
EasyChair Preprint
№ 12766

Gas-Based Deterministic Concurrent Transaction
Processing in Blockchain

Xinyuan Wang, Yun Peng, Xingchen Li and Hejiao Huang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 27, 2024

Gas-Based Deterministic Concurrent
Transaction Processing in Blockchain

Xinyuan Wang1[0000−0001−6359−7869], Yun Peng2, Xingchen Li1, and Hejiao
Huang1[0000−0002−2030−957X]*

1 Harbin Institute of Technology
huanghejiao@hit.edu.cn
2 Guangzhou University

Abstract. Blockchain enforces transactions to be processed determin-
istically in each node to achieve consistency. Previous research explores
concurrency control algorithms from deterministic databases to improve
parallelism for blockchain. However, they do not take advantage of an
inherent property of blockchain transactions - the gas fee, which is paid
for the energy consumed during transaction execution. Ideally, the gas
fee is proportional to the execution time.

In this paper, we propose a deterministic transaction processing algo-
rithm, Gus. Gus leverages the knowledge of gas fees to reduce blocking.
The main idea is that we use the gas fees to determine the ideal non-
blocking start and commit order of transactions. Then, the transactions
deterministically read the latest data committed before it starts. This
way, we can achieve determinism with little blocking. Furthermore, we
propose two mechanisms to reduce transaction aborts. The reordering
mechanism deterministically adjusts the commit order of the conflicted
transactions to avoid aborts. The speculative mechanism optimistically
assumes that the write set for a re-executed transaction remains un-
changed from its latest execution to reduce abort. Evaluation results
show that Gus outperforms state-of-the-art deterministic transaction
processing algorithms by up to 5x.

Keywords: Transaction processing · Deterministic · Gas · Blockchain.

1 Introduction

Blockchain is a decentralized transaction processing system. Each node poten-
tially becomes a proposer. A proposer packages the received transactions into
a block and broadcasts them to other nodes (attestors). Each node will exe-
cute transactions within the block and apply them to its ledger independently
since the peer nodes are untrusted. To ensure the consistency of the distributed
ledgers, all nodes must process transactions deterministically.

Conventional blockchain processes transactions with a single thread, natu-
rally achieving determinism. To fully utilize the power of multi-core processors,
previous researches adopt and optimize the concurrency control algorithms from

2 Xinyuan Wang et al.

deterministic databases. We divide the algorithms into two classes. One is single-
batch algorithms [3, 6], which read the latest data but validate and commit trans-
actions in a pre-determined order (TID). Thus, they suffer from much blocking
due to sequential validation and commit. The other is multi-batch algorithms [9,
13], where the transactions read the snapshot of the previous batch and are val-
idated and committed concurrently. These algorithms suffer from many aborts
since the data read is too old. Besides, none of the existing algorithms make use
of an intrinsic property of the blockchain transactions - gas fee.

Gas fee is designed to motivate servers to participate in decentralized net-
works and protect them from attacks. The gas fee covers the energy consumption
of transaction execution and is set when the transaction is initialized. Users can
employ the gas evaluation methods to establish the gas fees. The latest dynamic
method [8] provides gas estimates with an accuracy of less than 5% error. Ideally,
the gas fee is proportional to the transaction execution time.

In this paper, we propose a novel deterministic transaction processing algo-
rithm, Gus. Gus adopts the single-batch scheme and uses knowledge of gas fees
to reduce blocking. The main idea is that we assign a start and commit times
to the transaction before it is executed. The start time is determined by the
gas fee of previously executed transactions. Commit time is determined based
on the start time and the gas fee of the transaction to be executed. In the ex-
ecution, the transaction deterministically reads the data committed before its
start time and commits the data written with its commit time. The transaction
will be aborted if visible data is committed between its start and commit time.
The aborted transaction will be assigned a new start and commit time for re-
execution. Fig. 1 (c) shows an ideal example where the gas fee is proportional
to the execution time. The commit order of transactions is determined by com-
mit times allocated through gas fees. T3 and T7 are aborted since T1 commits
visible data between their start and commit time.

T1(1)
T2(2)
T3
T4

T5
T6(3)
T7

T8(4)

T3(5)

T4(6)
T5(7)
T7(8)

T1(1)
T2(2)
T3
T4

T5(5)
T6(6)

T3(3)
T4(4)
T7(7)

T8(8) T1(3)
T2(1)
T3(4)
T4(2)

T5(4)
T6(5)

T3(6)
T7(6)

T8(7)

T7(8)
(a) (b) (c)

Fig. 1: (a): multi-batch algorithms [9, 13]; (b): single-batch algorithms [3, 6];
(c): our gas-based single-batch algorithm. : transaction execution and the
validation decision (commit/abort), and we mark the TID and the commit order;

: conflict.

Gus can reduce blocking. This is because transactions are committed in a
non-blocking order by their estimated execution times (gas fees). For example,
we estimate that T4 ends execution earlier than T1 (with less gas fee), so T4
commits before T1 rather than validating and committing after T1 commits. In

Gas-Based Deterministic Concurrent Transaction Processing in Blockchain 3

this way, Gus has less blocking than single-batch algorithms and fewer aborts
than multi-batch algorithms. However, Gus can not eliminate blocking since gas
fees may be inaccurate. For example, if T1 has a shorter execution time but a
higher gas fee than T4, T1 must wait for T4 to commit before validating.

Furthermore, we propose reordering and speculative mechanisms to reduce
aborts. The reordering mechanism reduces aborts by changing the commit order
of the conflicted transactions. For example, in Fig. 1 (c), T3 can avoid the conflict
when it is committed before T1. The speculative mechanism provides an option
of utilizing the multi-batch scheme, where aborted transactions are moved to
the next batch for re-execution. It optimistically assumes that the write set
of an aborted transaction is unchanged in the next execution. Thus in the next
batch, transactions can avoid conflicts with the re-executed transactions by their
previous write set. For example, in Fig. 1 (c), if the speculative mechanism is
enabled, T3 and T7 will be moved to the next batch for re-execution. T7 can
wait for T3 to commit before reading to avoid aborts, as T3’s write set is known
before re-execution.

Our evaluation on two popular benchmarks shows that Gus outperforms
state-of-the-art deterministic transaction processing algorithms by up to 4.7x.
The reordering and speculative mechanisms can achieve 3.3x and 2.6x improve-
ments.

2 Background and Relative Works

Transaction processing in blockchain. Shi et al. [11] divided blockchain
concurrent transaction processing models into two main classes. The first is the
attestor-attestor concurrency model. The proposer utilizes conventional concur-
rency control algorithms to execute transactions and generate transaction de-
pendency graphs. Afterward, the proposer broadcasts both the transactions and
the graph to the attestors. The attestors concurrently execute transactions in
a deterministic manner based on the graph. This model requires synchroniza-
tion between the proposer and the attestor and suffers from time-consuming
dependency analysis. The second is the proposer-attestor concurrency model.
The proposer determines the order of transactions, and then the proposer and
attestors deterministically execute the transactions based on the pre-determined
order. Gus and the state-of-the-art approaches [13, 6] belong to the second model.

Deterministic database. Our work ensures that the transaction processing
results are deterministic, so we can borrow the idea from the deterministic
databases. The early deterministic databases [2, 12, 4, 5] rely on the prior knowl-
edge of read-write sets, which allow transactions to execute in a predetermined
order without aborts. However, it is impractical to obtain read-write sets in
the blockchain since blockchain transactions are Turing complete. Aria [9] and
DOCC [3] break this limitation.

Aria [9] adopts a multi-batch transaction processing algorithm. As shown
in Fig. 1 (a), transactions in a batch are executed concurrently by reading the

4 Xinyuan Wang et al.

snapshot of the previous batch. Transactions that violate serializability will be
moved to the next batch for re-execution. A recent work, DVC [13], is a variant
of Aria. It utilizes the read-write set obtained in the execution to distribute the
aborted transactions to a conflict-less batch to reduce aborts.

DOCC [3] is a single-batch transaction processing algorithm. As shown in
Fig. 1 (b), transactions are executed concurrently by reading the latest commit-
ted data while validated and committed serially in TID order. The transaction
will be aborted and re-executed if the data read is overwritten before validation.
Block-STM [6] is a multi-version single-batch algorithm, in which the versions
written by the aborted transactions are kept in the version chain. In this way,
a transaction can wait for its prior known dependent versions to commit before
reading to avoid abort.

3 Gas-based Deterministic Concurrency Model

The proposer assigns TIDs to transactions in their received order. Once the total
gas fees of the transactions reach a threshold (100 K units of gas by default), the
transactions will be packaged into a block and sent to the attestors. We adopt
the inter-node concurrency model, so the proposer and the attestors process a
block of transactions asynchronously in a deterministic manner.

Thd1

Thd2

Thd3

Thd4

T1

T2

T3

T4 w(C) r(B)

w(B)

r(C)

T5

T6

T8

T4 r(B)

w(B) r(A)

T7 w(A)

r(B)T9

T10 w(A)

T11

T12

T13

T14

T15

T2 T1 T4 T4T6,3 T5 T9,7 T10 T8,11,12,13,14,15

T2,1 T6,3 T4,5 T9,12,8,7,10

commit_gts

commit order T8,11,12,13,14,15

r(B)

r(B)

T11

w(A)

Fig. 2: An example of Gus. : the left boundary is start gts, the right boundary
is commit gts, and the width is gas fee; : transaction execution; : transac-
tion validation and commit/commit after reordering/abort; r/w(X): read/write
the record X.

Gus deterministically processes a block of transactions in a single batch. Each
worker thread maintains a gas timestamp (gts). gts is a tuple variable. The
structure and the necessary operations are as follows.

gts: {1 : uint (
∑

gas fee), 2 : uint (thd id)}
a (gts) + gas fee (uint): return gts{a.1 + gas fee, a.2}
a (gts) < b (gts): if a.1 = b.1 then return a.2 < b.2 else return a.1 < b.1
a (gts) = b (gts): return a.1 = b.1 && a.2 = b.2

Gas-Based Deterministic Concurrent Transaction Processing in Blockchain 5

The running logic of the worker thread is shown in Algorithm 1. The worker
thread assigns start gts and commit gts to the transaction to be executed and
updates the gts of the thread accordingly, as shown in lines 13 to 16. During
execution, a transaction deterministically reads the latest data committed before
its start gts. For example, in Fig. 2, T8 reads the latest data committed by T1-
T3 and T6.

After a transaction is executed, the worker thread can validate the transac-
tion only when its gts is minimum. Otherwise, the worker thread will be blocked.
For example, in Fig. 2, Thd1 completes the execution of T1, but it needs to wait
until Thd2 commits T2 before validating T1. This is because T2 has a longer
execution time but has a lower gas fee than T1. There are no identical gts be-
tween worker threads. This is because the gts is determined by the gas fees and
a unique worker thread ID. For example, the combined gas fees of T1 and T6
equal the gas fee of T3. However, T6 is validated before T3 since the worker
thread executing T6 has a smaller thd id than the worker thread executing T3.
This ensures that ① the transactions are validated in a deterministic order.

If the transaction passes the validation (which will be detailed in Sec. 4 and
Sec. 5), the data written will be committed with the commit gts. Then, the
worker thread will pop the transaction from the global transaction queue for
execution. If the transaction violates the serializability of the commit gts order,
e.g., T4 conflicts with T2, it will be aborted and re-executed. ② The validation
result is deterministic since the transaction reads the deterministic data in exe-
cution. By ① and ②, the transactions are committed/aborted deterministically
in the commit gts order.

Algorithm 1: Worker Thread Runing Model

1 Function (thd ∗Thread) Run():
2 thd.wait()
3 for txn ← the unassigned transaction with the smallest TID do
4 thd.update gts(txn)
5 thd.execute(txn) // read the data committed before start gts.
6 thd.wait() // wait until the thd.gts is minimum.

7 if thd.validate(txn) then
8 thd.commit(txn) // validate and commit with commit gts.

9 else
10 thd.abort(txn)
11 goto line4

12 thd.Exit() // thd.gts is set to +∞.

13 Function (thd ∗Thread) update gts(txn *Txn):
14 txn.started gts← thd.gts
15 txn.committed gts← thd.gts+ txn.gas fee
16 thd.gts← txn.committed gts

6 Xinyuan Wang et al.

4 Multi-version Scheme

We use a multi-version scheme to manage transactional read and write. A version
has two variables commit gts and order gts. Each record maintains a singly
linked list to store the committed versions in the order of order gts which is
equal to commit gts if there is no reordering. We define dependencies between
transaction and version as follows.

Definition 1. There is a version V in record R, and a transaction T reads R.
If V.commit gts ≤ T.start gts, then V is readable for T.

Definition 2. There is a version V in record R, and a transaction T reads R.
If V.order gts (= V.commit gts if no reordering) < T.commit gts, then V is
visible for T.

In the execution, a transaction will read the latest readable versions, and the
data written is stored in the local cache. In the validation, the transaction gets
the next versions of the versions read in the version chain. If the next version
is visible to the transaction (a.k.a., conflicted version), the transaction suffers a
conflict. If the validation passes, the transaction inserts the new versions written
into the version chain with commit gts. Only the latest version in the version
chain is available for transactions in the next block. Thus, we will reclaim versions
other than the latest version (i.e., garbage collection) after the block processing
is completed.

5 Reordering Mechanism

In the validation, we can use the reordering mechanism to reduce transaction
aborts. The ① principle of the reordering mechanism is to commit the conflicted
transaction with an earlier order to make the conflicted versions invisible. To
ensure ② serializability, we must ensure that the transactions that have been
committed do not depend on the reordered transaction, and the versions read
are also visible after reordering. Besides, we must ensure that ③ the versions are
organized in the order of order gts in the version chain to ensure the correctness
of the validation.

We use Fig. 2 as an example. T8 has read-write conflicts with T7 and T10. To
satisfy ①, T8 can be committed earlier than T7, making the versions written by
T7 and T10 invisible. To satisfy ②, the commit order of T8 must be later than T4
and T9 that have been committed. Otherwise, T4 and T9 will have a read-write
dependency on T8 and break serializability. In addition, T8 must be committed
after T6 to keep the versions read visible. Therefore, to avoid conflicts, T8 can
be committed with the order gts equal to T7’s commit gts. To satisfy ③, we do
not allow version insertion between the order gts and commit gts of T8 in T8’s
write set, i.e., the shadow range of T8 in Fig. 2. Note that the versions written
by T8 are not readable for T12, even if T8 is committed before (order gts is less
than) the start gts of T12. Thus, T12 will conflict with T8. However, T12 can
still be committed after T9 and before T8 by reordering.

Gas-Based Deterministic Concurrent Transaction Processing in Blockchain 7

6 Speculative Mechanism

The speculative mechanism is optional, which optimistically assumes that the
write set of a re-executed transaction remains unchanged from its latest exe-
cution. If the known write set is visible but unreadable, the transaction can be
executed later than the commit of the known write set. Then, we can update the
start gts of the transaction to the commit gts of the known write set to make
the unreadable version readable, avoiding conflicts. Besides, with the increase of
the start gts, the newer visible versions that are out of the known write set are
readable.

The speculation mechanism uses a mult-batch scheme to execute a block of
transactions where the aborted transaction will be re-executed in the next batch.
Each batch has two phases. The first phase installs the version placeholders of
the previous write set into the version chain, and the second phase executes
the transaction based on the known version written. The multi-batch scheme is
designed to address the issue of high data skew workload. In this workload, re-
executed transactions may face further aborts. Multi-batching can help prevent
these aborts by assigning transactions to a batch with known write sets.

However, if the write set is changed, the reader may be unaware of the new
visible version causing a conflict. Additionally, the aborted pre-installed versions
can cause transactions to be blocked in vain.

T1 T9

T5

1st batch

T6

T2(1)

T3 T8(4)

T2(1) T10T7

T1(5) A

AT3(8)

T5(7) B

T4(4) B

C

C

B

T7(9)

T9 B

T10(6)

A

2ed batch

C

3rd batch

T9

Fig. 3: An example of speculative mechanism. X : reading X (red indicates a
conflict); X: writing X (black indicates the writing record within the previous
write set, and gray indicates the writing record outside of the write set).

Fig. 3 shows an example of the speculative mechanism. The first batch is run
as original since there are no previous write sets, and the aborted transactions
are moved to the next batch. In the second batch, because the write set of the
aborted transaction is installed, T3 waits for T1 to commit version A before
reading, avoiding the abort. T5 writes record B that is outside its previous write
set. The new version in record B is unreadable for T9, so T9 is aborted. However,
T7 sets start gts to T5’s commit gts before reading the version in record C.
Thus, the new version in record B is readable for T7, and T7 is committed.
T10 conflicts with the new version in record B written by T5, but it can be
committed before T5 and later than T1 through reordering.

8 Xinyuan Wang et al.

7 Experimental Evaluation

7.1 Experimental Setup

Workloads. We generate workloads using two popular benchmarks, TPC-C
and YCSB. TPC-C [7] simulates an e-commerce order processing application.
We configure the proportion of NewOrder and Payment transactions to be 50%,
respectively, and control the contention of the workload by adjusting the Ware-
houses (similar to Partitions). YCSB [1] is a key-value operation generator. The
keys follow a Zipfian distribution. We adjust the key skew through the parameter
theta in Zipfian. By default, a transaction comprises ten read/write operations,
and the read-write ratio of the transactions is adjustable.

Gas fees. We pre-execute a transaction based on the latest snapshot before
packaging it into a block, and the read-write operation count during the exe-
cution is used as the gas fee of the transaction. The similar methods are also
employed by Web3 3, V-Gas [10], and Li et al [8] for gas evaluation, which is
proven to be more accurate than the static methods such as Solc 4.

Algorithms. We implement the following algorithms in our framework with
Golang 1.18. ① Gus: the algorithm we proposed with the reordering mechanism
enabled. ② Gus w/o R.O.: Gus with the reordering mechanism disabled. ③
Gus S.P.: Gus with the speculative mechanism enabled. ④ Gus F.B.: Gus en-
ables a fallback strategy for the case that the gas fees are unavailable, in which
all gas fees are set to the same value (e.g. 1 Wei). ⑤ Aria [9]:a multi-batch
deterministic algorithm. ⑥ DVC [13]: a variant of Aria leverages the previous
read-write set of the re-executing transaction to avoid abort. ⑦ Block-STM [6]:
a single-batch multi-version deterministic algorithm that forces transactions to
be committed in the pre-determined order (TID) to achieve determinism.

Performance metrics. For each test, we report the throughput, blocking rate
(
∑∞

i=1
WorkerThread i.BlockPeriod

WorkerThread i.RunningPeriod), and abort rate (AbortTxnCnt
ExecTxnCnt). All data

presented are averages of 10 runs.

Hardware and System Software. The experiment servers are equipped with
32 cores 3.4 GHz processor and 128 GB DDR4 memory. The operating system
is CentOS 6.5.

7.2 TPC-C Result

First, we measure the performance of the algorithms under TPC-C. We tuned
Warehouse to 1 and 32 to generate high- and low-contention workloads. We vary
the number of worker threads from 1 to 32 to study the scalability of the algo-
rithms.

3 https://web3js.readthedocs.io/en/v1.2.0/web3-eth.html#estimategas.
4 https://github.com/ethereum/solidity.

Gas-Based Deterministic Concurrent Transaction Processing in Blockchain 9

Gus (Block) Gus_S.P. Gus_w/o_R.O. Gus.F.B.
DVC Aria Block-STM Gus (TPS/Abort)
Gus_S.P. Gus_w/o_R.O. Gus_F.B. DVC
Aria Block-STM

0
50

100
150
200
250
300

1 4 8 16 32

TP
S

(K
)

of worker threads

(a) Throughputs

0%

20%

40%

60%

80%

100%

1 4 8 16 32A
b

o
rt

/B
lo

ck
in

g
ra

te

of worker threads

(b) Abort and blocking rate

Fig. 4: Low-contention TPC-C workloads.

0

20

40

60

80

1 4 8 16 32

TP
S

(K
)

of worker threads

(a) Throughputs

0%

20%

40%

60%

80%

100%

1 4 8 16 32A
b

o
rt

/B
lo

ck
in

g
ra

te

of worker threads

(b) Abort and blocking rate

Fig. 5: High-contention TPC-C workloads.

Low-contention. Fig. 4 (a) shows that Gus’s throughput is 1.7x, 1.8x and
2.7x that of DVC, Aria, and Block-STM when 16 worker threads are available.
The reason can be found in Fig. 4 (b). By leveraging the knowledge of gas fees,
Gus’ blocking rate is only 0.2% to 8%, which is far lower than that of com-
petitors. The reordering mechanism brings a 1.4x throughput improvement as
it reduces the abort rate by 61%. Gus S.P. is slightly worse than Gus. This is
because Gus S.P. executes in a blocking manner, limiting the scalability, and the
blocking will also result in an error between transaction execution time and gas
fee. Gus F.B. is slightly better than Block-STM because it utilises the reordering
mechanism, while Block-STM enforces that the commit order is consistent with
the TID order.

10 Xinyuan Wang et al.

High-contention. We report the results in Fig. 5. Gus outperforms the com-
petitors by a large margin, achieving 3.4x, 4.4x and 4.7x higher throughput than
DVC, Aria, and Block-STM at 16 worker threads. This is because the blocking
rates of DVC, Aria, and Block-STM are up to 86%, 58%, and 88% while Gus is
only 4%. Gus achieves 3.3x higher throughput than Gus w/o R.O. as it reduces
the abort rate by 29%. Gus S.P.’s abort rate is 33% lower than Gus’s, but its
performance is worse, as its blocking rate is up to 78% at 16 worker threads.
Gus F.B. has a similar throughput to Aria and Block-STM.

7.3 YCSB Result

Then, we measure the performance under YCSB. We adjust the read-write ratio
to 8:2 and 2:8 to generate read- and write-intensive workloads. We vary the theta
in Zipfian from 0.1 to 1.7 to study the impact of data skew on performances.
We omit the performance comparison of Gus F.B. since it exhibits similar per-
formance to Gus when the gas fees of the transactions generated by YCSB are
the same.

Gus(Block) Gus_S.P. Gus_w/o_R.O. DVC
Aria Block-STM Gus(TPS/Abort) Gus_S.P.
Gus_w/o_R.O. DVC Aria Block-STM

0

200

400

600

800

0.1 0.5 0.9 1.3 1.7

TP
S

(K
)

Theta

(a) Throughputs

0%

20%

40%

60%

80%

100%

0.1 0.5 0.9 1.3 1.7A
b

o
rt

/B
lo

ck
in

g
ra

te

Theta

(b) Abort and blocking rate

Fig. 6: Read-intensive YCSB workloads.

Read-intensive. We show the results in Fig. 6. At low-skew scenarios (theta
between 0.1 and 0.5), Aria and DVC are the best. This is because the read-write
overhead is low in the single-version scheme. Block-STM performs the worst since
serial validation and committing become its bottleneck. At mid- and high-skew
scenarios (theta between 0.9 and 1.7), Gus achieves 1.5x, 2.5x, and 4.6x higher
throughput than DVC, Block-STM, and Aria. Reordering works best when theta
is 0.9, reducing the abort rate by 49% and delivering a 1.4x performance im-
provement. When theta is 1.7, the throughput of Gus S.P. is 1.3x that of Gus,

Gas-Based Deterministic Concurrent Transaction Processing in Blockchain 11

0

200

400

600

800

0.1 0.5 0.9 1.3 1.7

TP
S

(K
)

Theta

(a) Throughputs

0%

20%

40%

60%

80%

100%

0.1 0.5 0.9 1.3 1.7A
b

o
rt

/B
lo

ck
in

g
ra

te

Theta

(b) Abort and blocking rate

Fig. 7: Write-intensive YCSB workloads.

in which Gus S.P. has a 54% lower abort rate than Gus.

Write-intensive. We report the results in Fig. 7. At low-skew scenarios (theta
between 0.1 and 0.5), the throughput rankings are similar to those observed in
read-intensive workloads. At the mid-skew (theta is 0.9) scenario, Block-STM
is better than DVC and Aria. This is because Block-STM uses a multi-version
scheme avoiding write-write conflicts. Thus Block-STM has 73% and 86% lower
abort rates than DVC and Aria. At high-skew scenarios (theta between 1.3 and
1.7), Block-STM outperforms Gus since the abort rate becomes Gus’s bottleneck.
The effect of reordering is weak and reduces the abort rate by only 5%. This is
because reordering enforces that no version is committed between the order gts
and commit gts in the write set. Gus S.P. performs the best in mid- and high-
skew scenarios, achieving 1.4x and 2.4x higher throughput than Block-STM and
Gus, since it reduces the abort rate by 67% with speculative mechanism.

7.4 Factor Analysis

Next, we analyse three factors that affect the performance of Gus and Gus S.P.

Change in the write set. We use YCSB to generate the write set changing
workloads. We introduce a parameter -change rate, which indicates the percent-
age probability of the write set changing after a transaction is aborted. The
changed write set and the previous write set obey the same distribution. We
configured theta to 1.2 and the number of worker threads to 16.

The results are shown in Fig. 8. As the change rate goes from 0 to 0.9, the
throughput of Gus S.P. decreases by 22%. This is because newly inserted versions
are not noticed by readers and cause conflicts. Similarly, DVC’s throughput is
reduced by 23% since the changes in the write set will cause the aborted transac-
tions to be assigned to the conflicting batches. In contrast, write set changes have
little impact on Block-STM since the abort rate is not the bottleneck. Changes
in the write set actually make a performance improvement to Gus. This is be-

12 Xinyuan Wang et al.

Gus (Block) Gus_S.P. DVC Block-STM

Gus (TPS/Abort) Gus_S.P. DVC Block-STM

0
20
40
60
80

100
120

0 0.3 0.5 0.7 0.9

TP
S

(K
)

Write set change rate

(a) Throughputs

0%

20%

40%

60%

80%

100%

0 0.3 0.5 0.7 0.9A
b

o
rt

/B
lo

ck
in

g
ra

te

Write set change rate

(b) Abort and blocking rate

Fig. 8: Write set changing workloads.

cause some transactions cannot be reordered due to writing the contention keys
(hotkeys). However, the change in the write set may swap out the contention
keys and reduce aborts.

Transaction length skew. We use YCSB to generate the workloads. We vary

Gus (Block) DVC Aria Block-STM
Gus (TPS/Abort) DVC Aria Block-STM

0

100

200

300

400

0 5 10 15 20

TP
S

(K
)

STD of transaction lengths

(a) Throughputs

0%

20%

40%

60%

80%

100%

0 5 10 15 20A
b

o
rt

/B
lo

ck
in

g
ra

te

STD of transaction lengths

(b) Abort and blocking rate

Fig. 9: Transaction length skewed workloads.

the standard deviation of the transaction length from 0 to 20. The average length
of transactions is 20. Theta is 0.8. The number of worker threads is 16.

We report the results in Fig. 9. The increase in transaction length skew has
the greatest negative impact on the multi-batch algorithms, Aria and DVC, with
the blocking rate increased by 6.6x and 2.3x and the throughput decreased by

Gas-Based Deterministic Concurrent Transaction Processing in Blockchain 13

43% and 38%. This is because the worker threads will suffer from the blocking in
the batch barrier caused by their unbalanced runtimes. The throughput of Block-
STM is reduced by 23% since it commits transactions in the pre-determined
order, causing short transactions to wait for the previous long transactions to
commit. In contrast, transaction skew has less impact on Gus. This is because
we determine the commit order based on the gas fee of the transactions. The
committing of the long transactions will be delayed without blocking short trans-
actions.

Gas fee error. We use a mid-contention TPC-C workload (8 warehouses) for

Gus (Block) Gus_S.P.

Gus (TPS/Abort) Gus_S.P.

Gus_F.B.
Gus_F.B.

0

50

100

150

200

0.1 0.3 0.5 0.7 0.9

TP
S

(K
)

Gas fee error rate

(a) Throughputs

0%

20%

40%

60%

80%

100%

0.1 0.3 0.5 0.7 0.9A
b

o
rt

/B
lo

ck
in

g
ra

te

Gas fee error rate

(b) Abort and blocking rate

Fig. 10: Gas fee error workloads.

evaluation. We introduce a parameter - error rate. If the estimated gas is e, then
the gas fee of the transaction is e × (1 ± error rate). The number of worker
threads is set to 16.

The results are shown in Fig. 10. As the error rate increases from 0.1 to
0.9, the blocking rate of Gus and Gus S.P. increases by 6.4x and 2.0x, and the
throughput decreases by 77% and 68%. When the error rate is greater than 0.7,
the performance of Gus and Gus S.P. is lower than Gus F.B. This is because the
gas fee error can result in transactions that are completed execution earlier to
be committed later.

8 Conclusion

In this paper, we introduce Gus, a deterministic transaction processing algorithm
for blockchain. Gus leverages the knowledge of the gas fees in blockchain transac-
tions to reduce blocking in concurrent execution. We also propose reordering and
speculative mechanisms to reduce transaction aborts. The results show that Gus

14 Xinyuan Wang et al.

outperforms the state-of-the-art deterministic transaction processing algorithms
by a large margin. Reordering and speculative mechanisms are most effective
under high-contention TPC-C workload and high-skew YCSB workload, respec-
tively. Besides, we find that write set change and transaction length skew have
less negative impacts on Gus than the competitors. Gus’s performance is related
to the accuracy of gas fees, and we can use the fallback strategy to prevent
undesirable performances when the gas fees are unavailable.

References

1. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154 (2010)

2. Cowling, J., Liskov, B.: Granola:low-overhead distributed transaction coordination.
In: 2012 USENIX Annual Technical Conference (USENIX ATC 12). pp. 223–235
(2012)

3. Dong, Z.Y., Tang, C.Z., Wang, J.C., Wang, Z.G., Chen, H.B., Zang, B.Y.: Op-
timistic transaction processing in deterministic database. Journal of Computer
Science and Technology 35(2), 382–394 (2020)

4. Faleiro, J.M., Abadi, D.J.: Rethinking serializable multiversion concurrency con-
trol. Proc. VLDB Endow. 8(11), 1190–1201 (2015)

5. Faleiro, J.M., Abadi, D.J., Hellerstein, J.M.: High performance transactions via
early write visibility. Proceedings of the VLDB Endowment 10(5) (2017)

6. Gelashvili, R., Spiegelman, A., Xiang, Z., Danezis, G., Li, Z., Malkhi, D., Xia, Y.,
Zhou, R.: Block-stm: Scaling blockchain execution by turning ordering curse to a
performance blessing. In: Proceedings of the 28th ACM SIGPLAN Annual Sym-
posium on Principles and Practice of Parallel Programming. pp. 232–244 (2023)

7. Leutenegger, S.T., Dias, D.: A modeling study of the tpc-c benchmark. ACM Sig-
mod Record 22(2), 22–31 (1993)

8. Li, C., Nie, S., Cao, Y., Yu, Y., Hu, Z.: Dynamic gas estimation of loops using
machine learning. In: Blockchain and Trustworthy Systems: Second International
Conference, BlockSys 2020, Dali, China, August 6–7, 2020, Revised Selected Papers
2. pp. 428–441. Springer (2020)

9. Lu, Y., Yu, X., Cao, L., Madden, S.: Aria: a fast and practical deterministic oltp
database. Proceedings of the VLDB Endowment 13(12), 2047–2060 (2020)

10. Ma, F., Fu, Y., Ren, M., Sun, W., Liu, Z., Jiang, Y., Sun, J., Sun, J.: Gasfuzz:
Generating high gas consumption inputs to avoid out-of-gas vulnerability. arXiv
preprint arXiv:1910.02945 (2019)

11. Shi, J., Wu, H., Gao, H., Zhang, W.: Overview on parallel execution models of
smart contract transactions in blockchains. Journal of Software 33(11), 4084–4106
(2021)

12. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin:
fast distributed transactions for partitioned database systems. In: Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. pp.
1–12 (2012)

13. Xia, H., Chen, J., Ma, N., Huang, J., Du, X.: Efficient execution of blockchain trans-
actions through deterministic concurrency control. In: International Conference on
Database Systems for Advanced Applications. pp. 509–518. Springer (2023)

