONS AND FUTURE WORKS

The Hamiltonian open-loop representation of the RWP was
derived in this paper, and it was used for proposing a passivity-
based controller by injecting damping and interconnection ac-
tions through the IDA-PBC approach. The proposed IDA-PBC
approach allows guaranteeing stability operation in closed-
loop by modifying the energy storage function for becoming
the vertical up position as the global minimum. A Lyapunov-
based approach was provided to compare the effectiveness
of the proposed IDA-PBC approach under ideal and non-
ideal conditions (i.e., with uncertainties in the model), which
show that the IDA-PBC approach has small overpasses in the
angular position of the RWP in contrast to the Lyapunov-based
method where the overpasses were higher. Simulations results
allowed to demonstrate that the stability of the system was not
be compromised by the saturation of the control input since
the sign of the saturation is governed by the behavior of this
control input, which implies that it only will affect the time
of response to achieve the control objective.
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Fig. 3. Dynamical performance of the proposed and comparative control
approaches with uncertainties:: (a) angular position of the pendulum, (b)
angular speed of the pendulum, and (c) control input

As future work, it will be possible to replace the proposed
controller by an artificial neural network that allows mak-
ing a global control strategy including the swing-up of the
pendulum and its stabilization in the vertical up position. In
addition, experimental validation of the proposed approach,
as well as Lyapunov-based methods, will help to understand
the advantages of nonlinear controller designs over classical
linear approximations. Also, this work could be extended to
power systems using similar structure, then extended to multi-
machine power systems
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