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Abstract: In this article, we consider the various possibilities for p and k modulo 16, and show conditions un-
der which the respective congruence classes for σ(m2) (modulo 8) are attained, if pkm2 is an odd perfect number
with special prime p. We prove that

1. σ(m2) ≡ 1 (mod 8) holds only if p+ k ≡ 2 (mod 16).

2. σ(m2) ≡ 3 (mod 8) holds only if p− k ≡ 4 (mod 16).

3. σ(m2) ≡ 5 (mod 8) holds only if p+ k ≡ 10 (mod 16).

4. σ(m2) ≡ 7 (mod 8) holds only if p− k ≡ 4 (mod 16).

We express gcd(m2, σ(m2)) as a linear combination of m2 and σ(m2). We also consider some applications under
the assumption that σ(m2)/pk is a square. Lastly, we prove a last-minute conjecture under this hypothesis.
Keywords: Sum of divisors, Sum of aliquot divisors, Deficiency, Odd perfect number, Special prime.
2010 Mathematics Subject Classification: 11A05, 11A25.

1 Introduction

Let σ(z) denote the sum of the divisors of z ∈ N, the set of positive integers. Denote the deficiency [12] of z by
D(z) = 2z − σ(z), and the sum of the aliquot divisors [13] of z by s(z) = σ(z)− z. Note that we have the identity
D(z) + s(z) = z.

If n is odd and σ(n) = 2n, then n is said to be an odd perfect number [16]. Euler proved that an odd perfect
number, if one exists, must have the form n = pkm2, where p is the special prime satisfying p ≡ k ≡ 1 (mod 4)

and gcd(p,m) = 1.
Chen and Luo [3] gave a characterization of the forms of odd perfect numbers n = pkm2 such that p ≡ k

(mod 8). Starni [15] proved that there is no odd perfect number decomposable into primes all of the type ≡ 1

(mod 4) if n = pkm2 and p ̸≡ k (mod 8). Starni used a congruence from Ewell [10] to prove this result.
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Note that, in general, since m2 is a square, we get

σ(m2) ≡ 1 (mod 2).

Dris and San Diego [9] provide an alternative proof of the following theorem from Chen and Luo [3]:

Theorem 1.1. If n = pkm2 is an odd perfect number with special prime p, then σ(m2) ≡ 1 (mod 4) holds if and
only if p ≡ k (mod 8).

Chen and Luo [3] actually proved the following (stronger) theorem:

Theorem 1.2. Let n = pkm2 be an odd perfect number, with p prime, gcd(p,m) = 1, and p ≡ k ≡ 1 (mod 4).
Then

σ(m2) ≡ 1 (mod 4) ⇐⇒ p ≡ k (mod 8),

σ(m2) ≡ 3 (mod 4) ⇐⇒ p ≡ k + 4 (mod 8).

This paper considers the possibilities for σ(m2) modulo 8 under suitable hypotheses for p and k modulo 16.

2 Preliminaries

Starting from the fundamental equality
σ(m2)

pk
=

2m2

σ(pk)

(which follows from the facts that σ(n) = 2n, σ is multiplicative, and gcd(pk, σ(pk)) = 1) one can derive

σ(m2)

pk
=

2m2

σ(pk)
= gcd(m2, σ(m2))

so that we ultimately have
D(m2)

s(pk)
=

2m2 − σ(m2)

σ(pk)− pk
= gcd(m2, σ(m2))

and
s(m2)

D(pk)/2
=

σ(m2)−m2

pk − σ(pk)
2

= gcd(m2, σ(m2)),

whereby we obtain
D(pk)D(m2)

s(pk)s(m2)
= 2.

Note that we also have the following equation

2D(m2)s(m2)

D(pk)s(pk)
=

(
gcd(m2, σ(m2))

)2

. (∗)

Notice that the right-hand side of Equation (∗) is odd. (Furthermore, it is congruent to 1 modulo 8.) Lastly, notice
that we can easily get

σ(pk) ≡ k + 1 ≡ 2 (mod 4)

(since p ≡ k ≡ 1 (mod 4)) so that it remains to consider the possible equivalence classes for σ(m2) modulo 4.
Chen and Luo proved that σ(m2) ≡ 1 (mod 4) if and only if p ≡ k (mod 8).
This paper considers the following problem: What congruence classes are attained by σ(m2) modulo 8 when p

and k are constrained to certain congruence classes modulo 16?
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3 Discussion and Results

We know that the answer to the question we posed in the previous section must somehow depend on the equivalence
class of p and k modulo 16, but as we only know that p ≡ k ≡ 1 (mod 4), and that p ≡ k (mod 8) if and only
if σ(m2) ≡ 1 (mod 4), we need to consider the following cases separately and thereby prove the corresponding
results.

First, we prove the following lemmas.

Lemma 3.1. Suppose that n = pkm2 is an odd perfect number with special prime p. Consider the possible congru-
ence classes for σ(m2) modulo 8.

1. If σ(m2) ≡ 1 (mod 8) or σ(m2) ≡ 5 (mod 8), then p ≡ k (mod 8).

2. If σ(m2) ≡ 3 (mod 8) or σ(m2) ≡ 7 (mod 8), then p ̸≡ k (mod 8).

Proof. This follows directly from Theorem 1.1.

We reproduce the following lemmas from Dris et al. [9], adjusting to account for p and k modulo 16 instead of
modulo 8.

Lemma 3.2. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If p ≡ 1 (mod 16), then σ(pk) ≡ k + 1 (mod 16).

2. If p ≡ 5 (mod 16), then

σ(pk) ≡


6 (mod 16), if k ≡ 1 (mod 16)

2 (mod 16), if k ≡ 5 (mod 16)

14 (mod 16), if k ≡ 9 (mod 16)

10 (mod 16), if k ≡ 13 (mod 16)

.

3. If p ≡ 9 (mod 16), then

σ(pk) ≡


10 (mod 16), if k ≡ 1 (mod 16)

14 (mod 16), if k ≡ 5 (mod 16)

2 (mod 16), if k ≡ 9 (mod 16)

6 (mod 16), if k ≡ 13 (mod 16)

.

4. If p ≡ 13 (mod 16), then

σ(pk) ≡


14 (mod 16), if k ≡ 1 (mod 16)

10 (mod 16), if k ≡ 5 (mod 16)

6 (mod 16), if k ≡ 9 (mod 16)

2 (mod 16), if k ≡ 13 (mod 16)

.

Proof. Let n = pkm2 be an odd perfect number with special prime p. It follows that p ≡ 1 (mod 4).
We consider four cases:
Case 1: p ≡ 1 (mod 16) We obtain

σ(pk) =

k∑
i=0

pi ≡ 1 +

k∑
i=1

pi ≡ 1 +

k∑
i=1

1i ≡ k + 1 (mod 16),

as desired.
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Case 2: p ≡ 5 (mod 16) We get

σ(pk) =

k∑
i=0

pi ≡
k∑

i=0

5i ≡


6 (mod 16), if k ≡ 1 (mod 16)

2 (mod 16), if k ≡ 5 (mod 16)

14 (mod 16), if k ≡ 9 (mod 16)

10 (mod 16), if k ≡ 13 (mod 16)

.

Case 3: p ≡ 9 (mod 16) We derive

σ(pk) =

k∑
i=0

pi ≡
k∑

i=0

9i ≡


10 (mod 16), if k ≡ 1 (mod 16)

14 (mod 16), if k ≡ 5 (mod 16)

2 (mod 16), if k ≡ 9 (mod 16)

6 (mod 16), if k ≡ 13 (mod 16)

.

Case 4: p ≡ 13 (mod 16) We have that

σ(pk) =

k∑
i=0

pi ≡
k∑

i=0

13i ≡


14 (mod 16), if k ≡ 1 (mod 16)

10 (mod 16), if k ≡ 5 (mod 16)

6 (mod 16), if k ≡ 9 (mod 16)

2 (mod 16), if k ≡ 13 (mod 16)

.

The next lemma computes the congruence class for the deficiency of the Euler component pk.

Lemma 3.3. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. Suppose that exactly one of the following conditions hold:

(a) p ≡ k ≡ 1 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 13 (mod 16)

(c) p ≡ k ≡ 9 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 5 (mod 16)

It follows that D(pk) ≡ 0 (mod 16).

2. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 13 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 1 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 5 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 9 (mod 16)

It follows that D(pk) ≡ 4 (mod 16).

3. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 9 (mod 16)

(b) p ≡ k ≡ 5 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 1 (mod 16)

(d) p ≡ k ≡ 13 (mod 16)

It follows that D(pk) ≡ 8 (mod 16).
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4. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 5 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 9 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 13 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 1 (mod 16)

It follows that D(pk) ≡ 12 (mod 16).

Proof. The proof is trivial and follows directly from Lemma 3.2, using the formula D(pk) = 2pk − σ(pk).

We now compute the congruence class for the sum of the aliquot divisors of the Euler component pk.

Lemma 3.4. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. Suppose that exactly one of the following conditions hold:

(a) p ≡ k ≡ 1 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 1 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 1 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 1 (mod 16)

It follows that s(pk) ≡ 1 (mod 16).

2. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 5 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 13 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 5 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 13 (mod 16)

It follows that s(pk) ≡ 5 (mod 16).

3. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 9 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 9 (mod 16)

(c) p ≡ k ≡ 9 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 9 (mod 16)

It follows that s(pk) ≡ 9 (mod 16).

4. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 13 (mod 16)

(b) p ≡ k ≡ 5 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 13 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 5 (mod 16)

It follows that s(pk) ≡ 13 (mod 16).

Proof. The proof is trivial and follows directly from Lemma 3.3, using the formula s(pk) = pk −D(pk).

Lemma 3.5. Suppose that n = pkm2 is an odd perfect number with special prime p.
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1. If σ(m2) ≡ 1 (mod 8), then D(m2) ≡ 1 (mod 8).

2. If σ(m2) ≡ 3 (mod 8), then D(m2) ≡ 7 (mod 8).

3. If σ(m2) ≡ 5 (mod 8), then D(m2) ≡ 5 (mod 8).

4. If σ(m2) ≡ 7 (mod 8), then D(m2) ≡ 3 (mod 8).

Proof. The proof is trivial and follows directly from the fact that m2 ≡ 1 (mod 8) (since m is odd), using the
underlying assumptions and the formula D(m2) = 2m2 − σ(m2).

Lemma 3.6. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If σ(m2) ≡ 1 (mod 8), then s(m2) ≡ 0 (mod 8).

2. If σ(m2) ≡ 3 (mod 8), then s(m2) ≡ 2 (mod 8).

3. If σ(m2) ≡ 5 (mod 8), then s(m2) ≡ 4 (mod 8).

4. If σ(m2) ≡ 7 (mod 8), then s(m2) ≡ 6 (mod 8).

Proof. The proof is trivial and follows directly from Lemma 3.5, using the formula s(m2) = m2 −D(m2).

We are now ready to prove our main results.

Theorem 3.7. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying σ(m2) ≡ 1

(mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ k ≡ 1 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 13 (mod 16)

3. p ≡ k ≡ 9 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 5 (mod 16)

Proof. Let n = pkm2 be an odd perfect number with special prime p, satisfying σ(m2) ≡ 1 (mod 8). By Lemma
3.1, p ≡ k (mod 8) holds.

We now consider each of the resulting possible congruences for p and k modulo 16:

1. p ≡ k ≡ 1 (mod 16)

2. p ≡ 1 (mod 16), k ≡ 9 (mod 16)

3. p ≡ k ≡ 5 (mod 16)

4. p ≡ 5 (mod 16), k ≡ 13 (mod 16)

5. p ≡ 9 (mod 16), k ≡ 1 (mod 16)

6. p ≡ k ≡ 9 (mod 16)

7. p ≡ 13 (mod 16), k ≡ 5 (mod 16)

8. p ≡ k ≡ 13 (mod 16)

We shall show that no integer solutions to Equation (∗) exist for the second, third, fifth and eighth cases. Notice
that the right-hand side of Equation (∗)

2D(m2)s(m2)

D(pk)s(pk)
=

(
gcd(m2, σ(m2))

)2

. (∗)

is odd. (Furthermore, it is congruent to 1 modulo 8.)
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First, suppose that p ≡ 1 (mod 16), k ≡ 9 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8 (mod 16). By Lemma
3.5, D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 9 (mod 16). By Lemma 3.6, s(m2) ≡ 0 (mod 8). Thus, from
Equation (∗) we obtain (symbolically)

2(8a1 + 1)(8b1) = (8x1 + 1)(16c1 + 8)(16d1 + 9)

which does not have any integer solutions.
Next, suppose that p ≡ k ≡ 5 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8 (mod 16). By Lemma 3.5,

D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 13 (mod 16). By Lemma 3.6, s(m2) ≡ 0 (mod 8). Thus, from
Equation (∗) we obtain (symbolically)

2(8a2 + 1)(8b2) = (8x2 + 1)(16c2 + 8)(16d2 + 13)

which does not have any integer solutions.
Now, suppose that p ≡ 9 (mod 16), k ≡ 1 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8 (mod 16). By Lemma

3.5, D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 1 (mod 16). By Lemma 3.6, s(m2) ≡ 0 (mod 8). Thus, from
Equation (∗) we obtain (symbolically)

2(8a3 + 1)(8b3) = (8x3 + 1)(16c3 + 8)(16d3 + 1)

which does not have any integer solutions.
Finally, suppose that p ≡ k ≡ 13 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8 (mod 16). By Lemma 3.5,

D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 5 (mod 16). By Lemma 3.6, s(m2) ≡ 0 (mod 8). Thus, from
Equation (∗) we obtain (symbolically)

2(8a4 + 1)(8b4) = (8x4 + 1)(16c4 + 8)(16d4 + 5)

which does not have any integer solutions.
It can be double-checked that the other cases yield potential solutions, and do not result to a contradiction.
This concludes the proof.

Theorem 3.8. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying σ(m2) ≡ 3

(mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ 1 (mod 16), k ≡ 13 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 1 (mod 16)

3. p ≡ 9 (mod 16), k ≡ 5 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 9 (mod 16)

Proof. The proof of this theorem is very similar to that of Theorem 3.7, and is left as an exercise for the interested
reader.

Theorem 3.9. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying σ(m2) ≡ 5

(mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ 1 (mod 16), k ≡ 9 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 5 (mod 16)

3. p ≡ 9 (mod 16), k ≡ 1 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 13 (mod 16)

Proof. The proof of this theorem is very similar to that of Theorem 3.7, and is left as an exercise for the interested
reader.
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Theorem 3.10. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying σ(m2) ≡ 7

(mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ 1 (mod 16), k ≡ 13 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 1 (mod 16)

3. p ≡ 9 (mod 16), k ≡ 5 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 9 (mod 16)

Proof. The proof of this theorem is very similar to that of Theorem 3.7, and is left as an exercise for the interested
reader.

Remark 3.11. To summarize, Theorem 3.7, Theorem 3.8, Theorem 3.9, and Theorem 3.10 just state collectively that
if n = pkm2 is an odd perfect number with special prime p, then

1. σ(m2) ≡ 1 (mod 8) holds only if p+ k ≡ 2 (mod 16).

2. σ(m2) ≡ 3 (mod 8) holds only if p− k ≡ 4 (mod 16).

3. σ(m2) ≡ 5 (mod 8) holds only if p+ k ≡ 10 (mod 16).

4. σ(m2) ≡ 7 (mod 8) holds only if p− k ≡ 4 (mod 16).

4 Applications

Let n = pkm2 be an odd perfect number with special prime p, and let σ(m2)/pk be a square. Since σ(m2)/pk is
odd, it follows that σ(m2)/pk ≡ 1 (mod 4). But it is known that p ≡ k ≡ 1 (mod 4). In particular, we know that
pk ≡ 1 (mod 4). This implies that σ(m2) ≡ 1 (mod 4), if σ(m2)/pk is a square. By Theorem 1.1, we infer that
p ≡ k (mod 8).

Moreover, Broughan, Delbourgo, and Zhou prove in [1] (Lemma 8, page 7) that if σ(m2)/pk is a square, then
k = 1 holds.

Thus, under the assumption that σ(m2)/pk is a square, we have

p ≡ k = 1 (mod 8).

Remark 4.1. Let n = pkm2 be an odd perfect number with special prime p.
Note that if

σ(m2)

pk
=

m2

σ(pk)/2

is a square, then k = 1 and σ(pk)/2 = (p+ 1)/2 is also a square.
The possible values for the special prime satisfying p < 100 and p ≡ 1 (mod 8) are 17, 41, 73, 89, and 97.
For each of these values:

p1 + 1

2
=

17 + 1

2
= 9 = 32.

p2 + 1

2
=

41 + 1

2
= 21 which is not a square.

p3 + 1

2
=

73 + 1

2
= 37 which is not a square.

p4 + 1

2
=

89 + 1

2
= 45 which is not a square.

p5 + 1

2
=

97 + 1

2
= 49 = 72.

A quick way to rule out 41, 73 and 89, as remarked by Ochem [11] over at Mathematics StackExchange, is as
follows: “If (p + 1)/2 is an odd square, then (p + 1)/2 ≡ 1 (mod 8), so that p ≡ 1 (mod 16). This rules out 41,
73, and 89.”
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So we are now in the following situation: Assuming σ(m2)/pk is a square, we have σ(m2) ≡ 1 (mod 4) and
p ≡ k = 1 (mod 8).

Adjusting to account for σ(m2) modulo 8 and for p, k modulo 16, we obtain either

σ(m2) ≡ 1 (mod 8) and p ≡ 1 (mod 16)

or
σ(m2) ≡ 5 (mod 8) and p ≡ 9 (mod 16),

from Remark 3.11. Furthermore, we know by Remark 4.1 that if σ(m2)/pk is a square, then p ≡ 1 (mod 16).
This implies that the lowest possible value for the special prime p is 17.
We state this result as our next theorem.

Theorem 4.2. Suppose that n = pkm2 is an odd perfect number with special prime p. If σ(m2)/pk is a square, then
σ(m2) ≡ 1 (mod 8) and p ≡ 1 (mod 16). It follows that p ≥ 17.

5 Evolution of the Proof of a Conjecture

Additional tools are required if we are to push the lower bound for p (when σ(m2)/pk is a square) from 17 onwards.
On the other hand, we also know that the equation

gcd(m2, σ(m2)) =
σ(m2)

pk
=

2m2

σ(pk)
=

D(m2)

s(pk)
=

2s(m2)

D(pk)

holds, which is actually an identity.
Also, we have

gcd(m2, σ(m2)) =
σ(m2)

pk
=

D(m2)

s(pk)
=

(p− 1)D(m2)

pk − 1

from which we obtain

gcd(m2, σ(m2)) =
σ(m2)− (p− 1)D(m2)

pk − (pk − 1)
= 2(1− p)m2 + pσ(m2)

and this last equation holds unconditionally.
Finally, when σ(m2)/pk is a square, then as discussed in [1] (Lemma 8, page 7), it follows that k = 1, so that

the odd perfect number n = pkm2 can be written in the form

n =
p(p+ 1)

2
·D(m2),

where both (p+ 1)/2 and D(m2) are squares. Since k = 1, then we consider whether it is possible that

2m2 − σ(m2) = D(m2) =
p+ 1

2

so that, solving for p, we obtain
p = 4m2 − 2σ(m2)− 1.

Substituting this value in the other equation containing p:

2m2 − σ(m2) = pσ(m2)− 2(p− 1)m2

2m2 − σ(m2) =

(
4m2 − 2σ(m2)− 1

)
σ(m2)− 2

(
4m2 − 2σ(m2)− 2

)
m2

2m2 − σ(m2) = 4m2σ(m2)− 2

(
σ(m2)

)2

− σ(m2)− 4

(
2m2 − σ(m2)− 1

)
m2,

which unfortunately, even after further simplification, does not lead to a contradiction.
Nonetheless, we predict that:
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Conjecture 5.1. Suppose that n = pkm2 is an odd perfect number with special prime p. If σ(m2)/pk is a square,
then

D(m2) ̸= p+ 1

2

Remark 5.2. We end this section with some remarks about conditions which follow from assuming the negation of
Conjecture 5.1.

First and foremost, we have
σ(m2)

p
= D(m2) =

m2

(p+ 1)/2
=

p+ 1

2

which implies that the odd perfect number n = pkm2 takes the form

n = p

(
p+ 1

2

)2

= (2m− 1)m2.

Notice that we then have the equations

σ

((
p+ 1

2

)2
)

= σ(m2) = pD(m2) =
p(p+ 1)

2

and inequalities

p(p+ 1)

2
= σ

((
p+ 1

2

)2
)

<

(
σ

(
p+ 1

2

))2

≤ (p− 1)2,

where we have used the inequality σ((p + 1)/2) ≤ p − 1 (from the line immediately preceding the statement of
Theorem 4 in page 5 of Cohen and Sorli’s paper [4]).

This results in the trivial lower bound p ≥ 5 - hence, still no contradiction, at this point.

Proof. As this article was about to be submitted to NNTDM, the authors realized how to prove Conjecture 5.1.
First, we need the following lemma, proved in https://math.stackexchange.com/questions/

3121498: If n = pkm2 is an odd perfect number with special prime p, then m2 − pk is not a square.
We reproduce the proof of the lemma in the following form here: If n = pkm2 is an odd perfect number with

special prime p, then m2 − pk is not a square if σ(m2)/pk is a square.
Let pkm2 be an odd perfect number with special prime p. Then p ≡ k ≡ 1 (mod 4) and gcd(p,m) = 1.
By Pomerance, et al. [5], we know that pk < m2, so that m2−pk is a positive integer. Also, since m2 is a square

and p ≡ 1 (mod 4), then
m2 − pk ≡ 1− 1 ≡ 0 (mod 4).

Suppose that pkm2 is an odd perfect number with special prime p, and that m2 − pk = s2, for some integer
s ≥ 2.

Then
m2 − s2 = pk = (m+ s)(m− s)

so that we obtain {
pk−v = m+ s

pv = m− s

where v is a positive integer satisfying 0 ≤ v ≤ (k − 1)/2. It follows that we have the system{
pk−v + pv = pv(pk−2v + 1) = 2m

pk−v − pv = pv(pk−2v − 1) = 2s

Since p is a prime satisfying p ≡ 1 (mod 4) and gcd(p,m) = 1, from the first equation it follows that v = 0, so
that we obtain {

pk + 1 = 2m

pk − 1 = 2s
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which yields

m =
pk + 1

2
< pk.

Lastly, note that the inequality p < m has been proved by Brown (2016) [2], Dris (2017) [6], and Starni (2018) [14],
so that we are faced with the inequality

p < m < pk.

This implies that k > 1.
Now assume to the contrary that D(m2) = (p+ 1)/2 and σ(m2)/pk is a square.
Then we obtain the following form for the odd perfect number n = pkm2 = pm2:

n = (2m− 1)m2.

It follows that
m2 − pk = m2 − p = m2 − (2m− 1) = m2 − 2m+ 1 = (m− 1)2

is a square. By our lemma, this implies that k > 1.
This clearly contradicts σ(m2)/pk being a square, since it implies k = 1. QED

We end this section with a corollary to the proof of Conjecture 5.1:

Corollary 5.2.1. Suppose that n = pkm2 is an odd perfect number with special prime p. If σ(m2)/pk is a square,
then D(m2) > (p+ 1)/2.

Proof. The proof proceeds by contradiction and uses the inequality p < m ([2],[6],[14]).

6 Further Research

It is currently not clear to the authors how to use Theorem 1.2 to further simplify and/or unify the presentation of the
congruences in Remark 3.11 (where we have considered σ(m2) modulo 8), similar to those used by Chen and Luo
in their theorem (where they considered σ(m2) modulo 4).

We leave this to be solved by other researchers.
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