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Abstract— Electricity generation is mainly from thermal power 

plants, which also contribute to environmental pollutants, like SO2 

(Sulphur dioxide), CO2 (Carbon dioxide), and NOx (Oxides of 

Nitrogen). This has made the study of Economic Emission Dispatch 

(EED) an important research area. This paper introduces Novel 

Bat Algorithm (NBA) to be applied for solving EED problem using 

max/max penalty factor. As a test system, a 6 generator bus having 

cubic cost function is considered. Simulations are performed for 

individual pollutant analysis, and for combined pollutant analysis, 

considering different load demands. The results show that NBA 

performs better when compared with other algorithms available in 

literature. Convergence graphs are also presented.    

Keywords— Combined Economic Emission dispatch; Novel Bat 

Algorithm; Cubic cost functions; Pollutant Analysis 

I.  INTRODUCTION 

The increase in population and the dependency on electrically 

driven machines has led to the need of increasing the electrical 

energy output. However, the use of renewable energy alone 

cannot prove satisfactory to meet the energy demand. The 

conventional energy sources like thermal power plants are 

hence indispensable in fulfilling the energy needs.  

 The role of Economic Dispatch (ED) thus becomes 

significant to minimize the generator fuel cost especially in 

thermal (coal, fuel oil or natural gas) driven power plants [1]. 

The issue with the thermal power plants is the emission of 

pollutants involved. The pollutants harm the environment which 

indirectly affects the life on Earth. Major pollutants include SO2, 

NOx and CO2 [2]. The need to optimize the emission rate also 

plays a major role in ED problem. Such a case, wherein the 

optimization of a system has a fuel source, emission rate and the 

generator fuel cost is termed as the Combined Economic 

Emission Dispatch (CEED) [3]. 

 The CEED problem can be formulated in terms of the 

objective function having quadratic cost functions and/or cubic 

cost functions [4]. This work is based on cubic cost functions. 

Similarly, any ED problem is performed for a time horizon of 

either one hour, or more than one hour. The former case, when 

performed for CEED, is termed as Static Combined Economic 

Emission Dispatch (SCEED) [5], and it is performed in this 

paper.  

 Past research has been conducted in CEED considering 

effect of individual pollutants using Particle Swarm 

Optimization (PSO) [6] and Simulated Annealing (SA) 

algorithm [2]. This work uses Novel Bat Algorithm (NBA) to 

solve the CEED problem with cubic cost functions. 

 Yang proposed BA in [7] and has seen plenty of 

modifications since it were proposed [8-12]. The Binary bat 

algorithm [8] is a variation of bat algorithm which describes the 

algorithm in terms of discrete binary spaces, instead of the 

continuous binary spaces. The Novel Complex valued bat 

algorithm [9] is based on considering the two dimensional 

properties of the complex number, the real and imaginary parts, 

which are updated separately. As given in [10], when the bat 

algorithm is hybridized using the different differential evolution 

strategies, it is called Hybrid bat algorithm. Using different 

variations of chaotic maps, the Chaotic bat algorithm [11] was 

developed.  Another modification, the NBA, was proposed in 

[12] and it shows promising results in case of ED with losses 

and valve point loading effect [13]. Hence, it is used in this 

paper, as a first attempt to solve CEED with cubic cost functions 

and to study its convergence characteristics. A brief review of 

various other types of bat algorithm has been mentioned in [14], 

along with the applications they have been used for. 
 This paper has been arranged as follows: Section 2 

describes the mathematical formulation of the CEED problem, 
while Section 3 describes the Novel Bat Algorithm. The next 
section presents the data for the test systems and the simulation 
results, along with the convergence curves. Finally, the paper is 
concluded outlining the future work that can be performed in 
this domain. 

II. ECONOMIC EMISSION DISPATCH PROBLEM FORMULATION 

This section describes the mathematical formulation of the 

CEED problem, discussing the fuel cost function model, 

followed by the gas emission model and the price penalty 

function. 

A. Fuel cost function model 

 The EED problem is a bi-objective function, having a 

fuel cost equation and an emission objective equation. The fuel 

cost function can be represented in terms of a cubic fuel cost 

equation [15] as given in Eq. (1), which is termed as the fuel 

cost, and having two constraints, the equality constraint (power 

balance equation) – given in Eq. (2) – and the inequality 

constraint, shown in Eq. (3). 

Fcost(i) = ∑ 𝑎𝑖Pi
3 + 𝑏𝑖Pi

2 +  𝑐𝑖𝑃𝑖 + 𝛿𝑖
n
i=1                   (1) 

∑ Pi =  Pd + Pl
n
i=1                                              (2) 

Pi
min ≤  Pi  ≤  Pi

max                               (3) 

The power loss equation is given by Eq. (4) 

𝑃𝑙 = ∑ ∑ 𝐵𝑖𝑗𝑃𝑖𝑃𝑗
𝑁
𝑗=1

𝑁
𝑖=1                                          (4) 

However, in this paper only lossless case is considered. 

B. Gas Emission model  

 The minimization of pollutant emission is considered 

as the objective function in case of Emission Dispatch. It is also 

represented in terms of a cubic equation given in Eq. (5) for SO2, 

Eq. (6) for NOx and Eq. (7) for CO2. 



 

ESO2(i) = ∑ 𝑑𝑆𝑂2(𝑖)Pi
3 + 𝑒𝑆𝑂2(𝑖)Pi

2 + 𝑓𝑆𝑂2(𝑖)𝑃𝑖 + 𝛾𝑆𝑂2(𝑖)
n
i=1  (5) 

ENOx(i) = ∑ 𝑑𝑁𝑂𝑥(𝑖)Pi
3 + 𝑒𝑁𝑂𝑥(𝑖)Pi

2 + 𝑓𝑁𝑂𝑥(𝑖)𝑃𝑖 + 𝛾𝑁𝑂𝑥(𝑖)
n
i=1        (6) 

ECO2(i) = ∑ 𝑑𝐶𝑂2(𝑖)Pi
3 + 𝑒𝐶𝑂2(𝑖)Pi

2 +  𝑓𝐶𝑂2(𝑖)𝑃𝑖 + 𝛾𝐶𝑂2(𝑖)
n
i=1           (7) 

The objective functions of Emission dispatch of all the three 

gases can be combined with the fuel cost function to convert the 

multi-objective function into the single objective function.  

C. Price Penalty Factor  

 For converting the multi-objective function into a 

single objective function, Eq. (1) and [Eqs. (5)-(7)] are 

integrated using the price penalty factor, hi. The value of hi is 

dependent on the equation of pollutant associated with it. Thus, 

the combined objective function is represented as given in Eq. 

(8).   

𝐹(𝑃𝑖) = 𝐹𝑐𝑜𝑠𝑡(𝑖)(𝑃𝑖) + ℎ𝑆𝑂2(𝑖)
ESO2(i)(Pi) + hNOx(i)ENOx(i) +

hCO2(i)
ECO2(i)                              (8) 

 The term ‘hSO2’, ‘hNOx’ and ‘hCO2’ are the price penalty 

factors for SO2, NOx and CO2 respectively. The steps involved 

in the calculation of price penalty factor for a particular load 

demand [3] are: 

A. Ratio between maximum fuel cost and maximum emission 

of each generator is calculated. 

B. Values of price penalty factor are arranged in ascending 

order. 

C. Maximum capacity of each unit Pmax is added one at a time, 

starting from the smallest hi, until Pmax > Pd. 

D. At this point, hi which is associated with the last unit by 

following this process is the approximate price penalty factor 

value for the given load. 

Mathematically, it is represented as given in [Eqs. (9) – (11)]. 

ℎ𝑆𝑂2(𝑖) =
𝐹𝑐𝑜𝑠𝑡(𝑖)(𝑃𝑖

𝑚𝑎𝑥)

𝐸𝑆𝑂2(𝑖)
(𝑃𝑖

𝑚𝑎𝑥)
     (9) 

ℎ𝑁𝑂𝑥(𝑖) =
𝐹𝑐𝑜𝑠𝑡(𝑖)(𝑃𝑖

𝑚𝑎𝑥)

𝐸𝑁𝑂𝑥(𝑖)
(𝑃𝑖

𝑚𝑎𝑥)
     (10) 

ℎ𝐶𝑂2(𝑖) =
𝐹𝑐𝑜𝑠𝑡(𝑖)(𝑃𝑖

𝑚𝑎𝑥)

𝐸𝐶𝑂2(𝑖)
(𝑃𝑖

𝑚𝑎𝑥)
     (11) 

Only max/max price penalty factor method is used in this paper. 

III. NOVEL BAT ALGORITHM 

Bats are the only mammals with wings and they also have 
advanced capability of echolocation. Most of the bats use 
echolocation to a certain degree; among all the species, micro-
bats are famous for their extensive use of echolocation, while 
mega bats do not use them. Micro-bats use echolocation to 
detect prey, avoid obstacles, and locate their roosting crevices 
in the dark [7]. 

If some of the echolocation characteristics of micro-bats are 
idealized, various bat inspired algorithms can be developed. For 
simplicity, the following approximate rules are used: 

1. All bats use echolocation to sense distance. They also 
know the difference between food/prey and other background 
barriers.  

2. Bats fly randomly with velocity vi at position xi with a 

fixed frequency fmin (or wavelength λ), varying wavelength λ 

(or frequency f) and loudness Ao to search for prey. They can 
automatically adjust the wavelength (or frequency) of their 
emitted pulses and adjust the rate of pulse emission (in the range 
of 0 to 1) depending on the proximity of their targets.  

3. Although the loudness can vary in many ways, it is 
assumed that the loudness varies from a large value Ao to a 
minimum value Amin. 

The mathematical equations that can be formulated from the 
above discussion are given below [12]: 

rand(0,1) < Ai&& 𝑓((xi) < 𝑓(x))                   (12) 

 f(x) = f(xi)             (13) 

 Ai
t+1 =  νAi

t             (14) 

 ri
t+1 =  ri

0(1 − e−φt)               (15) 

 Another simplification is that ray tracing is not used in 
estimating the time delay. In addition to these simplified 
assumptions, subsequent approximations have been used for 

simplicity. Generally, the frequency f in a range [fmin, fmax] 

corresponds to a range of wavelengths [λ min, λmax]. 

In the Bat Algorithm (BA), the Doppler Effect and the idea of 
foraging of bats was not taken into consideration. In the original 

BA, each virtual bat is represented by its velocity and position, 
searches its prey in a D-dimensional space, and its trajectory is 

obtained. Also according to BA, it is considered that the virtual bats 
would forage only in one habitat. However, in reality, this is not 

always the case. In NBA [12], Doppler Effect has been included in 
the algorithm. Each virtual bat in the proposed algorithm can also 

adaptively compensate for the Doppler Effect in echoes. 

Meanwhile, the virtual bats are considered to have diverse 
foraging habitats in the NBA. Due to the mechanical behavior 
of the virtual bats considered in the BA, they search for their 
food only in one habitat. However, the bats in NBA can search 
for food in diverse habitats. In summary, the NBA consists of 
the following idealized rules for mathematical formulation 
purposes. 

1.  All bats can move around in different habitats.  

2.  All bats can compensate for Doppler Effect in echoes.  

3. They can adapt and adjust their compensation rate 
depending upon the proximity of their targets.  

The simulation for economic emission dispatch problem 
with cubic cost functions has been conducted on the standard 
IEEE 30 bus system using this method and has been found to be 
most optimal when compared with other methods. 

A. Quantum Behavior of Bats 

It is assumed that the bats will behave in such a manner that as 
soon as one bat finds food in the habitat, other bats would 
immediately start feeding from them. Such an assumption leads to 
the mathematical formulation of the virtual bat positions as shown 
below [12]: 



 

𝑥𝑖,𝑗
𝑡+1 =

{

𝑔𝑗
𝑡 + 𝜃 ∗ |𝑚𝑒𝑎𝑛𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 | ∗ 𝑙𝑛 (

1

𝑢𝑖,𝑗
) , 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗(0,1) < 0.5,

𝑔𝑗
𝑡 − 𝜃 ∗ |𝑚𝑒𝑎𝑛𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 | ∗ 𝑙𝑛 (

1

𝑢𝑖,𝑗
) , 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗(0,1) < 0.5,

(16) 

B. Mechanical Behavior of Bats 

The speed of sound in air is 340 m/s. This speed cannot be 
exceeded by the bats. Also the Doppler Effect is compensated by 
the bats and this compensation rate has been mathematically 
represented as CR. It varies among different bats. A value ξ is 
considered as the smallest constant in the computer to avoid the 

possibility of division by zero. The value of CR ∈ [0,1] and the 

inertia weight w ∈ [0,1]. 

Here, if the bats do not compensate for the Doppler Effect at 
all, then CR is assigned 0, if they compensate fully, CR is 
assigned 1. Now, the following mathematical equations explain 
the description [12]: 

𝑓𝑖,𝑗  =  𝑓𝑚𝑖𝑛  +  (𝑓𝑚𝑎𝑥  –  𝑓𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑(0,1)                     (17) 

fi,j =
c+vi,j

t

c+vg,j
t ∗ fi,j ∗ (1 + CRi ∗

gj
t−xi,j

t

|gj
t−xi,j

t |+ξ
)     (18) 

vi,j
t+1 = w ∗ vi,j

t + (gj
t − xi,j

t ) ∗ fi,j      (19) 

xi,j
t+1 = xi,j

t + vi,j
t         (20) 

C. Local Search 

When bats get closer to their prey, it is logical to assume, they 
would decrease their loudness and increase the pulse emission 
rate. But apart from whatever loudness they use, the factor of 
loudness in the surrounding environment also needs to be 
considered. This means the mathematical equations are 
developed as follows for the new position of the bat in the local 
area are given by the below-mentioned equations, where rand 

n(0,σ
2
) is a Gaussian distribution with mean 0 and σ

2
 as 

standard deviation [6]. At time step t, the mean loudness of all 
bats is Amean

t . 

If (rand (0, 1)>ri)                                    (21) 

xi,j
t+1 =  gj

t ∗ (1 + rand n(0, σ2))                       (22) 

and 

σ2= | Ai
t − Amean

t | + ξ 

D. Pseudo code 

The pseudo code for the novel bat algorithm is given below 
and is similar to [12]. This idea can be used upon to formulate 
the program for the CEED problem. 

Input: N: the number of individuals (bats) contained by the 
population  

M: maximum number of iteration  
P: the probability of habitat selection,  
w: inertia weight,  
CR: the compensation rates for Doppler Effect in  

echoes  
θ: contraction–expansion coefficient  
G: the frequency of updating the loudness and 

pulse emission rate  
ν, φ; fmin; fmax; A0; r0: parameters in original Bat 

Algorithm  
t = 0; Initialize the population and the related parameters. 
Evaluate the objective function value of each individual. 
While (t < M)  

If (rand (0, 1) < P)  
Generate new solutions using Eq. 16.  

Else  
Generate new solutions using Eqs. (17) – (20). 
End if. 
If (rand (0, 1) > ri)  

Generate a local solution around the selected 
best solution using Eqs. (21) and (22).  

End if 
Evaluate the objective function value of each 
individual.  
Update solutions, the loudness and pulse emission rate 
using Eqs. (12)–(15). 

Rank the solutions and find the current best gt .  
If gt does not improve in G time step, 
Re-initialize the loudness Ai and set temporary pulse rates ri 
which is a uniform random number between [0.85, 0.9]. 
 
End if 
 
t = t + 1;  
End while 
 

Output: the individual with the best objective function (fuel 
cost function) value in the population. 

 

IV. RESULTS AND DISCUSSION 

A comparison has been made between the Novel Bat 
Algorithm, and other algorithms considering a 6 generator bus 
(IEEE 30 bus) system with cubic cost functions. The bus data is 
taken from [2]. The results obtained using NBA are compared 
with the PSO algorithm (for individual pollutant analysis) and 
the combined pollutant analysis is compared with SA algorithm. 
Convergence graphs obtained are shown in this section. 

A. Case 1: Individual Pollutant Analysis for SO2 

The results obtained considering the emission of sulphur 
dioxide alone is given in Table 1 for a load of 200 MW. The 
results of NBA are compared with the results obtained using 
PSO. The NBA is found to give lower total cost for this case. 
The convergence plot for this case is given in Fig. 1 for NBA. 

B. Case 2: Individual Pollutant Analysis for CO2 

The results obtained considering the emission of Carbon dioxide 
alone is given in Table 2 for a load of 200 MW. The results of 



 

NBA are compared with the results obtained using PSO. The 
NBA is found to give lower total cost for this case. The 
convergence plot for this case is given in Fig. 1 for NBA. 

C. Case 3: Individual Pollutant Analysis for NOx 

The results obtained considering the emission of Carbon dioxide 
alone is given in Table 3 for a load of 200 MW. The results of 
NBA are compared with the results obtained using PSO. The 
NBA is found to give lower total cost for this case. The 
convergence plot for this case is given in Fig. 1 for NBA. 

TABLE I: COMPARISON BETWEEN PSO AND NBA FOR SO2 

Gen. Code PSO [6] NBA 

 P1 (MW) 54.23 50.00 

P2 (MW) 30.09 20.09 

P3 (MW) 21.06 15.04 

P4 (MW) 33.33 50.00 

P5 (MW) 30.53 24.86 

P6 (MW) 30.97 40.00 

Fuel Cost ($/h) 3739.99 3,721.32 

ET of SO2 (kg/h) 4458.15 4885.90 

FTOTAL ($/h) 7481.40 4023.90 

TABLE II: COMPARISON BETWEEN PSO AND NBA FOR CO2 

Gen. Code PSO [6] NBA 

P1 (MW) 53.20 50.00 

P2 (MW) 29.64 21.19 

P3 (MW) 21.91 15.00 

P4 (MW) 33.62 42.01 

P5 (MW) 30.49 31.78 

P6 (MW) 31.31 40.00 

Fuel Cost ($/h) 3745.38 3703.30 

ET of CO2 (kg/h) 3697.11 3832.63 

FTOTAL ($/h) 7011.27 3977.62 

TABLE III: COMPARISON BETWEEN PSO AND NBA FOR NOX 

Gen. Code PSO [6] NBA 

P1 (MW) 52.39 50.03 

P2 (MW) 28.71 20.00 

P3 (MW) 21.76 15.00 

P4 (MW) 33.67 42.01 

P5 (MW) 29.32 32.94 

P6 (MW) 34.52 40.00 

Fuel Cost ($/h) 3751.75 3703.30 

ET of NOx (kg/h) 3267.83 3395.08 

FTOTAL ($/h) 7419.86 4074.42 

TABLE IV: COMPARISON BETWEEN SA AND NBA FOR 

COMBINED POLLUTANT ANALYSIS 

Gen. Code SA [2] NBA 

P1 (MW) 50.00 50.16 

P2 (MW) 32.90 20.16 

P3 (MW) 15.00 15.56 

P4 (MW) 36.57 40.56 

P5 (MW) 30.93 31.77 

P6 (MW) 34.58 41.00 

Fuel Cost ($/h) 3735.73 3703.00 

ET of SO2 (kg/h) 4553.97 4653.34 

ET of NOx (kg/h) 3285.64 3412.54 

ET of CO2 (kg/h) 3714.33 3837.84 

FTOTAL ($/h) 14421.30 11074.02 

 

Fig. 1: Convergence graph for individual pollutant analysis using NBA. 

 

Fig.  2: Convergence curve of NBA for case 4



 

D. Case 4: Combined Pollutant Analysis 

The results obtained considering the emission of all three 

pollutants is given in Table 4 for a load of 200 MW. The results 

obtained with NBA are compared with the results obtained 

using Simulated Annealing (SA) algorithm. The SA algorithm 

outperforms PSO [2], while NBA gives better solution than SA, 

as seen in Table 4. The NBA is found to give the lowest total 

cost for this case. The convergence plot for this case is given in 

Fig. 4 for both BA and NBA. The generation power distribution 

graph is shown in Fig. 2.  

 By considering other load demands of 150 MW,175 

MW, 225 MW, it is seen that NBA performs better in giving the 

lowest fuel cost as well as the total cost when compared to SA. 

TABLE V: COMPARISON OF RESULTS FOR DIFFERENT LOAD 

CONDITIONS 

 
Fuel 

Cost ($) 

SO2 

(kg/hr) 

NOx 

(kg/hr) 

CO2 

(kg/hr) 

Total 

Cost ($) 

Load=150 MW 

NBA 2700.92 3134.25 2369.21 2619.29 8814.90 

SA 2705.21 3138.44 2379.35 2568.94 10261.49 

Load=175 MW 

NBA 3173.18 3951.82 2868.91 3294.15 10314.21 

SA 3220.51 3763.47 2789.92 3094.68 12280.04 

Load=225 MW 

NBA 4307.56 5494.81 3899.15 4258.24 14001.32 

SA 4321..51 5287.30 3781.19 4324.30 16790.69 

 

V. CONCLUSION 

In this paper, the Novel Bat Algorithm for combined economic 

emission dispatch problem is discussed. For the test case of a 6 

generator bus system, having cubic cost functions, with a power 

demand in the range of 150 MW to 225 MW, this algorithm 

proves to be the best in giving the lowest cost, among the 

algorithms with which it has been compared. It can hence be 

concluded that NBA is a robust algorithm for the experiments 

performed. This method can be extended to determine its 

robustness for higher dimensional problems and those 

involving renewable sources of energy. 
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