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Abstract—To increase traffic safety and transportation ef-
ficiency, adopting intelligent transportation systems (ITS) has
become a trend. As an important component of ITS, one essential
task of autonomous vehicles is to detect pedestrians accurately,
which is of great significance for improving traffic safety and
building a smart city. In this paper, we propose an anchor-free
pedestrian detection model named Bi-Center Network (BCNet)
by fusing the full body center and visible part center for each
pedestrian. Experimental results show that the performance
of pedestrian detection can be improved with a strengthened
heatmap, which combines the full body with the visible part
semantic. We compare our BCNet with state-of-the-art models
on the CityPersons dataset and the ETH dataset, which shows
that our approach is effective. Compared to the backbone model,
our BCNet improves the detection accuracy by 1.2% on the
Reasonable setup and Partial Setup of the CityPersons dataset.

Index Terms—Intelligent transportation system, autonomous
vehicle, pedestrian detection, convolutional neural network.

I. INTRODUCTION

The transportation system is one essential foundation of
the modern city and becomes much more complicated with
the progress of society. To reduce the transportation burden,
arrange transportation reasonably, and improve safety and
quality of human life, the concept of intelligent transportation
systems (ITS) was proposed. ITS is an advanced system that
enables all the transport participants to collaborate, exchange
information, and understand surroundings, thereby efficiently
improving transportation safety and playing an important
role in building smart cities. Pedestrian detection is one of
the fundamental tasks for supporting autonomous vehicles
and other essential components of ITS, and the detection
information can be shared among autonomous vehicles by
taking advantage of the vehicular networks. In recent years,
the widespread application of pedestrian detection has enabled
more researchers to contribute to this area [1]–[4].

As mentioned in [3] and [4], the occlusion is very com-
mon in real scenarios, and accordingly, many researchers
have worked on occlusion handling. However, we have some
reasons to point out that heavy occlusion handling (i.e., the
pedestrian is occluded more than 35% of the full body, as
defined in [3]) in pedestrian detection is not the most urgent
task for supporting autonomous vehicles.
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Fig. 1. The pedestrian behind the bush (in box 1) is occluded in the perspective
of the current dash camera, but is not occluded in the perspective of other
vehicles (in box 3) on another roadside. The group of pedestrians are drawn
in box 2.

Firstly, there are many studies on occlusion handling, but
the detection accuracy of heavily occluded pedestrians is much
lower than other types. Secondly, as mentioned in [5], around
48.8% of pedestrians are occluded by other pedestrians in
the CityPersons dataset [4], but autonomous vehicles are not
required to predict how many pedestrians are in the crowd.
No matter how many pedestrians are in box 2 of Fig. 1,
the autonomous vehicle should avoid hurting them. Lastly,
autonomous vehicles can exchange information with the help
of ITS. There are many studies on coping with the content
delivery issue in vehicular networks, e.g., [6]–[8], which
enable the images of the same pedestrian captured by different
vehicles to be shared with other vehicles. In shared images
from different roadsides and observation points, there is likely
to be at least one image for each pedestrian that is slightly
occluded or even unoccluded. In Fig. 1, it is very dangerous
that the autonomous vehicle may hurt the occluded pedestrian
behind the bush. However, with the help of information
exchange, the white vehicle will send the detection result of
this pedestrian to all other vehicles in this area so that every
autonomous vehicle will notice this pedestrian even if it cannot
observe that pedestrian from its perspective.

In this paper, we focus on improving the performance of
pedestrian detection under reasonable occlusion. The proposed
Bi-Center Network (BCNet) is an anchor-free network, and
our work has the following contributions:

1) We utilize the visible part semantic of each pedestrian
and fuse with full body semantic to obtain the enriched
feature of each pedestrian.

2) We do an ablation study to find out how to balance



the hyper-parameters of the full body semantic and the
visible part semantic, and we visualize the enhanced
response of the fused center keypoint on the heatmap.

In the rest of this paper, we will first introduce machine
learning methods development and classify the existing neural
network-based detectors from two aspects in Section II. In
Section III, we will illustrate the details and innovations of
our model. Following in Section IV, we conduct experiments
on the CityPersons dataset [4] and the ETH dataset [9],
implementation details and evaluation results will be given.
Lastly, the conclusion of our experiments and future work
plans will be shown in Section V.

II. RELATED WORK

Back to more than a decade ago, object detection relied
mainly on traditional machine learning methods. One of
the essential differences between traditional machine learning
methods and deep learning methods is that the former use
predefined feature descriptors (e.g., SIFT [10], HOG [11], and
Haar [12]) to extract features, while the latter learn and extract
features from the datasets by using neural networks in the
training phase. With the development of computing hardware,
the computing ability is largely increased. In 2012, Krizhevsky
et al. proposed AlexNet [13], and since then, the convolutional
neural network is getting attention again and blossoming. In
this section, we will classify the existing deep learning-based
detectors from two aspects, and analyze the pros and cons for
each type of detectors.

A. One-stage detectors vs. two-stage detectors

Detectors can be roughly divided into two branches: two-
stage detectors (TSDs) and one-stage detectors (OSDs). The
most representative TSDs are R-CNN [14], Fast R-CNN [15],
and Faster R-CNN [16] family. YOLO [17] and SSD [18] are
two classic OSDs. The main difference is that TSDs have a
proposal generation phase before generating the final bounding
boxes (bbox), while OSDs do not. Correspondingly, TSDs
are usually slower than OSDs but with higher precision. One
reason behind OSDs’ unsatisfactory precision is that OSD has
to classify approximately 100k candidate bboxes, while TSD
only needs to process around 2000 candidate bboxes with
the first stage’s help. Consequently, most of the candidates
that OSD needs to process are hard negative samples, which
can overwhelm the entire training phase. In essence, this is
the imbalance between foreground and background classes.
To cope with class imbalance, Lin et al. designed the Focal
Loss [19] to re-weight positive samples and negative samples
in the training phase. Accordingly, the detection accuracy of
OSDs has been dramatically enhanced.

B. Anchor-based detectors vs. anchor-free detectors

Anchor boxes are candidates for the region proposals gen-
erated by TSDs in the first stage, and candidates for the
final bboxes of OSDs. Since Faster R-CNN [16] came out,
more pedestrian detectors have tended to use the anchor-based
framework with predefined anchor boxes, such as RepLoss [5],

OR-CNN [20], and Bi-box [21]. RepLoss [5] enforces the
predicted bbox far away from other ground truth pedestrians
and their designated proposals. However, one drawback of Re-
pLoss is that it does not consider the overlapping pedestrians in
crowded scenes, as indicated in [20]. Bi-box [21] is capable of
detecting pedestrians and estimating occlusion simultaneously
by applying parallel branches in the detection head. Compared
to anchor-based detectors, anchor-free detectors are more
flexible because they do not adopt the hyper-parameters such
as scales and ratios of anchor boxes. To achieve anchor-
free detectors, the use of alternative annotations is a primary
method. TLL [22] is an anchor-free detector that predicts the
somatic topological line of each pedestrian. CornerNet [23]
achieves an anchor-free framework by detecting two corner
keypoints of each object. Inspired by CornerNet [23], Duan et
al. proposed CenterNet [24], which utilizes the center keypoint
together with top-left and bottom-right corner keypoints. By
predicting the center keypoint and the corresponding scale of
each pedestrian, Center and scale prediction-based detector
(CSP) [25] greatly improved the detection accuracy on the
CityPersons [4] dataset.

Based on the above analyses, our proposed BCNet will
take advantage of the OSD because of its fast speed and
high accuracy. Meanwhile, we will use the center keypoint
to locate the pedestrian in that the center keypoint has the
internal feature of the pedestrian.

III. PROPOSED APPROACH

One main feature of our BCNet is to predict two heatmaps:
one for the full body center keypoints and another for the
visible part center keypoints. These two heatmaps are fused
to generate the enhanced feature maps. Our model underlines
the utility of the visible part semantic.

A. Model overview

The model proposed in this paper takes CSP [25] as the
backbone. One drawback of CSP is that it does not take
advantage of the visible part feature for each pedestrian. In
the proposed network, we introduce a heatmap for the center
keypoint of the visible part. The model architecture is shown in
Fig. 2. We use ResNet-50 [26] structure in ConvNet to extract
different levels of features. The feature map from ConvNet’s
deeper layers has a lower resolution but a higher semantic
level. To take advantage of the high resolution and high
semantic feature, we extract multi-scale feature maps from
conv2 x layer, conv3 x layer, conv4 x layer, and conv5 x
layer in ResNet-50. Before concatenating together, we rescale
four feature maps to the same size by using the transposed
convolution layers. The generated final feature map is of size
H/r×W/r, where H and W are the height and width of the input
image, and r = 4 is the downsampling ratio suggested in [27].
In our model, after reducing the feature map channel from
1024 to 256 by a 3×3 Conv layer, our detector has four parallel
branches. These four branches are processed by four separate
1×1 Conv layers and the parameters of the four subnets are
not shared. The outputs of the full body center keypoint branch
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Fig. 2. The architecture of BCNet. We take ResNet-50 [26] as backbone in ConvNet. Center F denotes the full body center keypoint prediction and Center V
denotes the visible part center keypoint prediction.

Fig. 3. Distribution of distances between the visible part center keypoint and
the full body center keypoint for each pedestrian in the CityPersons training
set in the resolution of 256×512. ∆x and ∆y denote horizontal distance and
vertical distance, respectively.

and visible part center keypoint branch are predicted heatmaps,
on which we can locate pedestrians through the high response
points. To generate the detection result, we first fuse center
keypoints on these two predicted heatmaps and then use the
score threshold to filter out the high response points on the
fused heatmap. We fine-tune the location by the predicted
offset. With the predicted height, we can multiply the height
by the aspect ratio to get the pedestrian width. In our work,
we use a fixed aspect ratio of 0.41 as defined in [1].

B. Pedestrian detection with semantic fusion

In Fig. 3, we analyze the distribution of distances between
the visible part center keypoint and the full body center
keypoint for each annotated pedestrian in the CityPersons [4]
training set. 19654 annotated objects are labeled as pedestri-
ans. In the resolution of the final feature maps that have been
downsampled with factor r = 4, around 85% and 77% of the
pedestrians have a distance of no larger than one pixel between
their full body centers and visible part centers horizontally and
vertically, respectively. For the pedestrians under reasonable
occlusion (visibility ratio ≥ 0.65, as defined in [4]), the visible
part center keypoint and the full body center keypoint should

be very close and even identical. For the heavily occluded
(occlusion ratio ≥ 0.35) pedestrians, two center keypoints are
usually far apart spatially. Thereby, we combine the location
sensitive confidence scores obtained from two center keypoint
heatmaps as in:

αScoreF + βScoreV = Score, (1)

where ScoreF and ScoreV represent the confidence score
of the full body center keypoint and the visible part center
keypoint, respectively. α and β are weighting factors ∈ [0,
1]. The score in Eq. (1) is determined based on location on
the heatmap, which means the confidence scores at different
locations will not affect each other. More details about choos-
ing hyper-parameters α and β will be given in Section IV-B1.
Notably, even if the confidence scores are not combined, the
visible part center keypoint branch can naturally benefit the
model to converge.

C. Loss function

We formulate two center keypoints prediction branches as
classification problems. Lclsf and Lclsv denote the loss of the
full body center keypoint branch and the visible part center
keypoint branch, respectively. The ground truth heatmaps are
generated by the 2D Gaussian function introduced in [25].

In the visible part center keypoint branch, yij represents
the ScoreV on the ground truth heatmap, and pij represents
the ŜcoreV on the predicted heatmap. Both yij and pij ∈
[0, 1]. pij is the predicted probability to indicate if there is a
center keypoint of the visible part pedestrian at the location
(i, j). Similar to [23] and [25], we modify the Focal Loss
function introduced in [19], which is given by Eq. (2). In
this equation, N is the number of annotated pedestrians in
the image. H0 and W0 represent the height and width of the
input after downsampling, respectively. γ and δ are focusing
hyper-parameters, and in the experiment we set γ = 2, δ =
4 as suggested in [23]. The same classification loss function
in Eq. (2) is used to calculate Lclsf in the full body center
keypoint prediction branch.



Lclsv = − 1

N

H0∑
i=1

W0∑
j=1

{
(1− pij)γ log(pij) if yij = 1 ,
(1− yij)δ(pij)γ log(1− pij) otherwise . (2)

In the height and offset prediction branches, we formulate
them as regression problems. We use the smooth L1 Loss
function [15] at the center of full body locations, as in:

Lscale =
1

N

N∑
k=1

SmoothL1Loss(hk, ĥk), (3)

Loffset =
1

N

N∑
k=1

SmoothL1Loss(ok, ôk), (4)

where hk, ĥk, ok, and ôk are the ground truth height, predicted
height, ground truth offset, and predicted offset of pedestrian
k, respectively.

The final loss function to be optimized in the training phase
is added up as in:

Loss = λfLclsf + λvLclsv + λsLscale + λoLoffset, (5)

where λf , λv , λs, and λo are weighting factors for the losses
in each branch, and we experimentally set them to 0.01, 0.01,
1, and 0.1, respectively.

IV. EXPERIMENTS

In this section we will demonstrate how the hyper-
parameters α and β in Eq. (1) affect the performance, and
we conduct experiments on the CityPersons dataset [4] and
the ETH dataset [9]. We adopt the unified evaluation metric
MR−2 (the lower the better) introduced in [1], which is the
mean value of nine derived miss rates with the corresponding
FPPIs (false positive per image) evenly located in [10−2, 100]
within the log-space. The experimental results shown in Ta-
ble II, Fig. 4, and Fig. 6 are all evaluated by MR−2.

A. Dataset and experimental setup

The CityPersons [4] dataset provides annotations of the
visible part for each pedestrian; it has large resolution images
(1024 ×2048); it covers multiple seasons and countries. The
ETH [9] dataset has a considerable number of pedestrians per
image, but the resolution of images (640 ×480) is much lower.
These properties make them representative, and we choose
them to conduct our experiments.

We train our model on the CityPersons [4] training set
and test on the validation set, with 2975 and 500 images,
respectively. We use the model that trained on the CityPersons
dataset [4] to directly test on the ETH [9] dataset without
training or fine-tuning. The reason why we test our model on
low-resolution images after training on high-resolution images
is to avoid overfitting and test generalization of our model.

Our BCNet is trained on single Nvidia GeForce GTX 1080
Ti GPU with the mini-batch size of 2 for the CityPersons
dataset [4]. The proposed model is implemented in Python
2.7 and PyTorch 1.2.0.

Fig. 4. Experiments of varying α and β on the Reasonable setup of the
CityPersons dataset, evaluated by MR−2.

B. Experiments on the CityPersons dataset

In our experiments, we use a total of seven setups (Rea-
sonable, Bare, Partial, Heavy, Small, Medium, and Large) to
evaluate MR−2 and the configurations for each setup are
shown in Table I. For example, the pedestrian samples on the
Reasonable setup are at least 50 pixels in height and visible
at least 65% of the full body.

1) Ablation study: In Eq. (1), we introduced two hyper-
parameters α and β, which are the weights for the confidence
scores of the full body center keypoint and visible part center
keypoint, respectively. By changing α and β, the final score
will be fused by different ratios of two confidence scores.
We do the ablation study on the Reasonable setup of the
CityPersons dataset, of which the occlusion ratio is under 0.35.
The results of how α and β can affect the performance on
the Reasonable setup are shown in Fig. 4, which is similar
when applied to other setups in Table I. Obviously, there is a
region that MR−2 is low and stable, and this region appears
when the ratio of α and β is around 2:1, where α ∈ [0.4, 1]
and β ∈ [0.2, 0.6]. These (α, β) combinations work well,
and the performance is promising and stable. To simplify,
we use α = 1 and β = 0.5 to conduct our experiments and
evaluations.

The predicted heatmaps are visualized in Fig. 5(a) and
Fig. 5(b). Fig. 5(c) is the final enhanced heatmap by fusing
Fig. 5(a) and Fig. 5(b) with Eq. (1), where the weight α =
1 and β = 0.5. The bright spot on the heatmap indicates the
location where the predicted confidence score is higher. In
other words, the bright point is the predicted center of the full
body and visible part for each pedestrian. In Fig. 5(c) the fused
body center is brighter than the one before integration, which
indicates it has a stronger response and higher confidence



TABLE I
EVALUATION SETUPS OF THE CITYPERSONS DATASET [4]

Reasonable Bare Partial Heavy Small Medium Large
Height (in pixels) [50, +∞] [50, +∞] [50, +∞] [50, +∞] [50, 75] [75, 100] [100, +∞]

Visibility ratio [0.65, 1] [0.9, 1] [0.65, 0.9] [0, 0.65] [0.65, 1] [0.65, 1] [0.65, 1]

(a) The heatmap of full body centers. (b) The heatmap of visible part centers. (c) The heatmap after score fusion.

Fig. 5. The visualized heatmaps are cropped into size 40×60 from 256×512 after downsampling with factor r = 4. Width and height are in pixels.

TABLE II
EXPERIMENTAL RESULTS ON THE CITYPERSONS VALIDATION SET. THE RESULTS IN BOLDFACE INDICATE THE BEST PERFORMANCE.

Reasonable(%) Bare(%) Partial(%) Heavy(%) Small(%) Medium(%) Large(%)
Faster R-CNN with Semantic [4] 14.8 - - - 22.6 6.7 8.0

RepLoss [5] 13.2 7.6 16.8 56.9 - - -
OR-CNN [20] 12.8 6.7 15.3 55.7 - - -
ALFNet [28] 12.0 8.4 11.4 51.9 19.0 5.7 6.6

RFBNet (with adaptive-NMS) [29] 12.7 7.6 11.7 51.9 - - -
CSP (with offset) [25] 11.0 7.3 10.4 49.3 16.0 3.7 6.5

BCNet (ours) 9.8 5.8 9.2 53.3 13.0 3.3 6.1

score. In the meanwhile, the center of the visible part can
be kept, which helps to enrich the semantic information for
each pedestrian. We observe that the confidence scores of
unoccluded and slightly occluded pedestrians are enhanced;
while when the pedestrians are under heavy occlusion, the
confidence scores are not dramatically affected since two
center keypoints are not close spatially.

2) Evaluation and analysis: During the training phase on
the CityPersons dataset, we initial our model weights with
backbone ResNet-50 [26] which was pre-trained on Ima-
geNet [30], and we use Adam [31] to minimize the loss
in Eq. (5) for a total of 100 epochs. We use a learning
rate of 5×10−5 for the first 50 epochs and 2×10−5 for the
last 50 epochs. The locations where the scores above 0.1 on
the fused heatmap are kept, and the candidate bbox will be
generated based on the retained center keypoint, predicted
height, and offset. The candidate bbox will then be applied
with non-maximum suppression (NMS) at a threshold of 0.5.
We adopted the same standard data augmentation techniques
as demonstrated in [25] to increase the diversity of data and
help reduce the overfitting for the dataset.

We test our BCNet on the CityPersons [4] validation set
with the batch size of 1, and it takes 0.32s to infer one image
with the original resolution on a single Nvidia GeForce GTX
1080 Ti GPU. We compare the results with other state-of-the-

art models in Table II by using the same comparison method
with other works like [20], [5], and [25]. Evaluation results are
cited from the published works. The results not provided in
the original works are indicated by the symbol ‘-’ in Table II.

We demonstrate the performance of state-of-the-art models
in Table II. Compared to the baseline model CSP [25] with
about 40M parameters, our BCNet only introduces 257 addi-
tional parameters to achieve such a significant improvement;
our model achieves 3.0% better MR−2 on the Small setup,
1.5% better MR−2 on the Bare setup, and 1.2% better
MR−2 on the Reasonable setup and Partial setup. Obviously,
our BCNet achieves promising performance on almost all
setups. Notably, our model gained huge success on the Small
setup, with the height of each pedestrian varying in [50, 75],
which will help to detect pedestrians in farther distances and
could help autonomous vehicles have a longer time to react.
Although we did not consider heavy occlusion processing, our
model still achieves a moderate performance on the Heavy
setup and even beats OR-CNN and RepLoss which are de-
signed to handle occlusion. The overall promising performance
of our model lies in the usage and combination of semantic
information, which will contribute to vehicular networks and
ITS by providing more accurate detection results to other
autonomous vehicles and improve transportation safety.



C. Experiments on the ETH dataset

To extend our experiment, we directly apply the BCNet
model and the baseline model CSP [25] trained on the
CityPersons [4] dataset to test the ETH [9] dataset without
any fine-tuning. The ETH dataset serves as an additional test
dataset, and it has 1804 frames from three 15-FPS video clips.
Fig. 6 is generated by the toolbox1, which is the plotted miss
rate against FPPI in log scale. In Fig. 6, our BCNet model
yields slightly better results than CSP [25]. One reason why
our model is not significantly better than the baseline model
CSP [25] is because the resolution of the test image is only
640×480, which can weaken the effect of the visible part
center score when generating the final heatmap. By comparing
with other models trained or fine-tuned before evaluating
on the ETH dataset, our model which only trained on the
CityPersons dataset achieves a moderate performance on the
ETH dataset, which proves the generalization of our model.
With the advancement of the vehicular camera, the resolution
and quality of images will be improved, which can benefit our
model to locate center keypoints of pedestrians better. In this
way, our model will show considerable performance even on
the data it has never seen before.
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Fig. 6. Comparisons of the state-of-the-art models on the ETH dataset.

V. CONCLUSION

In this paper, we emphasized the importance of detecting
pedestrians under reasonable occlusion with the support of
vehicular networks and communications. We proposed BCNet
that fuses the full body center keypoint prediction and the
visible part center keypoint prediction for each pedestrian,
thereby increasing the confidence score when the pedestrian
is slightly occluded or unoccluded. We did the ablation study
to find how different combinations of weights α and β
would affect the performance. We tested our BCNet on the
CityPersons dataset and the ETH dataset, and the results are
promising, which will contribute to ITS by sharing more
accurate detection results with other autonomous vehicles and

1www.vision.caltech.edu/Image Datasets/CaltechPedestrians/index.html

transportation participants. In future work, we will improve
our detector’s accuracy on small resolution images, apply our
detector to real-time video, and consider privacy protection.
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