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Abstract. A protein can be regarded as a chain of amino acids with
unique folding in the three-dimensional (3D) space. Knowing the folding
of a protein is highly desirable since the folding controls the protein
properties. However, determining it experimentally is expensive and time
consuming: estimating the 3D structure of a protein computationally -
known as protein structure prediction (PSP) - can overcome these issues.
In this paper, we explore the advantage of using Geometric Algebra (GA)
to model proteins for PSP applications. In particular, we employ GA to
define a metric of the orientation of the amino acids in the chain. We
then encode this metric in matrix form and show how patterns in these
images mirror folding patterns of proteins. Lastly, we prove that this
metric is predictable through a standard deep learning (DL) architecture
for the inference of pairwise amino acids distances. We demonstrate that
GA is a powerful tool to obtain a compact representation of the protein
geometry with potential to improve the prediction accuracy of standard
PSP pipelines.

Keywords: Protein Structure Prediction · Deep Learning · Geometric
Algebra.

1 Introduction

The 3D structure of a protein - known as tertiary structure - is the arrangement
in space of its amino acid chain - the primary structure - and it determines the
protein behaviour and cellular function. Determining the structure experimen-
tally, however, is expensive and time consuming.

For this reason, there has been a great deal of recent interest in DL algorithms
to predict the protein structure starting directly from the amino acid sequence
[1, 2]. By cutting time and cost and achieving unprecedented accuracies, PSP
has a huge potential impact on medicine and biotechnologies. The state of the
art in PSP is represented by [3]: the AlphaFold2 pipeline can directly predict
the 3D coordinates of heavy atoms and reach a median backbone accuracy of
0.96 Å on the CASP14 dataset [4]. The ensemble of its neural networks takes
into account evolutionary, physical and geometrical constraints of the protein
structures. From a geometrical point of view, proteins are represented as a residue
gas: each amino acid - also called a residue - is associated with a rigid body
(triangles) for the backbone and an angle for the sidechain. Similar processing
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strategies are found in [5], where 1D, 2D and 3D data are combined in a pipeline
of several neural networks producing mutual predictions.

Most PSP pipelines based on DL have contact and distance maps as their
end goal, which are then used to predict the protein structure. However, in [6],
it has been demonstrated that adding orientational information improves the
accuracy of the structure prediction: adding angle maps (three in total, one for
each dihedral angle associated with a residue) can improve the precision of the
top L long-range contacts of up to 2.2% on the CASP13 dataset.

In this paper, we propose a single map based on a GA description of the
protein geometry which is intuitive, compact, descriptive of the protein folding
and easily predictable compared to standard angle maps, with the potential of
simplifying both the protein modeling and the complex PSP pipelines.

The rest of the paper is structured as follows: in Section 2, the fundamentals
of Conformal GA are introduced. In Section 3, the proposed protein model is
presented and the GA cost and cost maps are introduced. In Section 4, the
prediction algorithm and strategy are presented, while in Section 5 the prediction
results are shown. Lastly, in Section 6, conclusions are drawn.

2 Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) extends a GA Gp,q,r of dimension n =
p+ q + r to Gp+1,q+1,r by introducing two basis vectors, e and ē, with e2 = +1
and ē2 = −1. Having introduced e and ē, we can compose the vectors

n∞ = e+ ē

n0 =
1

2
(ē− e)

(1)

which help define a mapping of the kind

x ∈ Gp,q,r −→ F (x) ∈ Gp+1,q+1,r (2)

in which F (x) is defined as

F (x) = −1

2
(x− e)n∞(x− e)

F (x) =
1

2
(x2n∞ + 2x− n0)

(3)

In the case in which we are dealing with a 3D space (i.e. G3,0,0), the equivalent
CGA will be G4,1,0, i.e. a five-dimensional space. When working in CGA, point
pairs, lines, planes, circles and spheres are all conveniently represented by blades
in the 5D CGA. A summary is provided in Table 1.

3 CGA in Protein Geometry

3.1 Cost Function

A protein can be simplified into a backbone chain and several side chains. The
backbone is responsible for the 3D shape of the protein, and it is composed of
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Table 1. Objects in CGA

Grade Symbol Object

1 A point
2 A ∧ B point pair
3 A ∧ B ∧ C circle (C)
3 A ∧ B ∧ n∞ line (L)
4 A ∧ B ∧ C ∧ D sphere (Σ)
4 A ∧ B ∧ C ∧ n∞ plane (Π)

a series of carbon, nitrogen, and oxygen atoms. The α-carbons are the main
feature of the backbone, to which the side chains that differentiate each amino
acid are bonded. Each α-carbon is preceded by a nitrogen atom and followed by
a carbon atom. Hence, to each amino acid i we can associate a triplet of atoms
{N,Cα, C}i.

Each {N,Cα, C} triplet lies on a plane, constraining the protein folding (see
Fig. 1). We can hence conveniently model a protein backbone in CGA so any
three {N,Cα, C} atoms will lie on a plane (not too dissimilar to the residue gas
of [3]): let Ai, Bi and Ci be the Euclidean coordinates expressed in Conformal
space of the atoms {N,Cα, C}i, respectively. The plane associated with residue
i can be expressed as the 4-blade:

Πi = Ai ∧Bi ∧ Ci ∧ n∞ (4)

Given two planes Πi, Πj corresponding to the amino acids i, j, we can compute
the rotor that brings one to the other as described in [7]:

Rij =
1√
⟨K⟩0

(1−ΠiΠj) (5)

where K = 2− (ΠiΠj +ΠjΠi) and ⟨·⟩ is the grade projector operator. We now
use the cost function Cλ(R) that measures how much the rotor R varies from
the identity, as defined in [8]. Cλ(R) is a weighted sum of a translational and a
rotational term:

Cλ1λ2
(R) = λ1⟨R∥R̃∥⟩0 + λ2⟨(R⊥ − 1)(R̃⊥ − 1)⟩0 (6)

in which the translational error is represented by R∥ = R · e, and the rotational

error by ⟨(R⊥ − 1)(R̃⊥ − 1)⟩0 = ⟨(R − 1)(R̃ − 1)⟩0. As we are interested in
an orientational feature, we will focus exclusively on the rotational part (case
λ1 = 0, λ2 = 1).

3.2 Cost Maps

Inter-residue interactions are commonly represented as matrices - also called
maps. A contact map C of a protein consisting of M residues, for example, is a
binary M ×M matrix of the type:
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Fig. 1. First 70 {N,Cα, C} planar triplets of the haemoglobin backbone.

Cij =

{
1 if dij < 15 Å

0 otherwise
(7)

where dij is the distance between residues i, j expressed in Å measured as the
Euclidean distance between the Cα coordinates of residues i and j. A cost map
can be interpreted as: two residues are in contact if they are within a certain
distance from each other. A more informative metric, usually real valued, is given
by distance maps, which are similarly defined as:

Dij = dij (8)

From either or both contact and distance maps it is possible to obtain accu-
rate 3D shape estimation. However, when contact or distance maps are predicted
and not exact, errors are introduced into the 3D reconstruction step. Having an
additional map grasping the orientation between residues can help to further
constrain the search space for the protein folding. We can hence employ our
cost function to produce a cost map which contains orientational information as
follows:

Mij =

{
Cλ1λ2

(Rij) if dij < 15 Å

0 otherwise
(9)

3.3 Examples

A comparison between contact map C, distance map D and cost map M is given
in Fig. 2 for an example protein
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Fig. 2. From left to right: contact, distance and cost map for protein 2HC5A.

It is possible to establish a relation between patterns in cost maps and the
protein secondary structure. By secondary structure we refer to the local folding
of a segment of a protein, e.g. α-helices, β-sheets or turns). Secondary structure
information is a common feature in PSP pipelines and one of the most important
in predicting distance and contact maps, as shown in [5, 9].

Fig. 3. Cost map (left) and secondary structure (right) for protein 4JZK. Visualizing
the first 200 residues.

By assigning a colour to each secondary structure, it is possible visualize
the secondary structure of each amino acid pair. We arbitrarily assigned red
to α-helices, green to β-sheets, blue to turns and white to all the others. Any
combination of these four colours gives the possible secondary structures of the
pair, for a total of 10 different colour combinations. As shown in Fig. 3, it is pos-
sible to find a clear correspondence between secondary structures and patterns
in the cost maps. To the best of our knowledge, this is the first example of an
orientational map that also encodes the secondary structure of the protein.
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4 Predicting Cost Maps

We verified the predictability of our cost maps by employing a deep residual
network as presented in [9]. We will refer to both the network and the associated
dataset as PDNET.

4.1 PDNET

PDNET is residual neural network composed of 128 blocks. Each residual block
consists of a batch normalization layer, a ReLU activation function, a 2D convo-
lutional layer with 3×3 kernel, a dropout layer with α = 0.3, a ReLU activation
function, and a 2D convolutional layer, for a total of ∼ 9.5M tunable parameters.

PDNET was originally designed to predict either: (i) contact maps, (ii)
binned distance maps or (iii) real-valued distance maps. We demonstrate that
from the same features and with the same architecture originally presented in
[11], cost maps can also be estimated. The task of distance map prediction is
comparable to the problem of depth estimation: the three RGB channels of a
colour image are replaced by tens of feature matrices derived from the amino
acid sequence, and the depth map is replaced by the distance map.

Specifically, the total number of channels is N = 57, corresponding to 7 fea-
tures: position specific scoring matrix (PSSM), secondary structure, entropy,
FreeCon, CCMPred, surface area and potential energy. Of these CCMpred,
FreeCon and potential energy are pairwise features, the rest are 1D features
relative to a single amino acid. The 1D features are encoded twice as identical
columns and rows for each amino acid in the sequence. The features are identical
to those of the PDNET dataset of [9], which includes a more detailed description
of their biochemical meaning. They are either derived from previous DL based
prediction or multiple sequence alignment queries.

When PDNET is employed to predict real valued distances, it employs the
reciprocal logcosh as a loss function:

L
(i)
D = log

(
cosh

(
K

D
(i)
P + ϵ

− K

D
(i)
T + ϵ

))
(10)

where D
(i)
P is the predicted distance matrix, D

(i)
T the true distance matrix, ϵ a

small positive number and K is a scalar set equal to 100. The inverse of the maps
is taken in order to prioritize short-range interaction, for which higher accuracy
is desirable, over long-range interaction, which is less relevant in terms of the
overall 3D structure. The loss is evaluated pixel by pixel and summed over the
total number of pixels.

4.2 Training Details

The GA-based cost maps are also real valued and bounded in the range [0, 2],
as we verified empirically by evaluating Cλ1,λ2

(R). However, since the cost does
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not increase for residues further away as it is a purely orientational measure, we
changed the loss to be:

LM(i) = log
(
cosh

(
M

(i)
P −M

(i)
T

))
(11)

where M
(i)
P ,M

(i)
T are the predicted and true cost maps for protein (i) in the

training set, respectively.
For training the network, we kept the features unchanged from those of

PDNET, namely a stack of images of the type {X(i)}Ni=1, with N = 57 and
X(i) ∈ RM×M , in which M is the length of the protein sequence. The change
comes in substituting the target DT ∈ RM×M - the true, real-valued distance
maps, with MT ∈ RM×M - the true, real-valued cost maps, obtained from the
protein coordinates in the protein database [10]. Again, the loss is evaluated per
pixel.

The training set has been kept to 1000 proteins from the DEEPCOV dataset,
and the testing set to 150 proteins from the PSICOV dataset, as in the original
PDNET pipeline.

The code has been implemented using the Keras API of Tensorflow for the
Machine Learning modules, the Clifford library for operations in Geometric Al-
gebra and the PDB Module of the Biopython library for handling protein data.
The code was written in the form of Jupyter Notebooks on Google Colaboratory
and all the experiments have been run on an NVIDIA Tesla K80 GPU. All the
scripts and data are available upon request to the authors.

We considered scenarios (see Fig. 4): (a) predicting cost maps with 57 feature
channels (standard PDNET), (b) predicting cost maps with 57 feature channels
+ 1 (real) distance channel (ideal case, as distance maps would not be available),
(c) predicting cost maps with 57 feature channels + 1 (predicted) distance chan-
nel also via PDNET (realistic case, as distance maps also need to be predicted
in PSP).

5 Results

We evaluated two metrics, namely: (i) mean absolute error (MAE), as in com-
mon regression problems, and (ii) structural similarity index (SSIM) between
MP ,MT , since a low MAE does not necessarily mean that the patterns in the
cost maps are captured successfully. The MAE is measured in Å, while the SSIM
ranges between [0, 1], with SSIM = 1 meaning fully similar matrices and SSIM
= 0 fully dissimilar matrices. They are defined as follows:

MAE(MP ,MT ) :
1

M2

M∑
i=1

M∑
j=1

|MP ij −MT ij | (12)

SSIM(MP ,MT ) :
(2µMP

µMT
+ c1)(2σMPMT

+ c2)

(µ2
MP

+ µ2
MT

+ c1)(σ2
MP

+ σ2
MT

+ c2)
(13)
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(a)

(b)

(c)

Fig. 4. The three processing schemes: (a) predicting costs from PDNET; (b) predicting
costs from PDNET+ true distance maps; (c) predicting costs from PDNET+ predicted
distances, themselves predicted from PDNET.
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with µMT
being the mean of MT , µMP

the mean of MP , σMPMT
the covariance

of MP and MT , σ2
MP

the variance of MP , σ
2
MT

the variance of MT , c1 =
(k1L)

2, c2 = (k2L)
2 with k1 = 0.01, k2 = 0.03 and L being the dynamic range,

set to L = 255.
Results are summarized in Tables 2-3.

Table 2. MAE between original and predicted cost maps (Å)

no distance with distance with pred. distance
Max Mean Min Max Mean Min Max Mean Min

DEEPCOV (val) 0.1080 0.0218 0.0009 0.0418 0.0108 0.0005 0.0607 0.01825 0.0005
PSICOV (test) 0.0342 0.0158 0.0029 0.0275 0.0125 0.0028 0.0327 0.01490 0.0029

Table 3. SSIM between original and predicted cost maps.

no distance with distance with pred. distance
Max Mean Min Max Mean Min Max Mean Min

DEEPCOV (val) 0.9946 0.9041 0.4990 0.9986 0.9652 0.8387 0.9991 0.9360 0.7442
PSICOV (test) 0.9937 0.9431 0.8592 0.9941 0.9632 0.9130 0.9936 0.9519 0.8851

It can be noticed that cost maps are indeed predictable based on features
commonly used to predict distances. However, when predicting cost maps with-
out distance information, only close range contacts (i.e. the pixels close to the
diagonal) are predicted accurately. Adding predicted distance information, on
the other hand, allows us to significantly improve the prediction of the patterns
in cost maps, with a mean MAE decrease by 16.3% for the training set and by
5.7% for the testing set. The average SSIM increased by 3.5% and by 1% for the
training and testing sets, respectively. The better the prediction of the distance
information (i.e., the closer the predicted distance maps are to the original ones),
the higher the improvement on cost prediction.
Examples of the predicted cost maps in comparison with the original cost maps
over the testing set are given in Fig. 5.

Lastly, we evaluated the permutation feature importance (PFI) to rank the
most relevant features in the prediction of cost maps. We did so by training the
network by permuting one feature at a time and then taking the ratio of our
metric with and without permutation of that feature. By permutation we refer
to the shuffling of a single feature across the training set, meaning that when we
evaluate the PFI for feature n, each protein will have associated an erroneous
feature n belonging to a different protein during training, while leaving the
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original

1aaPA

5ptpA

1bebA

3borA

predicted

(a)
predicted

(c)

predicted

(b)

Fig. 5. Examples of the GA cost map for four protein chains predicted with the three
approaches (a,b,c) of Fig. 4. Note how adding distances significantly improves the
quality of the prediction.
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testing set unchanged. We then measured the PFI of feature n as:

PFI
(n)
MAE =

MAE(MP ,MT )

MAE(n)(MP ,MT )
(14)

PFI
(n)
SSIM =

SSIM (n)(MP ,MT )

SSIM(MP ,MT )
(15)

In which f(MP ,MT ) is the metric f measured with standard training procedure,
and f(MP ,MT )

(n) is the metric f measured when permuting feature n during
training.

Results for the validation set (DEEPCOV) and for two testing set (PSICOV
and CAMEOHARD) are shown in Figure 5. The PSSM and secondary structures
appear to be the two most relevant features, a result which mirrors that found for
distance maps in [9]. This is in agreement with the findings of Section 3, where
we saw the close relationship between cost patterns and secondary structures.

Fig. 6. Permutation Feature Importance over MAE and SSIM for each of the 7 features
across validation and test sets.

6 Conclusions and Future Work

In this paper, we have introduced a new feature based on GA describing the
relative amino acid orientation for PSP applications. We firstly presented the
criterion behind the modeling of a protein backbone as a collection of planes.
We then evaluated the rotor between each pair of planes and associated a cost to
it. The pairwise costs were then arranged in matrix form to produce cost maps.
We proceeded to show how patterns in cost maps can be directly associated
to the protein secondary structure and verified how standard features and algo-
rithms employed in PSP to predict distance maps can also be used to predict our
proposed GA cost maps. Adding distance information - even if only predicted -
can further improve the predicted cost maps in terms of MAE and SSIM.

Our cost maps therefore constitute a useful tool for protein modelling and
may provide new orientation-based features that could improve the the final
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3D structure prediction.We believe that GA could hence constitute a successful
tool to model proteins and provide new orientational features that can improve
the precision of the 3D structure prediction and reduce the number of required
features.

Future work might include employing predicted costs, along with feature and
distance maps, to predict the 3D coordinates of Cα atoms in the protein back-
bone on the basis of [5, 12] and verify whether the cost maps can further constrain
the search space and improve the accuracy of the 3D coordinates, or employing
different GA modeling choices and hence new costs, and verify whether they can
capture different protein features compared to the cost proposed in this paper.
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