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Abstract—Traditional ResNet models 

suffer from large model size and high 

computational complexity. In this study, we 

propose a self-distillation assisted ResNet-

KL image classification method to address 

the low accuracy and efficiency issues in 

image classification tasks. Firstly, we 

introduce depthwise separable convolutions 

to the ResNet network and enhance the 

model's classification performance by 

improving the design of activation functions, 

using T-ReLU instead of traditional ReLU. 

Secondly, we enhance the model's 

perception of features at different scales by 

incorporating multi-scale convolutions for 

the fusion of residual layers and attention 

mechanism layers. To reduce the model's 

parameter count, we combine feature 

distillation with logic distillation and 

optimize the model layer by layer through 

self-distillation, while applying pruning 

techniques multiple times to reduce its size. 

Finally, To assess the efficacy of our 

methodology, we conduct experimental 

evaluations on public datasets CIFAR-10, 

CIFAR-100, and STL-10. The results show 

that the improved ResNet-KL network 

achieves an accuracy improvement of 1.65%, 

2.72%, and 0.36% compared to traditional 

ResNet models on these datasets, 

respectively. Our method obtains better 

classification performance with the same 

computational resources, making it 

promising for applications in tasks such as 

object classification. 
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I. INTRODUCTION  

A. Research Background and Objectives 

Classification is one of the important tasks in 

the field of information processing and data 

analysis. In academia, classification techniques 

are widely applied in various research areas, such 

as image recognition, object detection, and facial 

recognition [1]. Classification techniques can be 

used for disease diagnosis and image analysis in 

medical imaging[2].. 

Despite significant progress in classification 

techniques, there are still challenges and issues 

that need to be addressed. Firstly, data imbalance 

is a prominent issue characterized by a significant 

disparity in the number of samples across various 

categories. This can lead to poorer classification 

performance for minority classes. Secondly, 



dealing with noisy data and feature selection is 

crucial in classification. Real-world data often 

contains noise or redundant information, which 

can negatively impact model performance. 

Continuous improvement and research in 

classification techniques are therefore crucial for 

addressing the aforementioned challenges and 

issues and enhancing accuracy, efficiency, and 

robustness. This not only holds theoretical 

importance but also practical significance. 

The main contributions of this paper are 

manifested in three aspects. Firstly, we propose a 

novel self-distillation assisted ResNet-KL 

algorithm that leverages feature distillation, 

knowledge distillation, and pruning mechanisms 

to enhance model performance. Secondly, we 

introduce T-ReLU, a fusion of Tanh and ReLU, as 

a replacement for ReLU activation function. 

Lastly, we incorporate a multi-scale approach to 

fuse residual layers and attention mechanism for 

improved perception of features at different 

scales. 

B. .Research Status  

In recent years, with the rapid development of 

computer vision and the widespread application 

of deep learning techniques, image classification 

has been a research area of great interest [3]. In 

China, Yunpeng et al[4] proposed Octave 

Convolution to reduce redundant information 

between feature maps, thereby reducing 

computational complexity and improving the 

efficiency of image classification. Yao et al[5] 

proposed a deep mixed multi-graph neural 

network, which effectively extracts spectral 

features of nodes and exhibits good noise 

suppression performance for graphs. 

In foreign countries, research on image 

classification has also made significant progress. 

Many research institutions and scholars have 

conducted in-depth studies in the field of image 

classification using deep learning techniques. For 

example, Arco et al[6] proposed a multilevel 

ensemble classification system based on 

Bayesian deep learning, maximizing performance 

while providing uncertainty estimation for each 

classification decision. Chen et al[7] proposed 

dual-path networks, improving information flow 

and feature extraction capabilities in image 

classification through parallel dense connections 

and depthwise separable convolution layers. 

Despite the significant contributions made by 

previous studies in the field of image 

classification, challenges remain in complex 

scene recognition, few-shot learning, and zero-

shot learning. Therefore, in this paper, we employ 

self-distillation as an auxiliary method to address 

these issues during network training. 

II. RESNET-KL MODELS 

 The proposed ResNet-KL model for image 

classification with self-distillation assistance 

consists of residual modules, attention 

mechanism modules, mixed depth separable 

modules, and multi-scale modules. The 

innovation of this network lies in having two 

outputs: one is the logical output after passing 

through the fully connected layer (FC), and the 

other is the feature output without passing 

through any additional layers. These feature maps 

are then resized to a fixed size [batch_size, 2048, 

7, 7] using the ST layer, and finally passed 

through the FC layer for output. The simplified 

diagram of the model is shown in Figure 2.1. 
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Figure 2.1 ResNet-KL model (dashed arrows indicate that it 

can go into the fully connected layer below, or it can bypass 

it). 
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A. Mul Block 

 In this paper, the information from the 

residual module, after passing through an 

attention mechanism, is fused with the 

information from the residual module itself. 

Moreover, different sizes of convolution kernels 

are used at each layer to extract information at 

multiple scales, capturing different perspectives 

and obtaining more information. Additionally, the 

residual module has a simple structure and can be 

easily combined with other types of neural 

network modules to form more complex and 

powerful network architectures. The structural 

diagram for the multi-scale fusion of the residual 

module is shown in Figure 3.1. 

 
Figure 3.1 Multi-scale residual structure diagram. 

B. Pruning and Self-Distillation  

In this paper, pruning and self-distillation 

techniques are used to reduce the model 

parameters, combining feature distillation with 

logic distillation. The proposed self-distillation 

pruning method consists of a data input part that 

involves CutMix data augmentation and feature 

distillation channels and logic distillation 

channels for knowledge distillation, which are 

fused together. The original images undergo 

training using the CutMix data augmentation 

technique in the network's input section. The 

following (1) represents the CutMix data 

augmentation formula:  

𝐿 =
 (𝑥 ∗ 𝑠)

𝑁
 +  (1 −  𝑥)  ∗  𝑀   (1) 

 Here, L represents the new sample, x 

represents the pixel value of the cropped area, s 

represents the area of the cropped region, N 

represents the total number of pixels, and M 

represents the pixel value of the remaining area. 

The main feature of this network structure is 

to start from the logic outputs of the upper layers 

of the network and the feature output of the last 

layer. These outputs are saved in a list and then 

obtained sequentially during training. The first 4 

layers are logic outputs, while the last layer is the 

feature output, which is the deepest feature output. 

Logic distillation and feature distillation are 

performed during network training, as shown in 

Figure 3.2. Pruning operation is performed during 

specific training rounds by calculating the L1 

norms of the convolutional layers and the Batch 

Normalization (BN) layers. The relevance of 

these layers is evaluated, and the least relevant 

ones are pruned. The pruned convolutional layers 

and BN layers are then replaced with the newly 

obtained ones for further training. The pruning 

process is conducted in the initial rounds due to 

the initially chaotic network structure. This 

allows for the removal of a greater number of 

irrelevant weights, thereby reducing the overall 

number of parameters. 

The utilization of the self-distillation 

technique results in a marginal increase in the 

overall loss function. This is attributed to the 

combination of logic distillation loss, network 

loss, and feature distillation loss in the final loss 

calculation. The calculation formula for the logic 

distillation loss function is shown in (2):  

𝑙𝑜𝑠𝑠 =  𝐶𝑟𝑜𝑠𝑠(𝑜𝑢𝑡_𝑖, 𝑙𝑎𝑠𝑡)  ∗  𝑥 +

 𝐶𝑟𝑜𝑠𝑠(𝑜𝑢𝑡_𝑖, 𝑙𝑎𝑏𝑒𝑙𝑠)  ∗  (1 −  𝑥)   (2)  

In this context, "loss" refers to the loss 

function, "Cross(·)" represents the cross-entropy 

loss, "out_i" represents the logic output of each 

layer, "last" represents the output of the deepest 

layer, and "labels" represent the correct image 

labels. x represents the weight of the cross-

entropy loss function. 

In this paper, self-distillation is employed to 



align the output features of the network with the 

predictions generated by previous layers during 

the model training phase. This approach enhances 

the network's detection capability in diverse 

scenarios, albeit at the cost of an increased loss 

function. Finally, the network utilizes the output 

results from the prediction channel for object 

classification. 

 

Figure 3.2 Dual output network structure. 

C. ST Layer  

The ST (Separable Tool) layer is mainly used 

for feature map scaling in feature distillation. ST 

layer is composed of a varying number of 

SepConv convolutional layers and average 

pooling layers. SepConv convolution includes 

two steps: depthwise convolution and pointwise 

convolution. 

Depthwise Convolution: Depthwise 

convolution is a method that performs 

convolution separately on each input channel. It 

uses a convolution kernel of the same size as the 

number of input channels and performs 

convolution operations on each channel 

individually. Assuming the input feature map has 

C channels and the kernel size of depthwise 

convolution is k×k, the output feature map of 

depthwise convolution (denoted as DF) can be 

represented by the following (3): 

𝐷𝐹 =  𝐷𝑒𝑝𝑡ℎ𝐶𝑜𝑛𝑣(𝐹, 𝑊𝑑)    (3) 

Here, F represents the input feature map, Wd 

represents the weights of depthwise convolution 

kernel, and DepthConv(·) denotes the depthwise 

convolution operation. 

Pointwise Convolution: Pointwise 

convolution is a method that performs 

convolution operations across the entire feature 

map. It uses a 1×1 convolution kernel and 

performs a linear combination of channels at each 

position. Assuming the output feature map of 

depthwise convolution is DF and the weights of 

pointwise convolution kernel are Wp, the output 

feature map of pointwise convolution (denoted as 

PF) can be represented by the following (4): 

𝑃𝐹 =  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣(𝐷𝐹, 𝑊𝑝)      (4) 

Here, Wp represents the weights of pointwise 

convolution kernel, and PointConv(·) denotes the 

pointwise convolution operation. By integrating 

depthwise convolution with pointwise 

convolution, the formula for depthwise separable 

convolutional layer (denoted as SF) is represented 

by the following (5): 

𝑆𝐹 = 𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣(𝐷𝑒𝑝𝑡ℎ𝐶𝑜𝑛𝑣(𝐹, 𝑊𝑑), 𝑊𝑝)(5) 

The convolutional structure is illustrated in 

Figure 3.3. 

 

Figure 3.3 SepConv convolution structure 

In the domain of image classification, certain 

images may exhibit minimal disparities between 

classes，and the absence of negative values in 

ReLU outputs can lead to the accumulation of 

biases between activation layers, which can affect 

the classification performance. To address this 

issue, the left part of the Tanh function is taken 

for values less than zero, and the right half of the 

ReLU function is used for values greater than 

zero. This combination is referred to as the T-

ReLU function. The formula for the T-ReLU 

function is represented as (6): 

𝑓(𝑥) = {
𝑥 𝑥 > 0,

e𝑥−e−𝑥

e𝑥+e−𝑥 𝑥 ≤ 0.
    (6) 



III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup  

The experimental parameters mainly include 

learning rate, batch size, epoch, regularization, 

optimizer, and loss function. The specific 

parameter settings are shown in Table I. The 

learning rate is gradually decayed, with a 

reduction to one-tenth after every one-third of the 

total epochs. 

TABLE I． MODEL PARAMETER SETTINGS 

Parameter Name Parameter Value 

learning rate 0.01 

batch_size 256 
epoch 50 

regularization L1 

optimizer SGD 
loss function CrossEntropy 

B. Experimental Results  

To verify the effectiveness of the proposed 

model, experiments were conducted using models 

on three different datasets: cifar100, cifar10, and 

STL10. The experimental results are shown in the 

following tables. Table II presents the 

experimental results on the cifar100 dataset, 

Table III shows the results on the cifar10 dataset, 

and Table IV displays the results on the STL10 

dataset. 

From Table II, it is apparent that ResNet-KL 

achieves better accuracy compared to other 

networks with the same computational resources. 

However, it should be noted that the loss function 

in ResNet-KL includes the logic distillation loss, 

network loss, and feature distillation loss, which 

contribute to an increase in the loss function. 

During training, the proposed method exhibits a 

training time approximately 2 minutes faster than 

the standard ResNet training approach. This 

suggests a slightly lower computational 

complexity compared to the original method. 

Table IV shows that most of the performance 

metrics have decreased on the STL10 dataset. 

This is because the majority of the images in the 

STL10 dataset lack annotations. Therefore, the 

information obtained during network training 

differs significantly from the previous two 

datasets, resulting in noticeable differences in 

accuracy and other metrics. 

TABLE II． ACCURACY AND OTHER PERFORMANCE METRICS 

OF THE CIFAR100 DATASET UNDER 

model Recall

（%） 

ACC（%） F1 Loss 

ResNet18 97.217 82.03 0.947 1.741 

AlexNet 92.41 77.58 0.954 1.439 

VGG 94.796 80.47 0.953 1.646 
DenseNet 90.063 83.009 0.9544 2.15 

GooLeNet 93.94 76.701 0.9589 1.822 

MobileNet 94.874 79.607 0.963 1.954 
Xception 96.15 82.294 0.961 1.534 

RepLKNet 97.279 83.511 0.984 1.227 

ResNet-

KL 

96.416 84.75 0.870 8.2472 

TABLE III． ACCURACY AND OTHER PERFORMANCE 

METRICS OF THE CIFAR10 DATASET UNDER 

model Recall

（%） 

ACC

（%） 

F1 Loss 

VGG 89.738 85.13 0.8942 0.4413 

ResNet18 93.66 86.06 0.9151 0.6631 
ShuffleNet 93.02 83.02 0.9724 0.4349 

Xception 91.844 87.06 0.9366 0.3995 

RestNet50 93.892 87.28 0.9652 0.3949 
ResNet-

KL 

94.616 87.71 0.8434 6.999 

TABLE  IV． ACCURACY AND OTHER PERFORMANCE 

METRICS OF THE STP10 DATASET UNDER 

model Recall

（%） 

ACC

（%） 

F1 Loss 

VGG 68.70 57.32 0.6863 0.928 
ResNet18 78.40 63.21 0.7852 0.822 

ShuffleNet 73.60 62.71 0.7340 0.889 

Xception 83.51 61.52 0.8346 0.824 
ResNet-KL 78.616 63.47 0.7924 7.231 

To validate the effectiveness of self-

distillation, this study specifically conducted 

ablation experiments to demonstrate the 

improvement. The results of the ablation 

experiments are shown in Table V. 

TABLE V． RESULTS OF ABLATION EXPERIMENTS. 

model Recall

（%） 

ACC

（%） 

F1 Loss 

ResNet 93.66 86.06 0.915 0.66 

ResNet+Feature 
distillation 

94.063 83.97 0.812 4.7 

ResNet+ Logical 

distillation 

94.34 86.34 0.839 15.4 

ResNet+ Logical 

Feature 

93.91 87.19 0.849 7.99 

ResNet-KL  94.616 87.71 0.843 6.99 

The ablation experiments presented in the 



above table demonstrate that the accuracy of 

ResNet generally improves when subjected to 

various self-distillation methods. Nevertheless, 

performing individual feature distillation yields a 

decrease in accuracy. This is attributable to the 

fact that feature distillation mainly occurs in the 

deepest layer, leading to a restricted amount of 

network information in comparison to the gradual 

accumulation of information that is facilitated by 

logic distillation across multiple layers. 

Additionally, across multiple experiments 

presented in the preceding tables, the 

performance of F1 measure is not very good. This 

may be due to data imbalance, as F1 considers 

both precision and recall, and both can be 

problematic when dealing with imbalanced data, 

leading to a lower F1 value. 

In this study, the ResNet-KL network merges 

feature distillation and logic distillation 

techniques, followed by iterative pruning to 

progressively decrease the number of parameters. 

As a result, the accuracy of ResNet-KL improves 

by 1% compared to the original ResNet, and the 

recall rate increases by 3%. The effectiveness 

chart of the ablation experiments is shown in 

Figure 4.1, where the x-axis represents the 

experimental steps and the y-axis represents the 

test accuracy. 

 

Figure 4.1: The test accuracy in the ablation experiments. 

IV. SUMMARY  

Although the proposed method demonstrates 

good performance in handling image 

classification tasks, it still has some limitations. 

For example, the training process of this network 

is relatively complex due to the use of self-

distillation strategies and pruning operations, 

requiring more computational resources and time. 

Operating in resource-constrained environments 

can present significant challenges. Additionally, 

this study mainly focuses on small-scale image 

classification tasks and may face challenges when 

dealing with large-scale datasets. Future research 

can explore solutions to address the issue of class 

imbalance, such as data resampling, class 

weighting, or generative methods, to balance the 

dataset and improve overall classification 

performance. Furthermore, more efficient and 

lightweight network structures will be explored to 

reduce computational resource consumption and 

meet the requirements of handling large-scale 

datasets. The next step will also involve 

integrating ResNet-KL network with other 

advanced techniques, such as federated learning 

and semi-supervised learning, to further enhance 

the performance of image classification tasks.  
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