
EasyChair Preprint
№ 1916

Data Exchange in Heterogeneous Databases in
KSA Using Cloud Computing

Noof Awad Aldieef and Nabeel Khan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 11, 2019

DATA EXCHANGE IN HETEROGENEOUS

DATABASES IN KSA USING CLOUD

COMPUTING

Noof Aldieef

Information Technology

Qassim University

Qassim, Saudi Arabia

411213660@qu.edu.sa

Dr.NabeelKhan

AssiatantProfessor

QassimUniversity

Qassim, Saudi Arabia

n.khan@qu.edu.sa

Abstract—Most institutions in Saudi Arabia, of all types,
commercial, medical, social and government agencies, have
cloud computing technology. Thus, there is a large amount of
heterogeneous data available, which has become a significant
obstacle to the query process and direct access to information.
Therefore, heterogeneous data processing has become a new
challenge for Saudi Arabia in computational computing. We
know that different data processing in local environments is
not an easy process, as there are difficulties in traditional
database management systems (DBMS), as the situation is more
complicated, more complex, in cloud computing environments.
Many companies in the IT industry are interested in addressing
this situation, producing many technologies to deal with it. This
paper aims to develop a methodology for standardized data
access in heterogeneous data systems. This allows users to query
and interact with different structural databases. And make the
most of the enormous amount of information stored. The main
objective of the paper is to help users as well as developers to
access data, in different databases, as a single database, easily,
saving time, effort and cost, with a single click.

Index Terms—Heterogeneous, DBMS ,Databases,Cloud.

I. INTRODUCTION

The integration of existing information systems is becoming

increasingly imperative to meet customer and business needs.

Restoring public data from different database systems is a

difficult task and has become a widely discussed topic. In

many cases, we need information simultaneously from various

database systems separated from each other ”such as querying

patient information from separate hospital information systems

or computerized manufacturing management. “In these cases,

users need to homogeneous logical views of data physically

distributed across heterogeneous data sources. These views

should represent the information collected as if the data were

stored in a standardized manner. A significant trend in cloud

computing and data management is the understanding that

there is ”no one size fits all “solution. Thus, there has been a

blooming of different cloud data management infrastructures,

referred to as NoSQL [1], specialized for different kinds

of data and tasks and able to perform orders of magnitude

better than traditional relational DBMS. Examples of new

data management technologies include: graph databases (e.g.

Sparksee [2], Neo4j), key-value data stores (e.g. HBase, Cas-

sandra, Hyper Table), array data stores (e.g. SciDB), analytical

cloud databases (e.g. Greenplum and Vertica), analytical cloud

frameworks (e.g. Hadoop Map-Reduce, Cloudera Impala),

document databases (e.g. MongoDB, CouchBase), and data

stream management systems (e.g. Stream Cloud [3,4], Storm).

This has resulted in a rich offering of services that can be

used to build cloud data-intensive applications that can scale

and exhibit high performance. However, this has also led

to a wide diversification of DBMS interfaces and the loss

of a common programming paradigm. This makes it very

hard for a user to integrate her data sitting in specialized

data stores, e.g. relational, documents and graph databases.

For example, consider a user who, given a relational data

store with authors, a document store with reviews, and a

graph database with author friendships, wants to find out

about conflicts of interests in the reviewing of some papers.

The main solution today would be to write a program (e.g.

in Java) that accesses the three data stores through their

APIs and integrates the data (in memory). There are many

solutions to integrate data from separate relational systems into

a new system. However, the problem is further complicated if

the source database systems are heterogeneous, that is, they

implement different types of data models (such as the data

model for different non-relational data models). While all

relational database management systems rely on the popular

relational data model, NoSQL systems apply different models

of semi-structured data (column stores, master value stores,

document databases, and graph databases) [3,5]. When data

models determine how to modify the logical structure of a

database, they play an important role in accessing the data. The

aim of this paper is to propose a general solution for simul-

taneously relational and non-relational database systems. The

mailto:411213660@qu.edu.sa
mailto:n.khan@qu.edu.sa

contribution of this work is to introduce a new method of data

integration and workflow, which implements data integration

for different source systems in a way that users do not need

any programming skills. The main element of the proposed

method is the JSON intermediary data model.The new cloud

services are offered to companies ranging from virtual server

creation to high-performance storage systems, providing high-

speed, high-quality connectivity, public and private network

interfaces, and cloud support services. The Kingdom has also

launched the e-Government Program (Yesser) of the Ministry

of Communications and Information Technology. The program

will establish a communication network for government e-

transactions, which connects government agencies to the e-

government data center ”Yesser”, to be used to host the

national e-government portal. This network enables the e-

Government Center to serve as a link between government.

entities, so that the mechanism of linkage between entities is

unified and its cost is reduced [11].

II. SAUDI ARABIA AND CLOUD COMPUTING

Saudi-based Virtual Vision, a technology and technology

development company, has launched e-cloud services in the

Kingdom of Saudi Arabia, in collaboration with Cloud Sigma

and Hewlett-Packard Enterprise. The cloud services provide

the opportunity for Virtual Vision to expand its diversified

portfolio of services and businesses in various sectors in the

Kingdom and the region in general, while contributing to

the continuous development of strengthening the infrastructure

in the ICT sector in the country, in addition to achieving

the objectives of the Saudi Vision 2030. The new cloud

services are offered to companies ranging from virtual server

creation to high-performance storage systems, providing high-

speed, high-quality connectivity, public and private network

interfaces, and cloud support services. The Kingdom has also

launched the e-Government Program (Yesser) of the Ministry

of Communications and Information Technology. The program

will establish a communication network for government e-

transactions, which connects government agencies to the e-

government data center ”Yesser”, to be used to host the

national e-government portal. This network enables the e-

Government Center to serve as a link between government.

entities, so that the mechanism of linkage between entities is

unified and its cost is reduced [11].

III. PROBLEMS OF DATA INTEGRATION

While retrieving information from heterogeneous source

systems, we must meet three main challenges: (1) Solving

data heterogeneity (2) structural solution (data model) data

heterogeneity (3) Bridging differences in data query syntax.

Although structural heterogeneity can be considered a spe-

cial kind of semantic heterogeneity, Semantic heterogeneity

means differences in the meaning and interpretation of context

from the same field. The semantic variation in the scheme

level arises from synonyms and character symmetries [6]. A

synonym problem occurs when the same real-world entity

is named differently in different databses, and the symmetry

problem occurs when different real-world objects (such as en-

tities and attributes) have the same name in different databases

[6]. These problems can be resolved by defining unique and

clear attribute names, which can be created manually or semi-

automatically using ontology. Structural heterogeneity (het-

erogeneity of the data model) arises from different modeling

approaches and from the use of different data models. On the

one hand, in a particular type of data model, real world objects

can be designed in different ways. Due to different database

design techniques and methods, database designers may create

different schemes for the same data, and it may be difficult to

reconcile these models. Schema Matching attempts to identify

relevant attributes and entities in different schemas and define

mapping rules between these schemas. For example, Figure1

- shows different presentations that have the same attributes in

the relevant databases. Both relational models have almost the

same qualities (with some semantic homogeneity) but in the

first model, all attributes are grouped into one relationship,

and in the second case, the attributes are divided into two

relationships according to their meanings. Both relational

models are true but the schemes applied are different. In

addition, the second relational model also has an additional

attribute (DateofBirth), which is not part of the first model

[7].

Fig. 1. Different representations of the same real-world objects in relational
models.

Fig. 2. Code1. Example for document-oriented data model: people collection.

The example above in JSON is shown in code 1. As we can

see, the structure and width of this model are very different

from the relational models presented and may also contain

semantic variations. However, data integration is more than a

structural or semantic problem. Heterogeneity of respects must

be so. Technically, it is fairly easy to connect different rela-

tional database networks (for example, via ODBC or JDBC),

than connecting related systems to NoSQL databases. This

problem arises from heterogeneity of data access methods.

On the one hand, SQL is a standard programming language,

designed to manage data stored in relational database manage-

ment systems[8].

Although there are subtle differences between different

dialects of SQL languages, these differences are not important.

On the other hand, because NoSQL systems rely on different

data models, they implement different access methods that

are incompatible with the SQL language. Although NoSQL

systems sometimes assert that they may support SQL-like

query languages, these extensions are not equal to the standard

SQL version. Following the example above, if we want to

query the name and city of customers according to the three

schemas, we have to formulate this query differently: As we

can see, the first two queries are based on the standard SQL

language and these queries differ from each other only because

the schemas applied are different. However, the comparison

between the first database queries and the third data access

method, the sub-difference between them is obvious. Based

on this homogeneity, data integrity can be observed as a

difficult task. My goal is to support data integration by hiding

the specific details and heterogeneities of the various source

systems. The proposed solution described in the next section

is based on a meta model approach, in a sense that the specific

interfaces and schemas of the source systems are mapped into

a common one [8].

Fig. 3. System Architecture.

IV. METHODOLOGY

As discussed earlier, the motivation is to access and execute

operations on different SQL and NoSQL systems without

knowing about them in a single application. We’ll detail about

the properties of this interface in this proposal. The main

objective is how to design and access data rather than the

scalability or productivity performance of NoSQL systems.

The structure of the CAP window can be seen in Figure 3.

MySQL, Mongodb, Cassandra and Neo4j were selected for

this suggestion. Each designer framework will have input from

the user through the GUI in the form of a query option and

a SQL database to work on. Then, the SQL query should be

mentioned in a way that specifies specific information about

the segments the user wants to work on, the parameter that

the user wants to target and performs the operation. The user

is expected to have a basic knowledge of the SQL query

[9]. The choose database option determines the process of

selecting the database to perform. The various subsections

of architecture can be explained as follows: 1.SQL query

parser: which helps in parsing specially SQL queries. which

helps in parsing specially SQL queries. the parser also verifies

weather the query is syntactically and semantically proper.

Fig. 4. Query Translator.

The parser breaks down SQL query into following important

parts: -DDL/DML Clauses. -Table names. - Column names. -

Parameters. -Attributes.

2. Query translator: the query translator accepts input in the

form of String and syntax tree. One of the important tasks of

query Translator is to find relationship between the attributes

and values. Also, it prepares all set of parameters for native

query builders to write database specific queries, as seen in

Figure 4.

Native query Builder:the mission of Native Query Builders is

to develop specific queries for the original database and

interact with the relevant database drivers to execute them.

Metadata is obtained from different database drivers that help

Native Query Builders obtain information about database /

group / column family names, read / write formats, existing

attributes, and so on. An example can be seen of sentences

that are the originators of the original query: the statement

describes a DDL statement. Sentences that are currently con-

sidered are of the following types: Select, Insert, Delete, and

Update. The statement is important in order to understand the

process that will run. Sentences for each database are different

and can be presented as a tabular format [10]. 4.Concatenate

the result :the interface helps fetch information from multiple

databases at once. The structure of the connected databases is

different and it is important to present the result uniformly.

This is achieved by the Concatenate score category as seen

in Figure 5. [10].

Fig. 5. tabular format

V. PROPOSED SOLUTION

To develop a web application,using one of two languages:

ASP.NET or PHP. The main components of a web application

are:

• GUI application: to enter the query. The front end of the

application consists of two pages: - First of a model with

two parts, the query part and the base selection part. In

the query pane the user has to enter a SQL query and in

the database selection pane, the user, select one or more

databases (Databases available). available). This can be

seen in Figure 6.

Fig. 6. Application Home page .

This can be seen in Figure 5. page consists of a form used

to enter a SQL query and a list of available databases.

The user can choose one or more databases. Both inputs

are very crucial for the system. Input is received by the

frame, the operation is performed and returned to: front

end, for another page namely the results page.

• Back-end system: the back-end system consists of request

servlets, parsers, translators and general parser.

VI. EVALUATION

The project is tested in multiple scenarios by changing

queries and database options. Access to standardized results

from multiple databases. This scenario tests with several

databases, and the success of the query process, for different

types, of databases. Through the proposed query form as seen

in Figure 7 and 8 [8].

Fig. 7. Query Page.

Fig. 8. Output Page.

VII. CONTRIBUTION

In this work, I proposed a unified interface for heteroge-

neous NoSQL databases. Under these papers, the research was

theoretical, needed a practical application, set up a project,

monitor the results, and increase the number of databases

used. Finally, integration can be made with the cloud platform

to create a unified query engine serving all government and

private sectors in the Kingdom.

VIII. CONCLUSION AND FUTURE WORK

In this work, I proposed a unified interface for heteroge-

neous NoSQL databases. Under these papers, the research was

theoretical, needed a practical application, set up a project,

monitor the results, and increase the number of databases

used. Finally, integration can be made with the cloud platform

to create a unified query engine serving all government and

private sectors in the Kingdom.

REFERENCES

[1] NoSQL Databases, http://nosql-database.org. [Last accessed on August
18, 2015].

[2] Martı́nez-Bazan, N., Muntés-Mulero,V.,Gómez-Villamor, S., Á guila-
Llorente, M.A., Dom´ınguez-Sal, D., Larriba-Pey, J-L.: EfficientGraph
Management Based onBitmap Indices. Int.DatabaseEngineering Appli-
cations Symposium (IDEAS), pp. 110-119 (2012).

[3] Gulisano, V., Jiménez-Peris, R., Patiño-Martinez, M., Valduriez, P.:
StreamCloud: A Large Scale Data Streaming System. IEEE Int. Conf.
on Distributed Computing Systems (ICDCS), pp. 126-137 (2010).

[4] Gulisano, V., Jiménez-Peris, R., Patiño-Martinez, M., Soriente, C.,
Valduriez, P.: StreamCloud: An Elastic and Scalable Data Streaming
System. IEEE Trans. On Parallel and Distributed Systems 23(12), 2351–
2365 (2012).

[5] Godfrey, P., Gryz, J., Hoppe, A., Ma, W., Zuzarte, C.: Query rewrites
with views for XML in DB2. IEEE Int. Conf. on Data Engineering, pp.
1339–1350 (2009).

[6] M. Ceruti , M.N. Kamel , Semantic heterogeneity in database and
data dictionary integration for command and control systems, Technical
Report, DTIC Docu- ment, 1994.

[7] Db-engines ranking, (http://db-engines.com/en/ranking). Accessed:
2016-08- 04. View publication.
.

[8] Agnes Vathy-Fogarassy, VeszprémUniform data access platform for
SQL and NoSQL database systems,University of Pannonia Article in
Information Systems · May 2017

[9] Atzeni, P., Bugiotti, F. and Rossi, L. (2012). Uniform access to non-
relational database systems: The sos platform, International Conference
on Advanced Information Systems Engineering, Springer, pp. 160 ,174,
Core Rank A.

[10] SCHREINER, Geomar A.; DUARTE, Denio; DOS SANTOS MELLO,
Ronaldo. Sqltokeynosql:a layer for relational to key-based nosql
database mapping. In: Proceedings of the 17th International Conference
on Information Integration and Web-based Applications Services.

[11] Secure Government Network (GSN). https://www.yesser.gov.sa/EN.

http://nosql-database.org/
http://db-engines.com/en/ranking
http://www.yesser.gov.sa/EN
http://www.yesser.gov.sa/EN
http://www.yesser.gov.sa/EN

