
EasyChair Preprint
№ 14322

SAT Can Ensure Polynomial Bounds for the
Verification of Circuits with Limited Cutwidth

Luca Mueller and Rolf Drechsler

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 6, 2024



SAT can Ensure Polynomial Bounds for the
Verification of Circuits with Limited Cutwidth

Luca Müller
German Research Center for Artificial Intelligence

Bremen, Germany
luca.mueller@dfki.de

Rolf Drechsler
University of Bremen

German Research Center for Artificial Intelligence
Bremen, Germany

drechsler@uni-bremen.de

Abstract—As hardware designs are getting more complex,
verification becomes ever more important to prevent producing
chips which do not behave according to their specification. This
increasing complexity also impacts the verification process, re-
sulting in a longer time-to-market. Ensuring that the verification
itself can be conducted efficiently helps facing these challenges.
Additionally, taking the efficient verification into consideration
during the design phase further enables the optimization of the
whole process.

In this paper, we present a SAT-based verification flow and
how it can ensure polynomial bounds for the verification of
circuits with limited cutwidth. To demonstrate our approach, the
flow is applied to three different adder architectures. Addition is
one of the most essential operations in digital computations and
the simplicity of its circuit realizations makes it a good starting
point to explore their efficient verification using SAT. We provide
theoretical proofs that SAT can be used for Polynomial Formal
Verification (PFV) of circuits with limited cutwidth. We then show
that for the considered adder circuits, a linear time complexity of
the verification process can be ensured and confirm our findings
by experimental evaluation with our own SAT solver.

I. INTRODUCTION

Verification is an essential step in today’s circuit design.
Distributing chips with erroneous behavior can cause serious
harm in safety-critical applications and creates extreme
costs for manufacturers, which can be avoided by ensuring
the functional correctness of a circuit during the design
process. Simulation and emulation approaches for verification
are usually very time efficient, but are unable to cover
the complete search space when looking for errors in a
design. Formal verification on the other hand can ensure
the correctness completely, at the expense of potentially
exponential time complexity [1].

Formal methods benefit from a large research community
proposing new and improved approaches for formal verifica-
tion and its underlying algorithms [2]. As digital systems are
becoming more complex, a wider adoption of these approaches
in industry tools can be observed [3]. One of the most popular
methods for formal verification is SAT [4], with its application
in techniques like combinational equivalence checking [5].

SAT is an NP-complete problem in the general case [6],
while some subclasses like 2-SAT [7] and Horn-SAT [8] can
be solved in polynomial time. Despite the fact that instances
of practical circuits are generally not part of these polynomial

subclasses, experimental evaluation has shown that SAT can
in fact be used to efficiently verify large hardware designs [9].
However, we are not aware of any work providing theoretical
bounds on the runtime of SAT solvers for circuit verification,
which means that a polynomial behavior of the verification
cannot be guaranteed.

Modern SAT solvers [10] [11] rely on a variety of heuristics
to accelerate the solving process, which, while improving
the runtime of the verification, make it difficult to analyze
and make predictions about the solving time of large circuit
designs. In order to overcome this limitation, we explore
the concept of cutwidth [12] to enable the calculation of
polynomial bounds for the verification of combinational
circuits using SAT.

Analyses for the complexity of formal verification methods
are conducted in the research field of Polynomial Formal
Verification (PFV) and for BDDs, some circuit classes with
polynomial behavior have been found [13] [14] [15]. While a
method for exploiting cutwidth for the PFV of combinational
circuits using Answer Set Programming (ASP) [16] has
previously been explored in [17], using SAT can offer several
advantages compared to ASP. SAT is one of the core problems
of computer science and thus has a large research field with
many applications and tools supporting it [18]. Compared to
ASP, it is more widely used for verification, as it is generally
the easier formalism to understand and use. Without the need
to formally specify the circuit behavior with the help of ASP
rules, SAT also requires less information about the circuit
under verification, as a reference implementation is sufficient
for the miter construction employed by our approach (cmp.
Section III-A).

In this paper, we propose our own SAT-based verification
flow and provide theoretical evidence for its polynomial
behavior in the formal verification of circuits with limited
cutwidth. We show that the time complexity of SAT is bounded
linearly for circuits with constant cutwidth, as demonstrated
on the three adder architectures under consideration, namely
Ripple-Carry Adder (RCA), Carry-Lookahead Adder (CLA)
and Carry-Skip Adder (CSA). We complement our theoretical
proofs with practical experimental evaluation to confirm our
findings.



The remainder of this paper is structured as follows. In
Section II, we provide preliminary information to keep this
work self-contained. Section III explains our approach and
the general verification flow. The concept of cutwidth and
the associated theoretical proofs are introduced in Section
IV. Section V provides the main contribution by presenting
polynomial bounds for the considered adder architectures. The
practical experiments and their results are evaluated in Section
VI. Finally, Section VII discusses our findings and gives an
outlook on future research directions, before Section VIII
concludes our work.

II. PRELIMINARIES

A. SAT

The Boolean Satisfiability Problem (SAT) is defined as
follows.

Definition 1. Given a Boolean function ϕ over n variables.
Does a mapping α of variables in ϕ to the Boolean truth
values {0, 1} exist, such that ϕ(α) = 1?

SAT is an NP-complete problem as proven by Cook in
1971 [6]. This means that in the general case, no efficient
algorithm can exist such that an arbitrary SAT instance is
solvable in polynomial time, unless P = NP . Over the years,
many SAT solvers have been developed with techniques like
implication learning, activity tracking and restarts to combat
this problem and improve the solving times of SAT [10] [11]
[19]. However, these heuristic approaches have no effect on
the asymptotic complexity of SAT itself.

The formula is provided to most SAT solvers as a Boolean
expression in conjunctive normal form.

Definition 2. A Boolean expression ψ is in Conjunctive
Normal Form (CNF) if

ψ =
∧
j

∨
i

li,j ,

where l is a literal over the variables of ψ.

The advantage of CNF is that every boolean expression ψ
can be transformed to an equisatisfiable CNF χ in linear time.
This means that χ is satisfiable, if and only if ψ is satisfiable.

B. Binary Adders

Binary addition can be realized on the gate level with the
help of two components, Half Adders (HA) and Full Adders
(FA).

The Half Adder has two input bits, a and b and two output
bits s (sum) and c (carry). The function of a HA is described
as follows

s = a⊕ b

c = a · b

The Full Adder has an additional input bit, cin and its
function can be described as

s = a⊕ b⊕ cin

c = ab+ acin + bcin

In a more general sense, given two binary numbers a and
b of n bits, the sum of the two numbers s can be expressed
by the equation

∀n−1
i=0 si = ai ⊕ bi ⊕ ci−1

where

∀n−1
i=0 ci = aibi + aici−1 + aci−1

and

c−1 = 0

Several realizations of the addition function are possible on
the gate level, varying in cost (total number of gates) and depth
(number of gates on longest path through the circuit).

1) Ripple-Carry Adder: The Ripple-Carry Adder (RCA)
is the simplest adder realization with the lowest cost but the
largest depth. It consists of a simple sequence of n − 1 FAs
and one HA for the least significant bits without a carry input.
Both cost and depth are linear in the number of inputs.

2) Carry-Lookahead Adder: The Carry-Lookahead Adder
(CLA) is a fast adder, reducing the depth by determining the
carry bits first. The equation for the calculation of sum bits in
binary addition shows that once the carry bits are calculated,
the rest of the addition can be carried out in parallel. For this
reason, the CLA makes use of the generation and propagation
properties of binary addition

For 0 ≤ i < n : pi,i = ai ⊕ bi, gi,i = ai · bi

For i ≤ k < j : pj,i = pk,i·pj,k+1, gj,i = gj,k+1+(gk,i·pj,k+1)

If a carry bit ci is set, it is either generated at the current
index or propagated from a lower index.

For 0 ≤ i < n : ci = gi,0 + pi,0 · ci−1

The CLA has a linear size and a logarithmic depth in the
number of inputs.

3) Carry-Skip Adder: The Carry-Skip Adder (CSA) has the
same goal as the CLA of reducing depth in favor of cost. It
divides the addition operation into multiple blocks, where each
block has its own local carry signal. If this local carry signal
has no effect on the final sum, this block can then be skipped
when propagating the global carry signal through the circuit,
reducing its worst-case depth. Like the CLA, the CSA has
linear size and logarithmic depth in the number of inputs.



Fig. 1: A miter circuit

III. VERIFICATION FLOW

A. Approach

One of the approaches for circuit verification using SAT is
combinational equivalence checking, where the circuit under
verification is compared against a reference circuit. To this end,
a miter is created between the two circuits and checked for
satisfiability. Figure 1 shows how the miter circuit functions.
It connects the corresponding inputs of the two circuits to
have the same value and compares their respective outputs
with XOR gates, which can only have their outputs set to 1 if
the two circuits produce different outputs for the same input
values. These XOR gates are in turn connected via a tree-like
structure of OR gates to detect any difference in the outputs.
The complete miter circuit can now be tested for satisfiability
by a SAT solver. If there is any combination of inputs for
which the miter produces the output 1, the two circuits are
not combinationally equivalent.

In order to be able to solve the miter instance with a SAT
solver, it needs to be transformed to a Circuit-CNF formula.
This can be done via Tseitin transformation [20]. Tseitin
transformation for circuits operates on a gate-by-gate basis,
introducing an auxiliary variable for each gate wire and
adding the gate’s CNF to the set of clauses. The advantage
of Tseitin-transformation is that each gate can be translated
separately by introducing one auxiliary variable for each gate
output. This means that the transformation can be conducted
in linear time and introduces a linear number of variables in
the number of gates in the underlying circuit.

Example 1. An XOR gate can be expressed in CNF via
Tseitin Transformation as follows:

{{−1,−2,−3}, {1, 2,−3}, {1,−2, 3}, {−1, 2, 3}}

The variables 1 and 2 represent the two inputs to the XOR
gate, while the auxiliary variable 3 is introduced to denote its
output. This auxiliary variable can then be used as the input
for another gate to represent a connection between two gates.
For the XOR gate, each clause corresponds to one of the four
input combinations with its corresponding output as specified
by the XOR function. While this is the maximum number of

clauses for a two input gate, other gates like the AND gate
and the OR gate require only three clauses for their CNF
representation.

The advantage of Tseitin transformation over different rep-
resentations like And-Inverter-Graphs (AIG) is that no struc-
tural information of the circuit is lost during translation. This
allows for the identification of the complete circuit structure
in the resulting CNF, as each variable can be mapped to either
a primary input, primary output, or an intermediate wire. In
order to minimize the amount of auxiliary variables which
are introduced, the circuit may be considered at the level
of components instead of strictly on the level of gates. For
example, a full adder can be translated as a component with
three inputs and two outputs with its respective operations,
instead of being translated as five separate gates, reducing the
number of variables in the resulting Circuit-CNF formula.

B. SAT Solver

SAT solvers have gradually improved over the years and
new techniques have decreased their runtime and memory
consumption. These predominantly heuristic methods make it
difficult to make exact predictions of their runtime behavior.
This becomes especially relevant when considering the verifi-
cation of circuits with an increasing number of inputs. If the
verification of a specific circuit is feasible for n inputs, there
is no guarantee that a heuristic solver can provide a result for
n + m (given m > 0) inputs within a certain time. Some
SAT solvers introduce non-determinism through techniques
like random restarts, which means that even for the same SAT
instance, the runtime may vary.

As evident from the argument above, a deterministic SAT
algorithm is required to conduct a theoretical analysis of its
runtime behavior for verification. For this purpose, we use a
caching-based SAT solver. The general algorithm of CacheSAT
is outlined in Figure 2. Variables are assigned according to a
static ordering, which is given to the solver. For each variable,
the value 0 is applied first, then the value 1. The CacheSAT
procedure is called recursively, until a conflict occurs. The
conflict formula is then inserted into the cache and a lookup
is done before going deeper in the recursion tree to avoid



procedure SAT(Formula, Cache)
zero← CACHESAT(Formula, 0, Cache)
one← CACHESAT(Formula, 1, Cache)
if zero = UNSAT and one = UNSAT then

return UNSAT
else

return SAT
end if

end procedure

procedure CACHESAT(Formula, Value, Cache)
Literal← first variable in ordering with value value
res← APPLYFORMULA(Formula, Literal)
if res = SAT then

return SAT
else if res = UNSAT then

INSERTCACHE(Cache, Formula)
end if

if CACHELOOKUP(Cache, Formula) = true then
return UNSAT

end if

zero← CACHESAT(Formula, 0, Cache)
one← CACHESAT(Formula, 1, Cache)
if zero = UNSAT and one = UNSAT then

INSERTCACHE(Cache, Formula)
return UNSAT

end if
end procedure

Fig. 2: CacheSAT algorithm

testing a formula multiple times. For the cache lookup, a hash
value of the formula is created in O(1) time, ensuring that it
can always take place in constant time.

It is important to note that the CacheSAT algorithm is ex-
pected to have larger run-times than modern SAT solvers, as it
is missing features like random restarts and decision heuristics.
However, the absence of non-deterministic techniques allows
for an analysis of the algorithm’s behavior and runtime, which
is of relevance in the following section.

IV. POLYNOMIAL VERIFICATION

A. Implied Clauses

An important property of combinational circuits which
can be taken advantage of during functional verification is
that the values of certain signals depend on other signals
that come before them. Since the structure of the circuit is
preserved during the CNF translation, the search space of the
SAT solver can be limited.

Example 2. Consider a set of clauses

{{−1,−2, -5}, {1, 2, -5}, {1,−2, 5}, {−1, 2, 5},
{−1,−2, -9}, {1, 2, -9}, {1,−2, 9}, {−1, 2, 9},
{-5, -9, -13,}, {5, 9, -13,}, {5, -9, 13,}, {-5, 9, 13}}

The first eight clauses correspond to two XOR gates with 1
and 2 as input wires and 5 and 9 as output wires respectively.
The remaining four clauses represent an XOR gate of the
miter logic, taking variables 5 and 9 as inputs and introducing
variable 13 as the gate’s output.

Once the assignments of the two variables 5 and 9 are
fixed by the clauses containing the variables 1 and 2, the
remaining four clauses can be implied, as they will either
be resolved or just contain one variable, namely 13. In a
more general sense, the last four clauses can be implied by
resolution of the first eight clauses.

Definition 3 Let ϕ be a Circuit-CNF formula over variables
Vϕ with clauses Cϕ. Given a set A ⊆ Vϕ, the set IA ⊆ Cϕ

of implied clauses contains all clauses of ϕ which can be
implied by assigning a value to all variables in A.

The search space of the SAT solver can be constrained
to all variables contained in A, if IA contains all remaining
clauses of ϕ which are not resolved by setting the values of
the variables in A.

One useful set AV to consider is the set of all variables
representing the circuit under verification. AV especially con-
tains all primary inputs, which adds all clauses of the reference
circuit to IAV . When all variables for both the circuit under
verification and the reference circuit are fixed, the set of
clauses representing the miter logic is also contained in IAV .
This means that the search space for our verification approach
presented in Section III can be constrained to the variables of
the circuit under verification.

B. Cutwidth

For an analysis on the complexity of SAT for circuit
verification, we introduce the concept of cutwidth [12].

Definition 4. Given an undirected graph G = {V,E} and
a bijective ordering function h : V 7→ {1, 2, ..., |V |}. The
cutwidth of G under ordering h is defined as

W (G, h) = max
i∈{1,2,...,|V |}

|{{u, v} ∈ E : h(u) ≤ i < h(v)}|

The cutwidth W (G) of a graph G refers to the minimum
cutwidth minW (G, h) over all possible ordering functions h.

For a Circuit-CNF formula ϕ, the circuit graph
Gϕ = {V,E} is constructed such that V is equal to
the set of variables Vϕ occurring in ϕ and E contains an edge
{u, v}, if a clause c ∈ Cϕ contains variable u as a gate input
and variable v as a gate output.



(a) Suboptimal ordering with cutwidth of 6

(b) Optimal ordering with cutwidth of 4

Fig. 3: Cutwidth for a 2-bit Ripple-Carry Adder with two different orderings.

Example 3. Figure 3 gives an intuitive view on the concept
of cutwidth. It shows two different variable orderings for a
2-bit Ripple Carry Adder with its corresponding cutwidth.
The variables 1, 2, 3 and 4 represent the two inputs, where
the odd numbers correspond to input a and the even numbers
correspond to input b. Variables 5 and 6 are the two outputs
for the first half adder, while 7 and 8 represent the first full
adder component.
Comparing the two orderings, it can be observed that keeping
variables of components which are connected locally close in
the ordering decreases its cutwidth. For the given example, the
second ordering is optimal, meaning that the cutwidth for the
2-bit RCA as a whole is equal to 4.

C. Polynomial Bounds

In general, the complexity of SAT is bounded exponentially
by the number of variables n. The complete search tree for a
SAT instance has 2n paths, which serves as an upper bound
for the time complexity of SAT. Since for arithmetic circuits,
increasing the number of input bits also increases the number
of variables in the corresponding Circuit-CNF at least linearly,
this would result in an exponential complexity in the number
of input bits.

As Prasad et al. presented in [21], it can be shown that for
a SAT algorithm with static variable ordering, the complexity
can be bounded exponentially in the cutwidth of the formula
instead of the number of variables. For this, the concept of
Distinct Consistent Sub-Formulas (DCSF) is introduced.

Definition 5. Given a Circuit-CNF formula ϕ, a sub-formula
ϕAV ′ is obtained by setting the values of variables V ′ ⊆ V to
a value a ∈ {0, 1} determined by the solver. A sub-formula is
called consistent if it does not contain empty clauses, as this
would immediately lead to backtracking. As a consistent sub-
formula ϕAV ′ may occur in multiple positions in the search
tree, which can be detected by the caching-based solver, we
are only interested in distinct consistent sub-formulas.

From the Cache-SAT algorithm it is obvious that the search
tree is bounded by the number of DCSFs δ, as all other paths
are not explored further by the solver. δ in turn depends on
the cutwidth of the formula.

Lemma 1. Given a Circuit-SAT formula ϕ and a cut of size
c between two adjacent variables in the formula’s graph Gϕ,
the number of distinct consistent sub-formulas dc which can
be obtained by assigning their values is bounded by

dc ≤ 22kfoc

where kfo is the maximum fan-out of the underlying circuit.
For further insight on the proof of Lemma 1, the reader is

referred to [21].

With this result at hand, an observation on the time
complexity of the SAT procedure can be made. As pointed
out before, the complexity is bounded by the total number of
DCSFs δ, which can be derived from Lemma 1.



(a) Ordering for Ripple-Carrry Adder: W (RCA) = 4

(b) Ordering for Carry-Lookahead Adder: W (CLA) = 8

(c) Ordering for Carry-Skip Adder: W (CSA) = 8

Fig. 4: Cutwidth for different adder architectures

Theorem 1. Given a Circuit-CNF formula ϕ and a corre-
sponding circuit graph Gϕ with cuts c, a caching-based SAT
solver can solve the instance ϕ in time O(n ∗ 22kfoW (Gϕ)),
where n is the number of variables |V | in ϕ.

Proof.

δ ≤
∑
c

dc

≤ n ∗max
c
dc

≤ n ∗max
c

22kfoc

= n ∗ 22kfoW (Gϕ)

□

With this result, we can directly relate the time complexity
for solving a Circuit-CNF formula with a caching-based SAT
solver with its cutwidth, since it is the only quantity remaining
in the exponent, along the constant maximum fan-out.
As can be derived from the time complexity O(n∗22kfoW (G)),
a circuit with constant cutwidth in the number of the circuit’s
inputs results in a linear complexity, while a logarithmic
cutwidth results in a polynomial complexity. For Polynomial
Formal Verification, these circuit classes are of particular
interest.

V. CUTWIDTH OF ADDER CIRCUITS

We can now calculate the cutwidth of different adder circuits
to obtain the time complexity of their verification. As was
shown in Section IV-A, it is sufficient to consider the cutwidth
of the circuit under verification, as the remaining clauses can
be implied after fixing its variables. This means that a constant
cutwidth of the circuit under verification results in a linear
time complexity for the whole verification process. Note that
the cutwidth calculation is done manually for the considered
circuits, meaning no additional complexity is introduced into
the verification flow. Figure 4 presents an overview of the
cutwidth of the three adder architectures which are discussed
in the following sections.

A. Ripple-Carry Adder

The ordering for the Ripple-Carry Adder is constructed by
grouping together the adder cells between their connected
primary inputs. As shown in Figure 4a, the maximum cut
occurs between the full adder and its respective primary
input. This results in a constant cutwidth of 4.

Theorem 1. The Ripple-Carry Adder can be verified with
linear time complexity.



n
RCA (with implied clauses) RCA CLA CSA
# DCSFs Runtime in sec # DCSFs Runtime in sec # DCSFs Runtime in sec # DCSFs Runtime in sec

32 438518 230 316 0.30 378 0.42 378 0.68
64 T.O. T.O. 636 1.11 762 1.66 762 2.65

128 T.O. T.O. 1276 4.27 1530 6.52 1530 10.87
256 T.O. T.O. 2556 17.31 3066 26.64 3066 45.49
512 T.O. T.O. 5116 70.42 6138 107.05 6138 179.33
1024 T.O. T.O. 10236 287.07 12282 441.17 12282 733.63

TABLE I: Experimental results for the three adder architectures

B. Carry-Lookahead Adder

The time complexity for the Carry-Lookahead Adder
depends on the size of the propagate/generate logic block
size. For the most simple implementation, we consider a
block size of 1. The logic cells are grouped together with
their connected primary inputs, so the cutwidth remains local
within the respective block. The cutwidth for a single block
is depicted in Figure 4b. The maximum cut occurs between
the primary inputs and the carry-lookahead logic, resulting
in a cutwidth of 8. While increasing the block size also
increases the cutwidth of the CLA, for a constant block size,
the cutwidth will remain constant, as it remains local within
the given block.

Theorem 2. The Carry-Lookahead Adder can be verified
with linear time complexity.

C. Carry-Skip Adder

Similarly to the CLA, the time complexity for the Carry-
Skip Adder depends on the block size of the bypass logic.
Once again, a block size of 1 is considered. The bypass logic
cells and related multiplexers are grouped together with the
connected inputs, with the maximum cut occurring between
the bypass logic cells, as can be seen in Figure 4c. The
cutwidth remains local within the bypass logic block at a
constant of 8 and for a constant block size, the resulting
cutwidth remains constant.

Theorem 3. The Carry-Skip Adder can be verified with
linear time complexity.

VI. EXPERIMENTAL RESULTS

To experimentally confirm our findings, we implemented
our own SAT solver following the Cache-SAT algorithm out-
lined in Figure 2. As touched on in Section III-B, the algorithm
is not expected to keep up with current state of the art solvers
in terms of runtime, with the benefit of ensuring deterministic
behavior. Thus, a comparison with competing methods like
BDDs or ASP is omitted, as the purpose of these experiments
is to show that the theoretical bounds can be observed in
practice, not that our proposed approach outperforms other
methods.

All miter circuits are generated using the ArithsGen tool
[22], with a Ripple-Carry Adder as the reference implemen-
tation. The conversion of the circuits into CNF formulas is
conducted using a custom script and the variable orderings
are derived from the cutwidth calculations in Section V.

Table I shows the number of distinct consistent sub-formulas
considered by the solver and the runtime in seconds for
the different adder architectures with increasing input sizes.
The first column illustrates the effectiveness of restricting the
search space with the help of implied clauses. If the ordering
includes variables of the miter logic in the search space,
the number of DCSFs increases exponentially, making the
verification infeasible for only 64 input bits.

When considering the optimal ordering explored in Section
V, the linear behavior can be observed for all three adder
architectures, Ripple-Carry Adder, Carry-Lookahead Adder
and Carry-Skip Adder. The number of distinct consistent
sub-formulas roughly doubles when the number of inputs is
doubled, indicating a linear behavior in the number of inputs.
For the RCA, the lower cutwidth results in a lower number of
DCSFs across all input sizes. Since the CLA and CSA have
the same cutwidth, the number of DCSFs is also the same for
all input sizes.

The runtime of our SAT solver remains feasible for input
sizes up to 1024 for all adder architectures. While the solv-
ing time increases with the number of inputs, there are no
exponential increases in the runtime when the input size is
doubled. Between the adders, the verification of the RCA is
faster than for the other two because of the lower cutwidth.
The runtime is larger for the CSA compared to CLA because
of the greater number of variables, as each block contains 9
instead of 8 variables.

VII. DISCUSSION & FUTURE WORK

Although our approach shows promising results in theory
and practice, there are some improvements which can be
investigated, especially in the SAT solver itself. Namely, two
techniques were explored which are commonly employed to
speed up modern implementations of SAT algorithms.

Early solvers like Chaff [23] saved a lot of time dur-
ing Boolean Constraint Propagation (BCP) by replacing the
simple unit propagation algorithm with an optimized version
using the two watched literal scheme. Though this limits the
number of clauses to be explored during BCP, during our
evaluation only minor improvements could be observed in
the largest instances, while smaller instances even produced
longer runtimes due to the increased overhead of tracking the
watched literals. We conjecture that the clauses in the instances
we consider contain too few literals, so that the benefit of the
two watched literal scheme is outweighed by many operations
to update the watched literals.



The idea of parallelization was explored by pre-assigning
some of the variables and solving the resulting sub-formulas in
different execution threads. In our experiments, this yielded no
improvements on the runtime. An explanation for this behavior
lies in the polynomial verification approach itself. Each sub-
instance created for a given thread contains fewer variables,
but the cutwidth of the sub-instance itself does not change
for our examples with constant cutwidth. Consequently, each
execution thread will take a similar time to solve its sub-
instance compared to the complete formula.

These evaluations confirm that the main factor influencing
the runtime of our CacheSAT algorithm is indeed the cutwidth
of the formula. Engineering the most efficient SAT solver with
a static variable ordering for our cutwidth approach is not the
main focus of this work, but may be explored in the future.

Adder circuits are considered as a case study for our
approach, but the established polynomial bounds utilize a
property which is inherent to every circuit. An interesting
direction to be explored in future work in the context of PFV
is the identification of further circuit classes with constant
cutwidth. For BDDs, some circuit classes apart from integer
adders were already considered [24] [25]. The authors con-
jecture that polynomial bounds for these circuit classes could
also be established for SAT. Additionally, circuits which are
difficult to verify using BDDs are of special interest.

VIII. CONCLUSION

In this paper, we have shown that SAT can ensure polyno-
mial bounds on the time complexity for the verification of cir-
cuits with constant or logarithmic cutwidth. As the theoretical
analysis and practical evaluation of all three considered adder
architectures, Ripple-Carry Adder, Carry-Lookahead Adder
and Carry-Skip Adder, have shown, the structure of the circuit
has a direct impact on its cutwidth. If a circuit can be divided
into separate logic blocks with few connections between these
blocks, the cutwidth will remain local within the logic blocks,
resulting in a constant cutwidth. With this characteristic in
mind, future circuit classes with similar behavior may be
identified, which are likely to exhibit a constant cutwidth as
well. The field of Polynomial Formal Verification using SAT
provides a large variety of directions to be explored in future
work.

ACKNOWLEDGEMENTS

This work was supported by the German Research Founda-
tion (DFG) within the Project PolyVer (DR 287/36-1).

REFERENCES

[1] R. Drechsler et al., Advanced Formal Verification. Springer, 2004.
[2] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:

a survey,” ACM Transactions on Design Automation of Electronic
Systems, vol. 4, p. 123–193, Apr. 1999.

[3] R. Brinkmann and D. Kelf, “Formal Verification—The Industrial Per-
spective,” in Formal System Verification: State-of the-Art and Future
Trends (R. Drechsler, ed.), p. 155–182, Cham: Springer International
Publishing, 2018.

[4] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Theory in practice for
system design and verification,” ACM SIGLOG News, vol. 2, p. 46–51,
jan 2015.

[5] E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for combinational
equivalence checking,” in Proceedings Design, Automation and Test in
Europe. Conference and Exhibition 2001, pp. 114–121, 2001.

[6] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, (New York, NY, USA), p. 151–158, Association for
Computing Machinery, 1971.

[7] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified boolean formulas,” Information
Processing Letters, vol. 8, no. 3, p. 121–123, 1979.

[8] W. F. Dowling and J. H. Gallier, “Linear-time algorithms for testing
the satisfiability of propositional horn formulae,” The Journal of Logic
Programming, vol. 1, no. 3, p. 267–284, 1984.

[9] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to Combinational Equivalence Checking,” in 2006 IEEE/ACM Interna-
tional Conference on Computer Aided Design, (Double Tree Hotel, San
Jose, CA,USA), p. 836–843, IEEE, Nov. 2006.

[10] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in International
Conference on Theory and Applications of Satisfiability Testing, 2003.

[11] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling Entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions (T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, eds.), vol. B-2020-1 of Department of Computer Science
Report Series B, p. 51–53, University of Helsinki, 2020.

[12] F. R. K. Chung, “On the Cutwidth and the Topological Bandwidth of a
Tree,” SIAM Journal on Algebraic Discrete Methods, vol. 6, p. 268–277,
Apr. 1985.

[13] R. Drechsler, “PolyAdd: Polynomial Formal Verification of Adder Cir-
cuits,” in 2021 24th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS), pp. 99–104, 2021.

[14] R. Drechsler, A. Mahzoon, and L. Weingarten, “Polynomial Formal Ver-
ification of Arithmetic Circuits,” in Proceedings of International Con-
ference on Computational Intelligence and Data Engineering (N. Chaki,
N. Devarakonda, A. Cortesi, and H. Seetha, eds.), (Singapore), pp. 457–
470, Springer Nature Singapore, 2022.

[15] A. Mahzoon and R. Drechsler, “Polynomial Formal Verification of Prefix
Adders,” in 2021 IEEE 30th Asian Test Symposium (ATS), pp. 85–90,
2021.

[16] M. Gelfond and V. Lifschitz, “The Stable Model Semantics for Logic
Programming,” in Proceedings of International Logic Programming
Conference and Symposium (R. Kowalski, Bowen, and Kenneth, eds.),
pp. 1070–1080, MIT Press, 1988.

[17] M. Nadeem, J. Kleinekathofer, and R. Drechsler, “Polynomial Formal
Verification exploiting Constant Cutwidth,” in 34th International Work-
shop on Rapid System Prototyping (RSP).

[18] J. Gu, P. Purdom, J. Franco, and B. Wah, Algorithms for Satisfiability
(SAT) problem: a survey, vol. 35, pp. 19–152. 12 1997.

[19] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT Solvers to
Cryptographic Problems,” in Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea,
UK, June 30 - July 3, 2009. Proceedings (O. Kullmann, ed.), vol. 5584
of Lecture Notes in Computer Science, pp. 244–257, Springer, 2009.

[20] G. S. Tseitin, On the Complexity of Derivation in Propositional Calcu-
lus, pp. 466–483. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983.

[21] M. Prasad, P. Chong, and K. Keutzer, “Why is Combinational ATPG
Efficiently Solvable for Practical VLSI Circuits?,” J. Electronic Testing,
vol. 17, pp. 509–527, 12 2001.

[22] J. Klhufek and V. Mrazek, “ArithsGen: Arithmetic Circuit Generator
for Hardware Accelerators,” in 2022 25th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
pp. 44–47, 2022.

[23] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
engineering an efficient SAT solver,” in Proceedings of the 38th Design
Automation Conference (IEEE Cat. No.01CH37232), pp. 530–535, 2001.

[24] J. Kleinekathöfer, A. Mahzoon, and R. Drechsler, “Polynomial Formal
Verification of Floating Point Adders,” in 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE), (Antwerp, Belgium),
p. 1–2, IEEE, Apr. 2023.

[25] M. Schnieber and R. Drechsler, “Polynomial Formal Verification of
KFDD Circuits,” in Proceedings of the 21st ACM-IEEE International
Conference on Formal Methods and Models for System Design, (Ham-
burg Germany), p. 82–89, ACM, Sept. 2023.


	Introduction
	Preliminaries
	SAT
	Binary Adders
	Ripple-Carry Adder
	Carry-Lookahead Adder
	Carry-Skip Adder


	Verification Flow
	Approach
	SAT Solver

	Polynomial Verification
	Implied Clauses
	Cutwidth
	Polynomial Bounds

	Cutwidth of Adder Circuits
	Ripple-Carry Adder
	Carry-Lookahead Adder
	Carry-Skip Adder

	Experimental Results
	Discussion & Future Work
	Conclusion
	References

