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Abstract
Statistical voice conversion (VC) is a technique to convert spe-
cific non- or paralinguistic information while keeping linguis-
tic information unchanged, and speaker conversion has been
studied as a typical application of VC for a few decades. To
better understand various VC techniques using a freely avail-
able common dataset, the Voice Conversion Challenge (VCC)
was launched in 2016 and the 2nd challenge was held in 2018.
As one of the baseline systems for VCC 2018, we developed
open-source VC software called “sprocket”, in which not only
conventional techniques, such as a trajectory-based conversion
method using a Gaussian mixture model (GMM) and a vocoder-
based conversion framework but also recently developed tech-
niques, such as a vocoder-free VC framework, have been im-
plemented. Using sprocket, it is possible to 1) easily reproduce
converted voices using the VCC datasets and 2) develop VC
systems using other parallel speech datasets with fundamental
VC functions, such as acoustic feature extraction, time align-
ment between the source and target features, GMM training,
feature conversion, and waveform generation. In this paper, we
describe 1) the technical details and use of sprocket, 2) the de-
velopment of the baseline systems for the HUB and SPOKE
tasks of VCC 2018 using sprocket, and 3) the performance of
sprocket as a VC system by demonstrating results for our devel-
oped baseline systems in VCC 2018.

1. Introduction
Variations of voice characteristics, such as fundamental fre-
quency (F0) patterns and voice timbre characteristics produced
by individual speakers are usually restricted by their physical
constraints due to the speech production mechanisms. These
constraints based on the speech production mechanisms are
helpful for producing a speech signal conveying not only lin-
guistic information for communication but also paralinguistic
information such as speaker individuality and emotions. How-
ever, they sometime generate various barriers to producing de-
sired voice characteristics, such as desired speech expressions
and voice quality. If individual speakers could freely pro-
duce various voice characteristics without being limited by their
physical constraints, it would break down these barriers and
open up an entirely new speech communication style.

Voice conversion (VC) is one of the potential techniques
enabling speakers to produce speech sounds beyond their phys-
ical constraints [1]. VC research was originally started to de-
velop a speaker individuality conversion technique enabling a
source speaker to change his/her speaker individuality to that
of another target speaker while preserving the linguistic con-
tent [2]. The conversion frameworks of VC have been adopted
into other research objectives such as speech recovery for peo-
ple with speech disorders [3], singing style conversion [4], non-
native to native speaker conversion [5], and speech to articula-

tory mapping [6] to make it possible to implement augmented
speech communications. Towards the practical use of these VC
applications, it is essential to improve fundamental VC tech-
niques.

In this study, we focus on the conversion of speaker indi-
viduality. To convert a source speaker individuality into a tar-
get speaker individuality, conversion functions are trained us-
ing a set of speech utterances of the source and target speakers.
In VC research, it is usually assumed that the set consists of
the same linguistic contents for the source and target speakers
(i.e., a parallel dataset) to model the conversion functions. For
modeling using parallel dataset, several techniques such as the
Gaussian mixture model (GMM) [7, 8, 9], Gaussian process re-
gression [10, 11], non-negative matrix factorization [12, 13],
and deep neural networks [14, 15, 16] have been proposed. To
make it possible to implement VC when the set consists of dif-
ferent linguistic contents (i.e., a nonparallel dataset), several
nonparallel VC techniques such as feature alignment [17, 18],
speaker adaptation [19, 20, 21], and direct modeling [22, 23]
have been proposed. Although these techniques make it pos-
sible to convert the speaker individuality using either a paral-
lel or non-parallel dataset, the sound quality of the converted
voice and the conversion accuracy of the speaker individuality
are usually degraded compared with those of the target voice.

To better understand various VC techniques using a freely
available common dataset, the Voice Conversion Challenge
(VCC) was launched in 2016, and the 2nd challenge was held
in 2018 [24]. As one of the baseline systems for VCC 2018,
we developed open-source VC software called “sprocket”, in
which not only conventional techniques, such as a trajectory-
based conversion method with a GMM [8] and a vocoder-based
framework, but also recently developed techniques, such as a
vocoder-free VC framework based on a differential GMM (DIF-
FGMM) [25, 26] and an F0 transformation technique using
waveform modification [27], have been implemented. Using
sprocket, it is possible to 1) easily reproduce the converted
voices using the VCC datasets and 2) develop VC systems
using other parallel datasets with fundamental VC functions,
such as acoustic feature extraction, time alignment between the
source and target features, GMM training, feature conversion,
and waveform generation. In this paper, we describe 1) the tech-
nical details and use of sprocket, 2) the development of the base-
line systems for the HUB and SPOKE tasks of VCC 2018 using
sprocket, and 3) the performance of sprocket as a VC system
by demonstrating results for our developed baseline systems in
VCC 2018.

The rest of this paper is organized as follows. The GMM-
based VC techniques implemented in sprocket are described in
Section 2. The use of sprocket is described in Section 3. The
system settings for VCC 2018 are described in Section 4. In
Section 5, we describe the performance of sprocket as the base-
line system in VCC 2018. Finally, the conclusion is given in
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Figure 1: Training process of the GMM-based VC method using a parallel dataset.

Section 6.

2. GMM-based VC methods in sprocket
Statistical VC is a technique to convert the individuality of a
source speaker into that of a target speaker by converting sev-
eral acoustic features such as F0, aperiodicity, and the mel-
cepstrum. To convert these features, VC usually requires two
steps, i.e., training and conversion processes. In this section,
we describe details of a GMM-based VC method using parallel
speech utterances of the source and target speakers (i.e., a par-
allel dataset), focusing on two typical methods: 1) maximum
likelihood parameter generation (MLPG) considering the global
variance (GV) based on the GMM [8], 2) vocoder-free VC us-
ing the log-spectral differential (DIFFVC) [25, 26], which have
been implemented in sprocket.

The GMM-based VC method includes the following tech-
niques: 1) MLPG considering the GV based on the GMM,
2) vocoder-free VC using the DIFFVC. These processes have
been implemented in the open-source VC software “sprocket”,
whose use is described in Section 3.

2.1. Training process

Figure 1 shows the training process of the GMM-based VC
method. For the training process, the GMM-based VC method
carries on following steps: 0) preparation of the parallel speech
dataset, 1) acoustic feature extraction, 2) calculation of acous-
tic feature statistics, 3) time alignment between the source and
target feature vectors, and 4) GMM modeling.

Preparation (0th step): To train a conversion model, it is
necessary to prepare parallel speech utterances consisting of the
same linguistic information (i.e., the same phonemes, syllables,
and words) and different speaker individualities. To prepare
such a dataset, speech utterances uttered by the source and tar-
get speakers using the same manuscripts (e.g., 50 uttered sen-
tences, each with a duration of about 3 or 5 seconds) are usually
used.

1st step: Acoustic features, including F0, aperiodicity, and
mel-cesptrum, parameterized from the spectral envelope are ex-
tracted from the speech signals of both the source and target
speakers. Because the error in the acoustic feature extraction
always propagates to the subsequent steps and strongly affects
the resulting quality of statistical VC, it is very important to
carefully set the configuration parameters for the acoustic fea-
ture extraction process (e.g., the range of F0 extraction).

2nd step: In this step, speaker-dependent statistics of the
extracted acoustic features, such as the mean and standard de-
viation of the logarithmic F0 and the GV of the mel-cepstrum,
are estimated.

3rd step: To model a joint probability density function
based on the GMM, frame-aligned joint feature vectors are re-
quired. However, the speech signals of the source and target
speakers are not usually aligned because these speakers usu-
ally utter with different speaking styles even when using the
same manuscripts. To align the source and target feature vec-
tors frame by frame, an iterative alignment process based on
dynamic time warping (DTW) is performed as follows:

A. To remove silent parts of the feature vectors, frame-
based power thresholding is performed after removing
the zeroth coefficient of the mel-cepstrum. Then, the re-
sulting static feature vectors are extended to static and
delta feature vectors.

B. To estimate time-warping functions between the source
and target feature vectors in each utterance, DTW is
performed to minimize a distance metric between the
aligned source and target feature vectors. For the mel-
cepstrum, mel-cepstrum distortion is usually used as the
distance metric.

C. Applying the estimated time-warping functions to the
source and target feature vectors, the frame-aligned joint
feature vectors are constructed.

D. A joint probability density function based on the GMM
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Figure 2: Conversion process of the VC and DIFFVC methods (5th step).

is trained based on the expectation-maximization algo-
rithm using the joint feature vectors.

E. The static and delta feature vectors of the source with
silent parts are converted into static feature vectors of
the target speakers by MLPG using the GMM.

F. Step A is applied to the converted feature vectors.

G. By applying step B to the converted feature vectors and
target feature vectors, the time-warping functions are
refined because the converted feature vectors have the
same temporal structure as the source feature vectors and
similar speaker individuality to the target speaker.

H. The process returns to step C until the final iteration.

This iterative time alignment processing is performed to con-
structing joint feature vectors of the mel-cepstrum. Those of
the other acoustic features such as aperiodicity are usually con-
structed using the resulting time-warping function of the mel-
cepstrum.

4th step: Using the iteratively refined joint feature vec-
tors, the joint probability density function based on the GMM is
trained as the conversion model for the conversion process. The
GV of the converted feature vectors is also calculated to design
a GV post-filter.

2.2. Conversion process (5th step)

For the conversion process, the acoustic features of the source
speaker are converted into those of the target speaker using
the trained GMM. As the acoustic feature to be converted in
sprocket, F0 and the mel-cepstrum are used. Other factors such
as the aperiodicity, speaking rate, the temporal structure of the
F0 trajectory, and the power trajectory are retained as those of
the source voice. Note that arbitrary utterances of the source
speaker can be converted into those of the target speaker. Fig-
ure 2 shows the conversion process of the VC based on the
GMM and the DIFFVC based on a differential GMM (DIF-
FGMM).

First, F0, the mel-cepstrum, and aperiodicity are extracted
from a source voice. For the GMM-based VC method [28],
F0 is linearly transformed frame by frame using the speaker-
dependent statistics of the source and target speakers in the log-
arithmic space. The mel-cepstrum is converted into that of the
target speaker by MLPG [28] after constructing the static and
delta feature vectors without zeroth order of the mel-cepstrum

coefficients. Then, the GV post-filter is applied to the converted
mel-cepstrum because the GV of the converted mel-cepstrum
is usually degraded compared with that of the original mel-
cepstrum, and the zeroth order of the source mel-cepstrum is
concatenated to the resulting converted mel-cepstrum. Here,
to ensure the same waveform power for the source and con-
verted voices, the zeroth order of the converted mel-cepstrum
is modified. Finally, the voice converted by the VC method is
generated by using excitation generation and the mel log spec-
tral approximation (MLSA) filter [29] (i.e., a vocoder) using the
transformed F0 and converted mel-cepstrum.

For the DIFFVC based on the DIFFGMM [25, 26], the
model parameters of the trained GMM are modified from the
joint probability density of the source and target features to a
joint probability density of the source feature and a feature dif-
ferential between the target and source features. Then, the con-
verted mel-cepstrum differential is estimated from the source
mel-cepstrum by MLPG with the DIFFGMM. The voice con-
verted by the DIFFVC method is generated by filtering the
source voice using the GV post-filtered mel-cepstrum differen-
tial, where the MLSA filter is also used. Although the DIFFVC
based on the DIFFGMM makes it possible to achieve converted
voice with significantly higher sound quality than that obtained
by VC based on the GMM method, the conversion accuracy of
the speaker similarity significantly decreases when performing
the conversion for speakers with different gender (i.e., cross-
gender VC) because there is no F0 transformation module when
using the vocoder.

2.3. DIFFVC with F0 transformation

By applying the vocoder-free F0 transformation to waveform
signals of the source speaker, it is possible to take advan-
tage of the vocoder-free framework for not only same-gender
conversion but also cross-gender conversion by the DIFFVC
method [27].

First, the F0 transformation ratio is calculated from the
mean values of F0 for the source and target speakers. Then,
the waveforms of the source speaker are transformed in accor-
dance with the F0 transformation ratio using duration modi-
fication techniques and resampling. For the F0 transforma-
tion technique, the waveform similarity-based overlap and add
(WSOLA) method [30] has been implemented in sprocket.
Note that this F0 transformation process changes the voice



timbre of the source voice. By performing the training and
conversion processes in the same manner as described in Sec-
tions 2.1 and 2.2 using the F0-transformed source voices as the
source voices, the DIFFVC method with the transformation is
achieved [27].

3. Use of sprocket
sprocket [31] is open-source software that converts speaker in-
dividuality using the GMM-based VC methods with a parallel
dataset. sprocket aims to provide an environment for both ex-
pert and non-expert users to easily use the statistical VC frame-
work. The license of sprocket is set to the MIT license [32]
so that its features can be freely applied not only for research
purposes but also for industrial purposes. In this section, we
describe how to use sprocket.

3.1. Installation

Figure 3 shows the directory structure of sprocket. sprocket is
open to the public on a GitHub repository. Python3 is adopted
as the main programming language and we assume that users
use sprocket on a Unix environment. First, users need to install
the dependent libraries via the pip command. Then, by exe-
cuting python3 setup.py install in a terminal, the li-
braries using sprocket are installed in the Python3 environment.
More details of the installation are given on the top page of the
GitHub repository.

3.2. Preparation of speech dataset and configure files

In this subsection, we assume that the working directory is set
to example/.

Preparation of speech dataset
For statistical VC, it is necessary to prepare a parallel dataset
consisting of the same speech utterances uttered by the different
source and target speakers. To execute sprocket without prepar-
ing a speech dataset, we have prepared a script to automatically
download the speech dataset of VCC 2016 [33] and deploy it in
the correct place. To use arbitrary speech datasets, it is better to
prepare a speech dataset more than 50 utterances of the source
and target speakers because the conversion accuracy strongly
depends on the number of training utterances. In Section 3.5,
we describe the preparation of arbitrary datasets in more detail.

In sprocket, the supported file format of the speech signals
is 16000 Hz，22050 Hz，44100 Hz，or 48000 Hz for the sam-
pling rate, single channel, and 16-bit signed-integer waveform.
The waveforms are stored in not a single waveform file but sev-
eral waveform files by dividing into several utterances of about
5 seconds each. These waveform files must be deployed in
data/wav (e.g., data/wav/speakerA/*.wav for speak-
erA) for each speaker.

Initialization
To generate list files and speaker-dependent and pair-dependent
configure files for use in the training and conversion processes,
initialize.py is executed. initialize.py takes three
arguments. The first argument is for the source speaker label
(e.g., speakerA), the second argument is for the target speaker
label (e.g., speakerB), and the third argument is for the sampling
rate of the format (e.g., 16000).

The lists showing paths of the waveform files (e.g., speak-
erA train.list for the training and speakerA eval.list for the
evaluation), the speaker-dependent YAML files (e.g., speak-
erA.yml) showing the format of the waveform files and pa-
rameters for acoustic feature extraction, and the pair-dependent

sprocket # project home

├── example # framework

│   ├── conf

│   │   ├── default

│   │   ├── figure

│   │   ├── pair

│   │   └── speaker

│   ├── data

│   │   ├── pair

│   │   └── wav

│   ├── initialize.py

│   ├── list

│   ├── run_f0_transformation.py

│   ├── run_sprocket.py

│   └── src

├── requirements.txt

├── setup.py

└── sprocket # library

Figure 3: Directory structure of sprocket.

Minimum F0: 100

Maximum F0: 450

Figure 4: Example of the F0 range setting of a female speaker
(VCC2SF1 in VCC 2018 dataset).

YAML (e.g., speakerA-speakerB.yml) file showing the param-
eters used in the GMM modeling are generated in the cor-
responding directories such as list, conf/speaker, and
conf/pair, respectively. Also, the histograms for the set-
tings of the F0 range and power thresholding are generated in
the conf/figure directory.

Modification of the lists
It is necessary to modify the automatically generated lists to se-
lect the training and evaluation utterances. The training lists are
used for the calculation of the speaker-dependent statistics and
the GMM modeling. The evaluation lists describe the paths of
the waveform during the evaluation. The initially generated lists
contain the paths of all waveform files deployed in data/wav
for each speaker. Because the waveforms used for the training
and evaluation should be independent, the users should erase
the overlapping paths in the training and evaluation files. Note
that the order of the listed waveform files should be the same
for the source and target speakers.

Setting of the speaker-dependent parameters
The F0 range is a representative speaker-dependent parameter
for acoustic feature extraction. For normal speech, the F0 range
is relatively well approximated as a unimodal distribution. In
the F0 extraction process, F0 values of the double and half har-
monics are sometimes extracted owing to the analysis errors,
and these errors significantly degrade the sound quality of the
converted voice. To avoid such errors, the F0 range for each



speaker is specified in accordance with the F0 histograms.
To decide the F0 range, F0 histograms are generated using

the results of F0 extraction without specifying any F0 range by
executing initialize.py. Figure 4 shows an example of
F0 range setting using an F0 histogram. Using the histograms,
the F0 range in the speaker-dependent YAML file is modified.
The maximum and minimum values of the F0 range are decided
from the left and right tails by considering the histogram as a
unimodal distribution, respectively.

Setting of the pair-dependent parameters
The pair-dependent YAML file is generated in the conf/pair
directory by executing initialize.py. Because the num-
ber of mixture components of the GMM strongly affects the
conversion quality, it should be carefully set in accordance with
the number of training utterances. As a guideline, the number of
mixture components is set to 8 or 16 when the number of train-
ing utterances is 30 and the number of mixture components is
set to 32 when the number of training utterances is 50 where it is
assumed that each utterance consists of a speech signal of about
5 seconds. If users train the GMM with more training utter-
ances such as 150 utterances, it is appropriate to set the number
of mixture components to 32 or 64.

The other pair-dependent parameter is the coefficient for
the GV post-filter. The GV post-filter is used to increase the
variance of the converted feature trajectories, which improves
the sound quality of the converted voice. However, it sometimes
causes serious sound quality degradation. If the converted voice
severely suffers from artifact sounds, it is worth decreasing the
GV post-filter coefficient from 1.0.

3.3. Training and conversion processes

Users can execute statistical VC if the parameters described
in the speaker-dependent and pair-dependent YAML files have
been set correctly. The main script run sprocket.py
takes teh two arguments of the source and target speaker la-
bels and some options corresponding to the following steps
(e.g., python3 run sprocket.py -1 -2 -3 -4 -5
speakerA speakerB). Note that all files generated by
sprocket are stored below the pair-dependent directory (e.g.,
data/pair/speakerA-speakerB/).

Step 1: In sprocket, WORLD [34] is used for speech pa-
rameter extraction and vocoder synthesis because it achieves
high sound quality with a low computational cost. Acoustic
features such as F0, the mel-cepstrum, and aperiodicity are ex-
tracted. These acoustic features are stored as files in HDF5 file
format for each utterance. Because WORLD was developed us-
ing C++, sprocket uses a wrapper framework called “PyWorld-
Vocoder” [35].

Step 2: In this step, the speaker-dependent statistics such as
the mean and standard deviation of F0 and the GV of the mel-
cepstrum are calculated. In this process, the statistics are stored
in the stats directory.

Step 3: In this step, to construct joint feature vectors for the
GMM modeling, the iterative time-alignment estimation is per-
formed. As described in Section 2, the iterative process consists
of the DTW, GMM modeling, and conversion of the source fea-
ture vectors. The number of the iterations is given in the pair-
dependent YAML file. The resulting joint feature vectors are
stored in the jnt directory.

Step 4: The GMM for the mel-cepstrum is trained. Also,
the GV of the converted feature vector is calculated using the
trained GMM. These parameters are stored in the model di-
rectory.

Step 5: The source voices described in the source speaker
evaluation list file are converted into target voices. The
voices converted by VC are labeled as * VC.wav and those
converted by the DIFFVC are labeled as * DIFFVC.wav.
These converted voices are saved in the test direc-
tory. Note that by adding an option “-5” when exe-
cuting sprocket (e.g., python3 run sprocket.py -5
speakerA speakerB), it is possible to perform only the
conversion process.

3.4. F0 transformation based on waveform modification

It is possible to transform F0 for the source voices using
run f0 transformation.py. This script employs two ar-
guments in the same manner as run sprocket.py. Using
this script, the F0-transformed source voices based on the du-
ration modification and resampling techniques are generated in
the data/wav directory. The F0-transformed waveforms are
named as the source speaker with the F0 transformation ratio
(e.g., speakerA 1.45). By executing initialization, training, and
conversion using the F0-transformed source voices and target
voices, the users can achieve the DIFFVC with the F0 transfor-
mation.

3.5. Tips on system development

It is possible to convert speaker individuality within an arbitrary
speaker pair by using sprocket if users prepare a parallel speech
dataset. To obtain a high-quality converted voice, it is essential
to prepare a well-constructed speech dataset. In this section, we
give some tips for preparing such a speech dataset.

For the speech waveforms of the target speaker, it is desir-
able that the waveforms are recorded in a high-quality sound
environment because the sound quality of the target voices
strongly affects the quality of the converted voices. If users
employ low-quality target waveforms recorded under noisy or
reverberant conditions, the sound quality of the converted voice
will be significantly degraded.

Regarding the sound quality of the source voices, it is rec-
ommended that the source voices are recorded in the same en-
vironment as that used in the VC system, i.e., the training and
evaluation utterances should be recorded in the same environ-
ment. Also, because sprocket does not convert speaking styles
such as F0 patterns or the speaking rate, it is recommended that
the source speaker tries to imitate the target speaker’s speaking
style.

If users implement a male-to-female speaker conversion, it
is acceptable to record the source voice uttered in a falsetto to
match the value of F0 in order to perform the DIFFVC method
without F0 transformation. To develop appropriate joint feature
vectors, it is better to control short pause positions so that they
correspond to each other for the source and target speakers. It
will be convenient to decide the pause positions in each utter-
ance in accordance with the target voices when recording the
source voices.

4. Development of VCC 2018 baseline
systems with sprocket

VCC 2018 was a challenge in which several VC techniques are
evaluated using same speech datasets provided by the organiz-
ers. The challenge compared VC systems submitted by teams
from universities, research institutes, and industry in terms of
the sound quality and conversion accuracy of the speaker in-



dividuality. In VCC 2018, there were two tasks called the
HUB task and SPOKE task. For the HUB task, parallel speech
datasets with two male and two female source and target speak-
ers were provided. For the SPOKE task, non-parallel speech
datasets consisting of two male and two female source speakers
and two male and two female target speakers were provided.
In this section, we describe the development of the VCC 2018
baseline system for each task using sprocket.

4.1. Baseline system for the HUB task

As described in Section 3, sprocket can carry out VC using
GMM-based VC methods including VC and DIFFVC with a
parallel speech dataset. In terms of the sound quality, the DIF-
FVC method is usually superior to the VC method for same-
gender speaker pairs owing to the vocoder-free framework. On
the other hand, for cross-gender speaker pairs, there is no sig-
nificant difference between VC and DIFFVC employing F0

transformation methods. For the conversion accuracy of the
speaker individuality, there is no significant difference between
the VC and DIFFVC methods. To maximize the sound quality
of the converted voice, for the HUB task, we chose the DIFFVC
method without F0 transformation for the same-gender speaker
pairs and the VC method for the cross-gender speaker pairs.

4.2. Baseline system for the SPOKE task

It is not possible to model any GMM using the non-parallel
speech datasets because time-alignment using non-parallel
speech datasets cannot be dealt with using sprocket. Fortu-
nately, parallel datasets between the source speakers and tar-
get speakers using in the evaluation were provided in the HUB
task. To build the conversion function for the SPOKE task, we
modeled gender-dependent speaker-independent GMMs using
the dataset provided for the HUB task. Because the speaker-
independent GMMs were mismatched models for the used for
evaluation in the SPOKE task, it was expected that the sound
quality and conversion accuracy of the speaker individuality
would significantly decrease compared with those for matched
models. For the SPOKE task, we submit voices converted by
DIFFVC for the same-gender speaker pairs and those based on
the VC for the cross-gender speaker pairs.

5. Results of VCC 2018
5.1. Baseline system conditions

We used the English speech database provided by VCC 2018.
For the HUB task, the number of source speakers was four, two
females and two males, and the number of target speakers was
four, two females and two males who were different from the
source female and male speakers. For the SPOKE task, four ad-
ditional source speakers, two females and two males and target
speakers for the HUB tasks were used. The number of sentences
uttered by each speaker was 116, 81 utterances for the training
and 35 utterances for the evaluation. The sampling frequency
was set to 22050 Hz.

WORLD [34] was used to extract spectral envelopes, which
were parameterized into 1-35 mel-cepstral coefficients as the
spectral feature. The frame shift was 5 ms. The mel log spec-
trum approximation (MLSA) filter [36] was used as the syn-
thesis filter. As the source excitation features, we used F0 and
aperiodicity extracted using WORLD [34]. Table 1 shows the
speaker-dependent parameters for the VCC 2018 datasets.

For the HUB task, the speaker-dependent GMMs were sep-

Table 1: Speaker-dependent parameters for the VCC 2018
datasets. Note that default indicates a value unchanged from
the default setting.

Speaker Minimum F0 [Hz] Maximum F0 [Hz] Power [dB]
VCC2SF1 100 450 -31
VCC2SF2 110 350 -31
VCC2SF3 130 330 default
VCC2SF4 120 390 default
VCC2SM1 50 200 -31
VCC2SM2 70 300 -40
VCC2SM3 60 240 default
VCC2SM4 60 270 default
VCC2TF1 140 350 -45
VCC2TF2 100 400 -30
VCC2TM1 60 200 -23
VCC2TM2 50 280 -31
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Figure 5: Overall results for the HUB task.

arately trained for all combinations of the source and target
speakers. The full covariance was used for the GMMs. The
number of mixture components of the GMMs was 32. For the
SPOKE task, gender-dependent speaker-independent GMMs
were separately trained for each target speaker using speech
datasets consisting of the source speakers and target speaker
used in the HUB task.

5.2. Results for the HUB task

Figure 5 shows the overall results for the HUB task. The base-
line VC system achieved a reasonably high sound quality with a
mean opinion score (MOS) of over 3.5 and over 70% similarity
for all the submitted systems.

Figures 6 and 7 show MOSs for the sound quality for the
same-gender and cross-gender speaker pairs, respectively. In
Figure 6, the baseline system (B01) achieves the second highest
sound quality for the same-gender speaker pairs. This shows
that the DIFFVC method makes it possible to achieve very high
sound quality owing to the vocoder-free framework, which was
only exceeded by the N10 system. As shown in Figure 7, the
baseline system (B01) achieved seventh place for the cross-
gender speaker pairs. By comparing the sound quality results
of the baseline system for the same-gender and cross-gender
speaker pairs, the MOS for the sound quality decreases by
about 1.0 owing to the use of the vocoder to generate the F0-
transformed excitation signal.

Figure 8 shows results for the speaker similarity of the con-
verted voice. Here, the baseline system (B01) achieves rela-
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Figure 6: Results for sound quality for same-gender speaker
pairs.
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Figure 7: Results for sound quality for cross-gender speaker
pairs.

tively good performance compared with the other systems even
though it does not use nonlinear conversion functions in con-
trast to Gaussian process and deep neural networks, but mix-
tures of linear functions based on the GMM. It is possible that
the iterative time alignment process generates better joint fea-
ture vectors, resulting in more sophisticated conversion models.

5.3. Results on the SPOKE task

Figure 9 shows the overall results for the SPOKE task of VCC
2018. The sound quality and conversion accuracy of the speaker
individuality are significantly lower than those for the HUB task
because the conversion models used mismatched models for
the source speakers in the SPOKE task. The degradation us-
ing the mismatched models was about 1.0 of the MOS for the
sound quality and the degradation of the conversion accuracy
was about 15% compare with those for the HUB task.

6. Conclusion
In this paper, we have described in detail the baseline system
based on “sprocket” used for the Voice Conversion Challenge
(VCC) 2018. The baseline system consists of statistical voice
conversion (VC) techniques based on a Gaussian mixture model
(GMM) and a vocoder-free VC technique based on a differential
GMM (DIFFVC). For the HUB task in VCC 2018, the baseline
system achieved second for sound quality owing to the vocoder-
free VC framework for the same-gender speaker pairs and sev-
enth place for the cross-gender speaker pairs. In the evalua-
tion of the speaker similarity, the baseline system achieved the
sixth place among the submitted systems. For the SPOKE task,
the baseline system achieved an average position even though
it used mismatched conversion models trained using different
source speakers. In this paper, we also described sprocket in
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Figure 9: Overall results for the SPOKE task.

detail as well as its uses, will be useful for the VC research
community up. In future work, we will attempt to improve the
usability of sprocket and add some conversion techniques based
on deep learning.
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