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Abstract. In recent years, heterogeneous hardware have generalized in
almost all supercomputer nodes, requiring a profound shift on the way
numerical applications are implemented. This paper, illustrates the de-
sign and implementation of a seismic wave propagation simulator, based
on the finite-differences numerical scheme, and specifically tailored for
such massively parallel hardware infrastructures. The application data-
flow is built on top of PaRSEC, a generic task-based runtime system.
The numerical kernels, designed for maximizing data reuse can efficiently
leverage large SIMD units available in modern CPU cores. A strong scal-
ability study on a cluster of Intel KNL processors illustrates the appli-
cation performances.
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1 Introduction

Since the advent of multicore processor at the beginning of 2000’s, the compute
power is not more driven by the clock frequency [1], but instead, by the number
of functional units into multi/many-core processors featuring large SIMD units
or in accelerators such as GPUs. The combination of these computing devices
lead to highly heterogeneous hardware infrastructures. Hence, maximizing ap-
plication performance on such systems is a major challenge [2–4]. Indeed, for
coping with these systems, application developers use to mix several program-
ming paradigms, following the now classical MPI+X approach. MPI manages
communication through the network interconnect and is completed by OpenMP,
Intel TBB, CUDA or OpenCL for addressing each node.

Task-based approach coupled with a generic runtime system is an emerging
programming paradigm that greatly improves programmer productivity, leaving
him to focus on the algorithm and computational kernels implementation. From
this perspective, building high-performance codes require fine-tuned kernels. As
the main bottleneck on modern platforms is the memory bandwidth [5], those



kernels must ensure a good data locality. In addition, the kernels have to leverage
the SIMD units available on modern processors. To achieve both performances
and portability across various architectures, the kernel must use generic high-
level concepts (like a DSL3) encapsulating these specific optimizations [6].

In this work, we conducted a study on the above mentioned challenges
through the linear seismic wave propagation problem. Seismic wave propagation
from an earthquake in the Earth has been always numerical challenge, because
of its dimension, resolution and medium complexity with respect to the geoscien-
tific knowledge and engineering requirements (e.g. [7] and [8]). Basic problem is
well formulated in the framework of elasto-dynamic equations and linear elastic-
ity. Finite difference method has been applied since 1970-80’s (e.g. [9]), suitable
for structural discretization of continuous medium. In particular, the 4th order
approximation in space on staggered grids is the most popular option because
of its efficiency and stability (e.g. [10] and [11]).

As reported in several recent research papers (e.g. [12, 13]), explicit parallel
elastodynamics application usually exhibits very good weak and strong scaling
up to several tens of thousands of cores. Significant works have been made to ex-
tend this parallel results on heterogeneous and low-power processor (e.g. [14,15]).
For instance the efforts to benefits from modern architecture with large vector
unit is described in [16] where the use of explicit intrinsics appears mandatory
to squeeze the maximum performance out of the underlying architecture.

One major contributions of this paper is the design and implementation of a
fully task-based model for the seismic wave propagation into the SeWaS appli-
cation [17]. To the best of our knowledge, this is the first end-to-end task-based
implementation of the seismic wave model including the time-step dependency
and efficient vectorization. We validate our results with the Ondes3D [18] pro-
duction code. We consider Intel KNL manycore platforms for our experiments
because of the complexity of such architecture and its capability to deliver both
high memory bandwidth level and high peak floating point performance thanks
to its AVX-512 units.

This paper is organized as follows. Section 2 provides the numerical back-
ground on seismic wave propagation. The task-based algorithm is described in
Section 3 and its implementation in Section 4. Finally, we discuss the parallel
performances in Section 5 and Section 6 concludes this paper.

2 Numerical Background and Classical implementation

2.1 Numerical scheme

Let us recall that elasto-dynamic equations allow for evaluating the three com-
ponents of the velocity (Vx, Vy, Vz) and stress field (σxx, σyy, σzz, σxy, σxz, σyz)
of the seismic wave. Fully discretized forms of these quantities as given in [10].
For instance, the discretized form of Vx is given in (1).
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Parameter Definition Possible values

ds Spatial discretization step (km) > 0

(lx, ly, lz) Size of the global domain (km) (> 0, > 0, > 0)

(nx, ny, nz) Total number of grid points (lx/ds, ly/ds, lz/ds)

Tmax Duration of the simulation (s) > 0

dt Time step (s) > 0

Nt Number of time-steps 2 ∗ Tmax/dt

(cx, cy, cz) Number of grid points per tile (> 0,> 0,> 0)

(nxx,nyy,nzz) Total number of tiles per axis (nx/cx, ny/cy, nz/cz)

t Time-step index {1, · · · , Nt − 1}
l Location of the halo within a tile {0, · · · , 5}
d velocity component {0, 1, 2}
s Stress field component {0, · · · , 5}

(ii, jj, kk) Coordinates of a tile J0, nxx−1K×J0, nyy−1K×J0, nzz−1K
(i, j, k) Coordinates of a cell within a tile J0, nx−1K× J0, ny−1K× J0, nz−1K

Table 1: Notations used to define tasks.

Dx is the 4th order central finite difference operator defined in (2).

Dxf(x, y, z) = c1 ∗ f(x+∆1, y, z) + c2 ∗ f(x−∆2, y, z)

+ c3 ∗ f(x+∆3, y, z) + c4 ∗ f(x−∆4, y, z),
(2)

where ci and ∆i, i = 1, · · · , 4, are constant numerical coefficients depending on
the discretization scheme. Dy and Dz are defined similarly. We considered this
numerical scheme as a basis for building our seismic wave simulator for modern
architectures. In particular, we designed a novel task-based implementation of
the seismic wave propagation and implemented generic performance-portable
numerical kernels.

2.2 Standard implementation

In the remaining of the paper, we assume the notations defined in Table 1.
The general algorithm describing the seismic wave propagation is given in Algo-
rithm 1. The model takes as input the velocities of the compression and shear
waves, Vp and Vs, defined for every layer contained within the computational
domain; the density ρ and the seismic sources. Given the inputs, the algorithm
iterates over all time-steps and successively computes the velocity components
(Line 7) and stress field components (Line 10) for every spatial grid point.

The velocity and the stress fields are evaluated at grid points separated by
half of the discretization step. This is coming from the implementation of the
staggered grid described for instance in [9]. Velocity computation at time step
t depends on some computed values of the stress field at time step t − 1, as
shown in (1). These dependencies represent the stencil for the computation of the
velocity and are illustrated in Figure 1. Similarly, the computation of the stress



Algorithm 1: Linear seismic wave propagation

In : Vp, Vs, ρ, sources
Out: Global Velocity and Stress of the seismic wave

1 for t ∈ {0, 2, · · · , Nt − 2} do
2 for i ∈ {0, · · · , nx − 1} do
3 for j ∈ {0, · · · , ny − 1} do
4 for k ∈ {0, · · · , nz − 1} do
5 B Compute Vx, Vy and Vz

6 for d ∈ {x, y, z} do
7 ComputeVelocity(d, t, i, j, k);

8 B Compute Sxx, Syy, Szz, Sxy, Sxz and Syz

9 for s ∈ {xx, yy, zz, xy, xz, yz} do
10 ComputeStress(s, t+ 1, i, j, k);

Fig. 1: Stencil for Vx computation (2D) and halo exchange between subdomains.
Each subdomain, delimited by dashed boxes, is enlarged with the additional
points for containing the halo. Computing the velocity at the blue colored grid
point requires computing the stress fields at the red colored grid points.

field depends on some previously computed values of the velocity. Nevertheless,
computing the different velocity components are independent and the same for
all the stress field components. Hence, each of the loops at Line 6 and Line 9
can be evaluated in parallel.

The parallelization of this algorithm on this distributed memory computers
has been extensively studied, relying mainly on MPI and OpenMP. Typically,
the time-step loop (Line 1) is considered as sequential and the parallelization is
achieved by regularly splitting the spatial domain among all the workers. Each
MPI process will handle (nx/P ) × (ny/Q) cells, where P and Q are the total
number of MPI processes along the x and y axes. Within each MPI process, a
team of OpenMP threads is spawned to perform the computations on the local
cells. At the end of each time-step, each MPI process exchanges its boundaries
with neighboring processes as depicted in Figure 1. For instance, a classical
implementation is described in [18]. However, there are three main concerns
with this approach: explicit synchronization required when exchanging the halo
at the end of each time-step; serialization of the time-step loop and the lack of
explicit vectorization.



3 A Fully task-based Model of the Linear Seismic Kernel

We considered the Algorithm 1 as a basis, and we made several optimizations
on it, with the goal of making it scalable at high core count : we redesigned the
algorithm into a fully task-based version including the time-step loop. Through-
out this process, we considered different constraints: scalability, communication
overlap, data locality, and vectorization efficiency.

Scalability : A task is an independent unit of work that will be processed by a
thread. For instance, the computation of the x component of the velocity (rest.
stress field) at time t and on the cell (i, j, k) is a task. To scale at high-core count,
the algorithm must expose a large number of such tasks that can be processed
concurrently. To that end, we need to define dependencies that are going to be
used by a runtime system. It will schedule the tasks as soon as they become
ready among all available computing resources. An important point to note is
that the runtime system introduces some scheduling overhead due to calculations
required for selecting the task to execute. To enhance the scalability of our model,
by minimizing the former overhead, we partitioned the global domain into a set
of 3D tiles defined by a contiguous collection of cells, on which the tasks are
going to work, rather than on a single cell. In the following, we will omit the
prefix 3D when referring to a tile, and we will use the index (ii, jj, kk) for its
coordinates. Due to the nature of the stencil computation scheme, each tile will
be enlarged to contain the halo retrieved from neighboring tiles, as in Figure 1.

Instead of performing the extraction and update of the halo, we add two new
tasks dedicated to these actions: ExtractVelocityHalo and UpdateVelocity with
the advantage of increasing the amount of available parallelism. This is required
to maximize the parallel efficiency on modern distributed computing platforms.
In summary, our task-based algorithm contains six types of tasks:

1. ComputeVelocity(d, t, ii, jj, kk) computes the d component of the velocity on
tile (ii, jj, kk) at time-step t. It depends on UpdateStress(s, t− 1, ii, jj, kk).

2. ExtractVelocityHalo(d, t, ii, jj, kk) first extracts all the boundaries of the d-
component of the velocity on the tile (ii, jj, kk). The extracted boundaries
are placed in temporary buffers and sent to the UpdateVelocity tasks on
neighboring tiles. It depends on ComputeVelocity(t, d, ii, jj, kk).

3. UpdateVelocity(d, t, ii, jj, kk) receives the velocity halo from neighbouring
ExtractVelocityHalo tasks and update the tile (ii, jj, kk). It depends on
ExtractVelocityHalo(d, t, ii, jj, kk).

4. ComputeStress(s, t, ii, jj, kk) defined similarly as ComputeVelocity.
5. ExtractStressHalo(s, t, ii, jj, kk) defined similarly as ExtractVelocityHalo.
6. UpdateStress(s, t, ii, jj, kk) defined similarly as UpdateVelocity.

The fully task-based version of the linear seismic wave propagation is pre-
sented in Algorithm 2. In Figure 2, we give the data-flow corresponding to this
algorithm. On the same tile, and for a fixed d and t, the tasks ComputeVe-
locity, ExtractVelocityHalo and UpdateVelocity are serialized. As we will see



Algorithm 2: Task-based algorithm for the seismic wave propagation

In : Vp, Vs, ρ
Out: Global Velocity and Stress of the seismic wave

1 forall t ∈ {0, 2, · · · , Nt − 2} do
2 B Compute Vx, Vy and Vz

3 forall d ∈ {x, y, z} do
4 forall ii ∈ {0, · · · , nxx − 1} do
5 forall jj ∈ {0, · · · , nyy − 1} do
6 forall kk ∈ {0, · · · , nzz − 1} do
7 ComputeVelocity(d, t, ii, jj, kk);
8 ExtractVelocityHalo(d, t, ii, jj, kk);
9 UpdateVelocity(d, t, ii, jj, kk);

10 B Compute Sxx, Syy, Szz, Sxy, Sxz and Syz

11 forall s ∈ {xx, yy, zz, xy, xz, yz} do
12 forall ii ∈ {0, · · · , nxx − 1} do
13 forall jj ∈ {0, · · · , nyy − 1} do
14 forall kk ∈ {0, · · · , nzz − 1} do
15 ComputeStress(s, t+ 1, ii, jj, kk);
16 ExtractStressHalo(s, t+ 1, ii, jj, kk);
17 UpdateStress(s, t+ 1, ii, jj, kk);

CV(X, t, ii, jj, kk) EV(X, t, ii, jj, kk) UV(X, t, ii, jj, kk) CS(XX, t+1, ii, jj, kk)

CS(XY, t+1, ii, jj, kk)

CS(XZ, t+1, ii, jj, kk)

ES(XX, t+1, ii, jj, kk)

ES(XY, t+1, ii, jj, kk)UV(Y, t, ii, jj, kk)

ES(XZ, t+1, ii, jj, kk)UV(Z, t, ii, jj, kk)

CV(Y, t, ii, jj, kk) EV(Y, t, ii, jj, kk)

CV(Z, t, ii, jj, kk) EV(Z, t, ii, jj, kk)

US(XX, t+1, ii, jj, kk) CV(X, t+2, ii, jj, kk)

US(XY, t+1, ii, jj, kk)

US(XZ, t+1, ii, jj, kk)

Fig. 2: Data-flow for the task-based linear seismic wave model (case of Vx compu-
tation). CV, EV and UV designate ComputeVelocity, ExtractVelocityHalo and
UpdateVelocity. A similar definition holds for CS, ES and US.

in Section 5, combining the time-step loop with the spatial cells when defining
tasks allows overlapping computations of different time-steps, hence reducing
the execution time.

Communication overlap: by delegating extraction and update of the halo per
tile to dedicated tasks, we enforce the potential of overlapping communications
with computations. Indeed, once a ComputeVelocity task is completed, we can
start extracting and sending its boundaries to UpdateVelocity tasks associated
to neighboring tiles, while another ComputeVelocity task is in progress.

Data locality: to maximize cached data reuse, we considered a hierarchical rep-
resentation of the manipulated data structures, typically V and S, as following:

– V (x|y|z)(ii, jj, kk)(i, j, k)



– S(xx|yy|zz|xy|xz|yz)(ii, jj, kk)(i, j, k)

V (x) is a column-major 3D tensor whose elements are 3D tiles. Each 3D tile,
V (x)(ii, jj, kk), is stored as a row-major 2D tensor whose elements are 1D arrays
of floating point values, oriented according the z-axis. The tile object implements
an operator() (const int i, const int j) for extracting the z-vector in-
dexed by i and j. The velocities are block-wise computed, where each block is
a z-vector of coordinates (i, j) within the considered tile. Prior computations,
each thread will load a z-vector of their respective tiles into the L1 cache of the
core on which it is bound. Hence, with an appropriate tile size, for all (i0, j0)
and (i1,j1), the z-vectors V (x)(ii, jj, kk)(i0, j0) and V (x)(ii+1, jj, kk)(i1, j1) will
never be on the same cache line. Consequently, the proposed approach minimizes
the probability of false-sharing during execution. Moreover, by appropriately ad-
justing the tile size, all its data can fit into cache, hence increasing the arithmetic
intensity of the computation, required for a better vectorization efficiency.

Vectorization efficiency: computing V on a single tile involves a series of partial
derivatives of S along the three spatial dimensions. Along both x and y dimen-
sions, the computations are similar across all cells for a fixed (i, j), and can
thus be performed in parallel. To leverage this fine-grained parallelism, the data
layout has been designed so that each tile is a 2D grid of 1D vectors along the
z-axis. For instance, V (x)(ii, jj, kk)(i, j) is a 1D vector, eventually padded with
additional cells to match the SIMD width on the target architecture. This strat-
egy allows us for explicitly computing the derivatives using SIMD instructions.
The same analysis holds for the computation of S.

4 A Hierarchical Implementation Tailored for Modern
Architectures

4.1 Implementation on top of PaRSEC

Emergence of task scheduling engines: The past years have witnessed the emer-
gence of generic task-based runtime systems [19–21]. These systems were intro-
duced to cope with the application development issues arising since the advent of
massively parallel and heterogeneous computing. Such a system offers a unified
view of the underlying hardware and let the developer focus on the algorithm,
described as Directed Acyclic Graph (DAG) of tasks. The runtime system will
then manage all data transfers and synchronizations between computing devices
(CPUs/GPUs/MICs) and the scheduling of tasks among available computing
resources. Hence, these frameworks allow for the separation of major concerns
in HPC: design of the algorithm, creating a data distribution and developing
computational kernels.

While the general principle of the runtime systems is similar for all, two
major tendencies exist and differ according to the DAG of tasks construction:
Parametrized Task Graph (PTG) [22] and Dynamic Task Graph (DTG) mod-
els [23]. In the PTG approach, the DAG is constructed as a problem size in-
dependent symbolic representation of the algorithm and can thus be generated



Listing 1.1: ComputeVelocity task in the JDF language.

1 ComputeVelocity(d, t, ii, jj , kk)
2 d = 0 .. dim -1
3 t = 2 .. nt -2 .. 2
4 /* ii , jj , kk from 0 to nxx -1, nyy -1, nzz -1 */
5
6 : ddesc(ii , jj , kk)
7
8 CTL SxxH <- ( d==X && t > 2) ? SxxH UpdateStress(XX, t-1, ii , jj, kk)
9 CTL SxyH <- ((d==X || d==Y) && t > 2) ? SxyH UpdateStress(XY , t-1, ii, jj, kk)

10 CTL SxzH <- ((d==X || d==Z) && t > 2) ? SxzH UpdateStress(XZ , t-1, ii, jj, kk)
11
12 BODY
13 {
14 computeVelocity(d, t, ii, jj , kk);
15 }
16 END

at compile time. Hence, the instantiation of new tasks is performed during ex-
ecution through a closed formula depending on the task parameters. Such an
approach is implemented by the PaRSEC [21] framework, offering a specific
annotation-based language, the Job Data Flow (JDF), for describing the DAG of
tasks according to their INPUT and OUTPUT data. Conversely, with the DTG
approach, the DAG of tasks is fully constructed and kept in memory, which the
runtime system is going to explore during execution for discovering and schedul-
ing ready tasks. Thus, the DAG memory occupation grows with the problem
size. Nevertheless, DTG frameworks (e.g. StarSS [19] and StarPU [20]) usu-
ally allow to customize a window of visible tasks for avoiding the full generation
of the DAG of tasks at runtime. An appropriate window size can therefore help
reducing the memory footprint with a minimal performance penalty. Given the
regular pattern of the spatial mesh we considered in this study, we choose to
implement our data flow on top of the PTG-based framework PaRSEC.

Implementation: Building an application on top of PaRSEC requires to define
the algorithm data-flow using the JDF language and a data distribution that will
be used by the runtime system for tasks placement on the target architecture.
The Listing 1.1 shows a simplified version of the JDF implementation of the
ComputeVelocity task. There are four main parts in the task description.

1. The execution space (Line 2 to Line 4) is defined by a valid range, for each
of the task parameters, determining the total number of similar tasks.

2. The parallel partitioning (Line 6) is a symbolic reference to a data element
that is going to be used by the runtime system to execute the task according
to the owner compute rule. Basically, the task will be scheduled on the node
where the data element is located.

3. Task data-flow (Line 8 to Line 10) defines the input and output dependen-
cies of the task, eventually conditioned by a C-style ternary operator. Here,
the keyword CTL (Control flow) is used as a counter by the runtime system
(not a real data transfer). For instance, computing Vx requires the reception



Listing 1.2: UpdateStress task in the JDF language.

1 UpdateStress(s, t, ii, jj, kk)
2 s = 0 .. nsc -1
3 t = 1 .. nt -3 .. 2
4 /* ii , jj , kk from 0 to nxx -1, nyy -1, nzz -1 */
5
6 : ddesc(ii , jj , kk)
7
8 READ SLeft <- (ii >0 && t>1) ? SRight ExtractStressH(s, t, ii -1, jj , kk)
9 READ SRight <- (ii<nxx -1 && t>1) ? SLeft ExtractStressH(s, t, ii+1, jj, kk)

10
11 CTL SxxH -> (s==XX && t>1) ? SxxH ComputeVelocity(X, t+1, ii , jj, kk)
12 CTL SxyH -> (s==XY && t>1) ? SxyH ComputeVelocity(X, t+1, ii , jj, kk)
13 CTL SxzH -> (s==XZ && t>1) ? SxzH ComputeVelocity(X, t+1, ii , jj, kk)
14
15 BODY
16 {
17 updateStress(LEFT , s, t, ii, jj, kk , SLeft);
18 updateStress(RIGHT , s, t, ii, jj, kk, SRight );
19 }
20 END

of three controls: Line 8, Line 9 and Line 10, notifying the completion of Up-
dateStress task on respectively xx, xy and xz components of the stress field.
In Listing 1.2, we can see the matching control flows sent by UpdateStress
task at Line 11, Line 12 and Line 13. Also, UpdateStress has an input data
dependency as indicated on Line 11. This line specifies that UpdateStress
will create a temporary read-only (READ keyword) buffer SLeft where an
output data SRight sent by ExtractStressH will be stored.

4. The task body between BODY and END keywords contains the code exe-
cuted by the task. Here, the body is given at Line 14 as a function call to
our implementation of the velocity computation on a single tile.

This JDF is complemented with a data distribution implementation, through two
PaRSEC provided functions, evaluated by all processes: data of and rank of.
The former returns the pointer to the actual data described by ddesc(ii, jj,

kk) and the latter returns the rank of the MPI process holding that data. The
combination of the JDF and the data distribution will be used by PaRSEC to
schedule and execute tasks, according to the provided computational kernels.

4.2 Building Generic Optimized Computational Kernels

To build the kernels, we considered three metrics: expressivity, performance and
performance portability across various architectures. In the following, we demon-
strate how our implementation managed to maximize these metrics.

Expressivity: We adopted the C++ language that allows for building complex
and meaningful expressions, close to the mathematical formulations used in an
algorithm. Let us consider the Vx computation as given in Listing 1.3. The code
shows a tile traversal in the (x, y) plane. For each position (i, j), velocities of all



Listing 1.3: Computation of Vx on a single tile.

1 for (int i=iStart; i<iEnd; i++){
2 for (int j=jStart; j<jEnd; j++){
3 vX(i,j) +=( fdo_.apply <SWS::X>(sigmaXX , i, j)
4 + fdo_.apply <SWS::Y>(sigmaXY , i, j)
5 + fdo_.apply <SWS::Z>(sigmaXZ , i, j))*dt*bx(i,j);
6 }
7 }

Tmax dt Nt lx ly lz ds nx ny nz

TestA 1.6 0.008 200 20 20 10 0.1 200 200 100

TestB 20 0.2 2000 650 1000 50 0.5 1300 2000 100

Table 2: Characteristics of TestA and TestB benchmarks.

cells along the z axis are computed at Line 3, according to block-wise evaluations.
fdo is an object of type CentralFDOperator, a class implementing the 4th order
central finite-differences scheme through the member function apply, templated
with the derived direction. We can notice the similarity between expression on
Line 3 with the numerical formulation of Vx as shown in (1).

Performance and Performance Portability: Using Expression Templates to build
our containers on top of the generic C++ Eigen library [24] avoids the creation
of temporary 1D vectors for each each call to the apply() method on Line 3
of Listing 1.3. In addition, Eigen supports explicit vectorization with various
SIMD extensions, including SSE2, AVX2, AVX-512, and ARM NEON allowing
the application to be portable across a large number of architectures.

5 Experiments

We conducted strong scalability studies on the Frioul supercomputer from GEN-
CI/CINES4, based on Intel KNL 7250, comprising 68 cores running at 1.4 GHz.
There is 16 GB of MCDRAM on-chip memory per node and 192 GB of DDR4
off-chip memory. The computing nodes are interconnected through an InfiniBand
EDR fabric, providing a theoretical bandwidth of 100 Gb/s. All the experiments
have been carried out using two test cases: TestA and TestB (see Table 2). The
former is a small test case and the latter, representing a real earthquake, is
larger. In the following, both SeWaS and Ondes3D applications are compiled
using Intel compiler version 18.0.1 and Intel MPI version 5.1.3.

5.1 Tuning Single Node Performances

As mentioned in Section 3, the performances of the application is strongly de-
pendent of the tile size. To evaluate the best size, we considered the TestA

4 https://www.cines.fr/le-supercalculateur-frioul/

https://www.cines.fr/le-supercalculateur-frioul/
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Fig. 4: SeWaS strong scaling. The left curve shows the single-node performance
using TestA. It compares the performances of single and double precisions for
both KNL configurations (cache and flat modes). The right curve shows the
multi-node performance using TestB where all nodes are configured on flat mode.

benchmark and compared the computation time of SeWaS for different config-
urations of (cx, cy, cz) on a single 64-cores node. The results are presented in
Figure 3. For the considered test case, the absolute discrepancy compared to the
double precision results is an order of 10−4 which is acceptable for the purposes
of our experiments.

We found that the best computation time (11.957 s) is obtained with a tile
of size (40, 40, 100). For this size, the total number of tasks is 67500, that is
1054 tasks per thread. We can also notice that for a fixed cx and cy, the best
computation time is obtained when using cz is 100. This result is justified by the
fact the computations are vectorized along the z axis, and thus the performances
tend to be better when cz is large enough to fit the SIMD units. In the following,
all the presented results were obtained using the determined best tile size.

Figure 4a presents a single-node strong scalability study of SeWaS using
TestA benchmark. It shows that the run with flat mode is slightly faster than
with cache mode.

In double precision, SeWaS computation time on 64 cores is 14.9 s, whereas
Ondes3D takes 56.9 s. This difference is due to the explicit vectorization used



Tmax (s) 1 2 4 8 16 20

Nt 100 200 400 800 1600 2000

Computation Time (s) 108.3 117.6 136.7 175.4 252.6 291.5

Table 3: Illustration of time-steps overlapping.

in SeWaS and a better data locality. Even if Ondes3D is a more generalistic
application and does implement other features that are not present in SeWaS,
such as absorbing boundary condition, we expect that this comparison will give
to the reader an order of magnitude of how SeWaS compares to Ondes3D. In
the following, all results are obtained in single precision and using the flat mode.

5.2 Distributed Memory Scaling

We consider the TestB benchmark. This test case contains 1300 cells along the
x dimension. As it is not divisible by 40, we will be using the (50, 50, 100) tile
size whose performance are very close.

Strong scaling: The Figure 4b presents SeWaS strong scaling using TestB bench-
mark on 8 nodes. The benchmark runs in 2589.7 s on a single node, and 291.8 s
using 8 nodes, corresponding to a speed-up of 8.8. The super linear scalability
observed is due to the fact the computation on a single node requires around
40 GB of memory which is larger than the size of the on-chip MCDRAM. Indeed,
on a single node, 24 GB of data will be allocated in DDR4. Starting from 4 nodes,
all data can fit in the MCDRAM, and thus the performances are improved.

Impact of time-steps overlapping: We conducted an experiment to study the
behavior of computations overlap for successive time-steps in SeWaS. We mea-
sured the computation time for several values of Tmax from 2 s to 20 s. The results
are presented in Table 3. We observe that the computation time increases with
Tmax, following a linear trend experimentally determined as:

Computation Time ≈ Tinit + 9.7 ∗ Tmax,

where Tinit ≈ 98.6 s is the time spent to initialize the computations. Let us
first consider the core simulation time, that is the computation time without
the initialization. We notice that the ratio of the core simulation time between
Tmax = 20 s and Tmax = 2 s is 7.8 representing an overlap ratio of 22%. This is
a remarkable result as it shows a high overlapping rate for the computations of
different time-steps. A preliminary experiment showed that the initialization can
be fully parallelized allowing to mitigate its impact on the computation time.

6 Conclusion

In this paper, we presented the design and implementation of SeWaS, a lin-
ear seismic wave propagation code, adapted for modern computing platforms.



We studied the main challenges related to the development of efficient and scal-
able computation code on these platforms. A fully task-based model has been
designed and its implementation combines the state-of-the-art frameworks and
libraries PaRSEC and Eigen. Performance studies conducted on a cluster of
Intel KNL processors showed that the application exhibits a good strong scala-
bility up to 8 nodes. The proposed approach demonstrated a clear path toward
code modernization required to take advantage of computing power brought by
current and coming Exascale systems. In the future, we will extend our compu-
tational kernels for GPUs to cope with highly heterogeneous systems.
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