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Abstract: This paper discusses a method of classifying 

and segregating images using facial recognition. This 

study would define the most critical features for 

evaluating within a model that can distinguish one face 

from another. Extraction and collection of features are 

critical measures to better distinguish people from one 

another. Extraction of features is the method of extracting 

different properties from a set of results. Selection of 

features is the method that follows extraction, where the 

most important features are chosen to represent each 

sample. Once the appropriate features are selected, they 

are added as potential inputs to the neural network. The 

image dataset used for this project has been provided to 

me by a relative. This dataset contains suitable .jpg files 

containing over 4000 images we aim to classify and 

segregate. The model in this research differentiates 

between types of people based on their faces. Diverse 

features are tested to determine which elements 

performed better. The project mainly uses dlib and face 

recognition libraries in order to provide the functionality. 

 

 

1 Introduction 

 

Face analysis and identification are two such pathways that 

have a promising and beneficial impact on society. Artificial 

intelligence and machine learning advances have advanced 

these technologies significantly over the years. Computer 

vision is another area where technology is extremely useful. 

These innovations are in high demand in our daily lives these 

days. 

 

While there is a wide range of research in related to facial 

recognition, there is relatively little work on applying these 

concepts to the real word for image segregation. The 

development of several different libraries and APIs for face 

recognition has resulted from such study and development of 

such problems. These libraries can be customised to meet our 

needs in order to solve our problem. Facial recognition is also 

one of the most common and most explored tasks in the field 

of computer vision. It can provide useful information for both 

image understanding and video content analysis. 

 

Classification of people is a common problem with many 

practical applications in computer vision. Another 

application could be to automatically organize a huge image 

dataset and tag every person by their name.  These images 

can be used for finding similar images of the person. 

 

Convolution neural networks in the field of computer vision 

is considered to deliver great outcomes. We've seen a lot of 

improvement in this field for several years before we now 

achieve better than human accuracy for the classification of 

pictures. Such networks learn to recognize specific input 

features, and learn more complex features when stacked one 

after the other. Through the years some improvements have 

been implemented, such as dropout to prevent overfitting, 

normalization of batches to make weight initialization not a 

problem etc. For this model, libraries such as face recognition 

[2], [3] and dlib [1] were used in order to solve our problem. 

In this case, computer vision neural network ideas for image 

recognition were applied. 

. 

Face recognition has recently received a lot of attention as 

one of the most promising applications of image analysis and 

understanding, particularly in the last few years. This 

development can be attributed to at least two factors: the 

broad spectrum of commercial and law enforcement 

applications, and the availability of viable innovations after 

30 years of study. Even though current machine recognition 

systems have achieved a certain level of maturity, the 

conditions imposed by many real-world applications hinder 

their performance. Image classification is a fundamental 

problem in the field of image processing. The key task is to 

extract characteristics from the image, and then classify 

which class the image belongs to. It is not just the 

classification that is a key problem but the automated 

segregation of those classes itself, which is the aim of the 

project.  

 

This paper is organised as follows. In section 2 significant 

related works are summarised. This is followed by 

methodology in section 3. The results and discussions are 

presented in section 4. In section 5 conclusions are 

highlighted. 

 

2 Related Work  

 

After comparing various research papers related to image and 

face recognition, image and face classification available 

through resources various similarities has been observed 

when it comes to approach and motivation behind these 

various works. Keeping this in view we describe here few 

related significant research works. These works have 

described process used to do perform face recognition and 

classification and some related components [8]. 

 

Zeiler et al [7] proposed a model which consists of multiple 

interleaved layers of convolutions, non-linear activations, 

local response normalizations, and max pooling layers. We 

additionally add several 1 × 1 × 𝑑  convolution layers 

inspired by work of Lin et al [11]. 

 



Szegedy et al [9] recently implemented an inception model as 

the winning approach for ImageNet 2014. These networks 

use mixed layers that run several different convolutional and 

pooling layers in parallel and concatenate their responses. We 

have found that these models can reduce the number of 

parameters by up to 20 times and have the potential to reduce 

the number of FLOPS required for comparable performance. 

There are vast corpus of face verification and recognition 

works. We review here few significant ones only viz Sun et 

al [10], Taigman et al [12], Zhu et al [13]. In these works, 

complex system of multiple stages has been employed which 

combines output of deep convolutional network with PCA for 

dimensionality reduction and an SVM for classification. 

 

Zhu et al [13] employed a deep network to warp faces into a 

canonical frontal view and then learn CNN that classifies 

each face as belonging to a known identity. For face 

verification, PCA on the network output in conjunction with 

an ensemble of SVMs is used.  

 

Taigman et al [12] proposed a multi-stage approach that 

aligns faces to a general 3D shape model. A multi-class 

network is trained to perform the face recognition task on 

over four thousand identities. The authors also experimented 

with a so-called Siamese network where they directly 

optimize the L1-distance between two face features. Their 

best performance on LFW (97.35%) stems from an ensemble 

of three networks using different alignments and color 

channels. The predicted distances (non-linear SVM 

predictions based on χ2 kernel) of those networks are 

combined using a non-linear SVM. 

 

Sun et al [10] proposed a compact and therefore relatively 

cheap to compute network. They use an ensemble of 25 of 

these networks each operating on a different face patch. For 

their final performance on LFW (99.47 %) authors combine 

50 responses (regular and flipped). Both PCA and a Joint 

Bayesian model that effectively correspond to a linear 

transform in the embedding space are employed. Their 

method does not require explicit 2D/3D alignment. The 

networks are trained by using a combination of classification 

and verification loss. The verification loss is similar to the 

triplet loss we employ in that it minimizes the L2-distance 

between faces of the same identity and enforces a margin 

between the distance of faces of different identities. The main 

difference is that only pairs of images are compared, whereas 

the triplet loss encourages a relative distance constraint. 

 

Rybchak et al [15], [5] describe the actual methods and 

technologies for all stages of the development of the 

recognition system, since in the field of recognition, a huge 

number of unique solutions have been developed. The 

researchers introduce the method of face recognition using 

the SVM which significantly improve the speed and 

efficiency of the process of comparison of faces. Scholars 

have introduced the facial landmark estimation algorithms 

and techniques which are used to position the faces in the 

frame. It in turn helps the model in identifying the faces more 

efficiently and increase the overall quality of the system we 

are trying to achieve. Based on the study of documentation 

and analysis we have come to a conclusion that there no 

single pathway to conduct a facial recognition rather there are 

many methods and ways one could achieve this goal. But, 

pertaining to this article we find it easier to use face 

recognition library.  

 

3 Methodology 

 

The primary objective for this project is to use this wedding 

dataset to perform image segregation using facial 

recognition. 

  

The dataset involves over 4000 .jpg images. The images are 

taken over the occurrence of three wedding functions, each 

having different locations, different number of photos taken 

per function, different amount of people attending the 

wedding, different illumination due to the different locations. 

 

The project setup environment includes following significant 

artefacts. Processor: Intel® Core™ i7-8750H CPU @ 

2.2GHz (12 CPUs); RAM: 16384MB RAM; Operating 

Systems: Windows 10 64-Bit (Build 18363); Graphic Card: 

NVIDIA GeForce GTX 1070 with Max-Q Design; 

Programming Language: Python (Version 3.7) with libraries 

os, cv2, pickle, face_recognition, imutils, numpy, pandas, 

shutil etc. 

 

Now we present all the steps in building a face recognition 

and segregating system and implement with help of libraries 

as mentioned above. 

 

The first step to make a smart image segregation system is 

the step of identifying the face itself in the image [6]. Whether 

any face is not identified, or if any other entity is viewed as a 

face, the device we are implementing will be ineffective, and 

the results will be unsatisfactory. To solve this problem, we 

employ one of the most widely used algorithms built by Dalal 

et al [14] for detecting faces in images called histogram of 

oriented gradients (HOG). 

 

 
 

Fig. 1: Grayscale Image 

 

Since we don't need color data to find faces in a picture, we'll 

start by converting it to black and white as seen in Fig. 1. 

Then we'll go over each and every pixel in our picture one by 

one. We want to look at the pixels that are immediately 

surrounding each pixel. Our aim is to determine how dark the 

current pixel is in comparison to the pixels in its immediate 

vicinity. Then we'll draw an arrow indicating which way the 



picture is darkening. Hence, we end up with arrows called 

gradients that show the flow of light from light to dark across 

the entire image. 

 

We'll later divide the image into 16 × 16 pixel squares with 

each block being replaced by the strongest arrow path in that 

block. The final product would be a very basic representation 

of the face caught in the picture as shown in Fig. 2. The image 

is then compared to the HOG pattern, which was extracted 

from a collection of training faces and marked as the most 

common pattern with the identified pattern. As a result, we'll 

be able to identify the faces in image dataset we choose to 

segregate. 

 

 
 

Fig. 2: HOG based image 

 

After finding the face in the picture, the next issue we face is 

face positioning; in most images, the face is not centre placed 

as the algorithm requires; otherwise, the algorithm's 

efficiency and accuracy would suffer. We use face landmark 

estimation by Kazemi et al [16] in order to solve this problem. 

The basic concept is that we can identify 68 distinct points 

(known as landmarks) on any face, such as the top of the chin, 

the outside edge of each eye, the inner edge of each forehead, 

and so on as seen in Fig. 3. Then, on any face, we'll train a 

machine learning algorithm to find these 68 unique points. 

 

 
Fig. 3: The 68 landmarks we will locate on every face 

 

Now that we know where the mouth and eyes are, we'll rotate, 

scale, and shear the picture to focus the eyes and mouth as 

much as possible. By completing this step i.e., centering face 

we will be able to improve the accuracy and efficiency of the 

next step. 

 

The next step will be to learn how to distinguish between 

various types of faces. This can be accomplished by taking 

simple measurements from each forehead. Then we could use 

the same method to calculate our unknown face and find the 

known face with the nearest measurements. We might, for 

example, take measurements of the size of each ear or the 

distance between our eyes. So, we need to consider here 

correct metrics. Another issue we may encounter is that, with 

such a large database of faces, the comparison process will 

take a long time, making it inefficient. At first glance, we 

might believe that the main characteristics of the face, such 

as the distance between the eyes, the distance between the 

ears, or the length of the nose, are appropriate for the main 

measurements of the face, but as we dig deeper, we discover 

that the machine does not view the face as a whole, but rather 

considers the pixels of the picture. To solve this problem, it 

was suggested that we can use a deep convolutional network, 

which will be trained to identify 128 unique numerical facial 

features. But instead of training the network to recognize 

pictures objects like we did last time, we generate the 128 

measurements called embeddings: The training process 

works by following steps:  

 

(a) Load training face image of a known person  

(b) Load another picture of the same person  

(c) Load a picture of a different person 

 

The deep convolutional network will change the results from 

images 1 and 2 so that the 128 characteristics obtained are as 

similar as possible, while the image loaded in the third stage 

is as different as possible.  

 

The next step is to train the deep convolutional neural 

networks to produce unique numerical values of the 128 

characteristics from a large number of faces in the databases, 

which requires a significant amount of computational power.  

When the neural network is equipped, it can take the input of 

a face that has never been seen before and instantly produce 

unique characteristics. This makes the move the most critical 

of the others we've discussed; insufficient preparation can 

lead to unsatisfactory results and inefficiency. If you don't 

want to train a model, you can always use one that has already 

been trained and incorporate it into your algorithm to 

generate the features. In this project, we use the same strategy 

by using a pre-trained model to drastically minimize our job 

and economic costs. 

 

The algorithm's next step will be to compare the faces to 

available faces, which means that the available 128 features 

from the previous step will be compared to the data we have. 

The task at hand is to figure out how to compare the faces, 

and for this, we've chosen to use SVM. We train the classifier 

with the available features; the more homogeneous the 

features are, the better we can determine the face [4]. 

 



 
 

Fig. 4: Example of Face Recognition on singular face 

 

We proceed to run the model and the face matches are 

calculated by the use of embeddings. Internally compare_ 

faces function is computing the euclidean distance between 

the candidate embedding and all faces in our dataset. If the 

distance is below some tolerance (the smaller the tolerance, 

the more strict our facial recognition system will be) then we 

return True, indicating the faces match. Otherwise, if the 

distance is above the tolerance threshold, we 

return false as the faces do not match. 

 

 
 

Fig. 5: Counts 

 

Given our matches list we can compute the number of votes 

for each name (number of True values associated with each 

name), tally up the votes, and select the person’s name with 

the most corresponding votes as shown in Fig. 5. This system 

is used to identify and individual person as shown in Fig. 4 

and an image containing multiple people in it, and it is done 

for each person as shown in Fig. 6. 

 

 
 

Fig. 6: Example of Face Recognition on multiple faces 

 

If there are any True votes in matches, we need to determine 

the indexes of where these True values are in matches. We 

do that by creating a simple list. And we then create a 

dictionary that holds the name of the person as the key and 

the list of images the person is present in as the values of that 

key. Using this dictionary, we export all the images i.e., the 

values corresponding to the name, to a folder holding the 

person’s name as the name of the folder, with all of the 

images of the person as the content [7]. 

 

 

4 Results and Discussions 

 

As we can see from Fig. 7 algorithm has correctly classified 

the images based on the face and exported the respected 

images to a google drive folder. 

 

 
 

Fig. 7: Final Results 

 

We can see that our model has a great accuracy in terms of 

detecting the image, classifying it and segregating it. In 

today’s age this project right here is a stepping stone for 

image segregation, as it cannot be only pertained to a 

wedding but any social gathering. And it drastically reduces 

the manual effort of finding one’s personal photos in a huge 

image collection. 

 

5 Conclusion  

 

In this report, all main aspects of face detection, classification 

and segregation have been covered. The growth of 

classification systems driven by AI suggests a future for a 

personalized user experience of fluid. It will be one of the 

most effective ways of delivering content that is context-

conscious. This paper described the development of a simple 

image segregation system, and since the usage of pretrained 

models available, we were able to utilise them and implement 

these models in a real-world use case application.  The future 

prospects of this project can be to classify people not only in 

images and segregate those images but to detect them in 

videos and export them along with the images. 
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